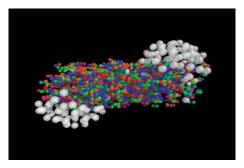
Higher Derivative Effects on η/s with Finite Chemical Potential

Kentaro Hanaki

University of Michigan Based on arXiv:0903.3244[hep-th] with Sera Cremonini, James Liu and Phillip Szepietowski

September 8th, 2009


AdS/CFT correspondence: Maldacena, GKP, Witten

Type *IIB* superstring on
$$AdS_5 \times SE_5$$

 \updownarrow
 $\mathcal{N} = 1$ superconformal field theory

- Strong-weak duality Difficult to prove
- Alternative tool to analyze strongly coupled QFT
- "Phenomenological test" of AdS/CFT correspondence

Quark-gluon plasma at RHIC

- Au-Au collision at $\sqrt{s}/N\sim 200\,GeV$
- Intermediate region Not confined, not free
- Quark-gluon plasma formed and thermalized
- QGP behaves like a nearly perfect fluid

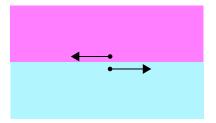
Stolen from CERN press release

Quantity of interest

Shear viscosity " η " : Measure of viscousness of a fluid

Traditional approaches don't work very well...

- Perturbation theory unreliable
- "Real-time" quantities hard to extract from lattice calculation



- Holographic hydrodynamics
- KSS bound
- Finite N corrections and violation of KSS bound

What is shear viscosity?

$$T_{ij} = \delta_{ij} p - \eta \left(\partial_i u_j + \partial_j u_i - \frac{2}{3} \delta_{ij} \partial_k u_k \right) - \zeta \delta_{ij} \partial_k u_k$$

- η : Resistance of a fluid under shear stress
- η/s : Dimensionless measure of viscousness

 η/s ratio for various objects:

- $\bullet\,$ Water under normal condition ~ 100
- Liquid Helium ~ 1
- Quark-gluon plasma at RHIC \sim 0-0.2 (Least viscous object known in nature)

Perturbative calculation of QGP

 $rac{\eta}{s} \sim 1$

What about AdS/CFT calculation?

Kubo formula

$$\eta = \lim_{\omega \to 0} \frac{1}{\omega} \operatorname{Im} \left(-i \int dt d\vec{x} e^{i\omega t} \theta(t) \langle [T_{xy}(t, \vec{x}), T_{xy}(0, 0)] \rangle \right)$$

GKP-Witten relation

$$Z_{SUGRA} := e^{-I_{SUGRA}[\phi(x,z)|_{z=0}=\phi_0(x)]} = \langle \exp(i\int d^4x\phi_0(x)\mathcal{O}(x))\rangle$$

Find a background solution

- Plasma with finite temperature \rightarrow AdS black hole (brane)
- Oerive the partition function
 - Partition fn. depends only on the boundary values of the fields
 - Integrate out the bulk degrees of freedom using the e.o.m.
- 3 Read off the (retarded) Green's function
- Use Kubo formula to get the shear viscosity

${\cal N}=$ 4 SYM, infinite λ and N: Kovtun-Son-Starinets $\eta/s=rac{1}{4\pi}~(\sim 0.08)$

- The value is within the experimental bound! (0-0.2)
- $\mathcal{N} = 4$ and conformal, but...

Universality

KSS formula valid for

- $\mathcal{N} = 1$ SCFT: Kovtun-Son-Starinets
- Non-conformal theories: Kovtun-Son-Starinets, Buchel-Liu
- Fundamental matters: Mateos-Myers-Thomson
- Finite chemical potential (for R-charges):

Mas, Son-Starinets, Maeda-Natsuume-Okamura

• Time-dependent background: Janik

+

All the known materials has larger ratio

₩

KSS bound

$\eta/s \geq 1/4\pi$ for all materials

Kentaro Hanaki (University of Michigan)

KSS conjecture valid for finite λ and N ?

 R^4 corrections from string theory

$$S_{R^4} = rac{1}{16\pi G_{10}}\int d^{10}x rac{\zeta(3) lