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Introduction

Motivation

@ expect quantum structure of space-time at Planck scale

due to | Gravity «» Quantum Mechanics

@ cosmology: "dark matter, dark energy” ... ??

cosmological constant problem

= perhaps gravity is modified:

Matrix Models <« noncommutative (=quantized) space-time J
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Introduction

Outline:

@ Geometry from Matrix Models

@ Relation with NC gauge theory
Nonabelian gauge fields

@ Quantization

@ Cosmological solution without fine-tuning
@ Newtonian limit and long-distance modifications
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Matrix Models

Matrix Models

candidate for quantum theory of fundamental interactions

S—_Tr ([xa, XO\[XT , XO |nagipyy + WTE[Xa, w])

X2 € Mat(N,C) N — oo, a=1,..,10
(IKKT Model 1996 )

@ no geometrical pre-requisites, extremely simple
NC space-time

° . . emerge
metric (=gravity)
nonabelian gauge fields
gravitons

@ well-behaved under quantization

new perspectives for dark energy / dark matter !

Rivelles 2002, Yang 2006, H.S. 2007 ff, ...

} ... fluctuations of NC space



Matrix Models

Space-time & gravity from matrix models:

eom.:. 6S=0 = [X%[X¥ X|naw =0
solutions:
@ [X2 XP| =91, “gquantum plane”

@ [X2 XP] ~ ih(x), generic quantum space
D = 10 required for quantization (maximal SUSY)

— space-time as 3+1-dimensional brane solution M* c R0

X2 = (Xr, o), p=1,..,4 XH o~ xH
d = oi(xH)
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Matrix Models

Noncommutative spaces and Poisson structure

(M, 6" (x)) ... 2n-dimensional manifold with Poisson structure
Its quantization M, is NC algebra such that

such that [?(X), g(X)] = i{f(x),g(x)} + O(6?)
furthermore:

(@m)2 Tr(o(X)) ~ [ d*xp(x)d(x)

p(x) ... symplectic volume

(cf. Bohr-Sommerfeld quantization)
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Matrix Models

Effective geometry:

consider scalar field coupled to Matrix Model (“test particle”)
use [X", o] ~i0"(x)0p =

Sl = Tr[X2 ¢][X°, o] na (U(H) gauge inv.!)
~ [ d*% V]G] G (X) 8.y

G (x) = e 70" (x)0" (X) guw(x)  effective metric
9uw(X) = nuw+0,99,8/5;  induced metric on Mj
1
- ) w| — gu/|
|Guv| ‘ ‘

¢ couples to metric G*¥(x), determined by 6**(x) & embedding ¢’ J

same for gauge fields, fermions
... quantized Poisson manifold with metric (M, 6*¥(x), G,.. (X))
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Matrix Models

Equations of motion:  can show
matrix e.o.m: [X2,[X?, X@]]nae =0 <= (H.S., NPB 810 (2009))

AGd)i = 0, AGXHZO
VE(e0,)) = e 7 Gy
n = e G"gu
covariant formulation in semi-classical limit )

furthermore:

M* — RP s harmonic embedding (w.r.t. G,
minimal surface
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Matrix Models

su(n) gauge fields:  same model, new vacuum

ya—( Y\ XMoo
= yi = ¢ @1,

include fluctuations:

Ya(1+./4pap)< Xﬂ®1n)

' @1,

where
AP = —0"A, @AY, XY € su(n)
o = o @\

= effective action:

Sy = [ d*xVGe” G G"'tr Fuy Fur +2 [(X) tr FAF

(H.S., JHEP 0712:049 (2007), JHEP 0902:044,(2009) )
.. su(n) Yang-Mills coupled to metric G**(x)
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Matrix Models

Symmetries & Noether theorem

Matrix model: translational symmetry X8 — Xa4c1
= conserved “matrix current”

X%, T = 0|

/ 1 / /
T3 = X2 X°|[XP, X |nee — Z77ab[x0’ XX, X g neer + (@ < b)

semi-classical limit:

@ U(1) component:

Vi (e70,)) = e 7 Gu079,n | ...NC — gravity

= expect to be
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Matrix Models

Symmetries & Noether theorem

Matrix model: translational symmetry X8 — Xa4c1
= conserved “matrix current”

X%, T = 0|

/ 1 / /
T3 = X2 X°|[XP, X |nee — Z77ab[x0’ XX, X g neer + (@ < b)

semi-classical limit:

@ U(1) component:

Vi (e70,)) = e 7 Gu079,n | ...NC — gravity

@ SU(n) component: H.S., JHEP 0902:044,2009.

0=—VG(V,+Ii[A, ])(6Fr) — 2F,ze"%d,n

... e.0.m. for Yang-Mills + “would-be top.” coupled to G,,,
= expect to be valid at quantum level !
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Matrix Models

Quantization and the cosmological constant

Quantization of matrix model:
Z— / dXag e~ SXI-SV] _ g—Sur
= effective action
Seff ~ /d4X |G| (N* + cN\? R[G] + ...)

(R[G] due to UV/IR mixing in NC gauge theory)

cosm.const. problem

[ d*x\/|G|A* = huge vacuum energy, needs fine-tuning

here:  metric G, “composite” (emergent)

vacuum energy = space-time = minimal surface M* c R'°
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Dynamics of gravity

special class of solutions:

g/m = G,U.V7
Agy' = 0
Ve = 0
holds for (anti)self-dual symplectic structure 9;,},
*(O0~" = +67° Euclidean
*(0~") = +i9~'  Minkowski (Wick rotation X° — it )

then .
S ~ X XEX X7 = [ d*x\/lg,u)

... same structure as vacuum energy, “brane tension”.
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Dynamics of gravity

Dynamics of emergent NC gravity

effective action
S— / d*x+/[9] (A2R — 2A%) + Spaer
leads to
58 = [d*x\/9109(—N1g"" +8xTH — N3GH)
—2 [6¢'0,(\/19] (=N\3g"” + 8xTH — N2GHV))D, ¢
since g, = Ny + 0,0'0, ¢’
@ “Einstein branch”

Ngh + N2GH = B TH

@ “harmonic branch”
NDgo = (BT — NG )V,0,6
prototype: flat space R < R'°, even for Ay > 0!
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Cosmological solution

Cosmological solution

D. Klammer, H. S., PRL 102 (2009)
assume: vacuum energy A* > energy density p
= look for harmonic embedding Ax? = 0 of FRW metric
ds® = —dt? + a(t)?(dx? + sinh?(x)dQ?),

Ansatz

sinh(x) sin# cos ¢
cos v(t) >® sinh(x) sin @ sin ¢

alt) {4 .
xX3(t,x,0,¢) = ( sin(t) ilonshh((xx))cosa c R0

xc(t)

(cf. B. Nielsen, JGP 4, (1987) )

Evolution a(t), W(t), x;(t) determined by Ax? = 0
solution of M.M + leading term [ d*xv/GA* in T1_jo0p J
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Cosmological solution

harmonic embedding Agx? = 0 leads to

analog of Friedmann equations

2
H? = & —bPa 10+ d?a 8 — k.

a
= -30d%a8 +4b2a 0. o

D 0:

xc 0.0

largely independent of detailed matter/energy content
aslongas A* > p

k = —1 (negative spatial curvature) most interesting
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Cosmological solution

Implications:

1) early universe:

@ big bounce: a=0fora=au, ~b'/*
(3 bound for energy density p vs. vacuum energy A%)
@ inflation-like phase a(t) ~ t2, ends at a(t.;) = \/gg
geometric mechanism (no scalar field required),
no fine-tuning
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Cosmological solution

2) late evolution (now):  a—1

approaches Milne-like universe (k = —1, spatial curvature),

ag - ACDN
aff] - Mile Universe p—

in remarkably good agreement with observation
(age 13.8 - 10° yr, type la supernovae)
different physics for early universe (recombination etc.)
A. Benoit-Levy and G. Chardin, [arXiv:0903.2446]
CMB acoustic peak argued to be at correct scale (?)

no fine-tuning of cosm. const., no need for dark energy ! J
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Newtonian limit & long-distance modifications

Newtonian limit & long-distance modifications

localized mass = local harmonic deformations of flat embedding J

H. S., arXiv 0909.xxxx
large-scale mass clusters embedded in harmonic deformations of
space-time (“gravity bags”) a0

@ recover Newtonian gravity inside
U(r)

@ screening of gravity U(r) ~ r17 at long distances r > L,
enhancement of (galactic) rotation curves
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Newtonian limit & long-distance modifications

e.o.m. /\?ngb = 8mpV3¢ (T =p, TV ~ 0)
cos(wt) )

. i — iwt — “ 1 ”
Ansatz: ¢/'(x,t) = g(x)e“' = g(x) ( sin(wt) gravity bag

= static effective metric
ds? = —(1 — w? g?) dt? + (6 + 0;99;9)dx’dx’.

spher. symm. mass M at origin; g(r) = QOM, o~M

wr

= Newtonian gravity, long-distance screening U(x) ~ w?g? ~ rlz

gravitational field due to localized mass:

goo ~ —(1+2U— 2 — IAr?)

r

AU = 4rG(p(x)+ Ay

2g5w* 1 Apd
G - /2? 5 /\Cff - _EGA1

Newton constant G, cutoff L, dynamical,
determined by largest structures; might differ between galaxies
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Newtonian limit & long-distance modifications

(galactic) rotation curves:

orbital velocities v(r) larger for larger distances,
similar to observations (« “dark matter” ?!)
for point mass:

H. Steinacker
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Newtonian limit & long-distance modifications

note:
@ Newtonian gravity without using E-H term!
= cutoffs can be much lower than Planck scale, even O(TeV)
@ remarkably close to “what we see” without fine-tuning

@ solar system precision tests not clear
(non-standard g,r, needs refinement)
@ gauge couplings will be different in early universe
@ non-standard spin connection (D. Klammer, H.S 2008, 2009)

@ add cubic terms to matrix model = extra-dim. fuzzy S?,
interesting low-energy gauge groups
(P. Aschieri, T. Grammatikopoulos, H.S., G. Zoupanos JHEP
0609:026,2006; Madore, Manousselis; Aoki, Azuma, Iso, ...; H.
Grosse, F. Lizzi, H.S. in preparation)
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Newtonian limit & long-distance modifications

Summary and Conclusion

@ matrix-model Tr[X2, X2][XZ , XY'] nazn

dynamical NC spaces <« emergent gravity & gauge thy
@ not same as G.R., long-distance corrections

@ intriguing cosmological solutions,
physics of vacuum energy different from GR
less fine-tuning

@ suitable for quantizing gravity
(IKKT model, N =4 SUSY in D = 4)

@ ... more work is needed; solar system constraints ?
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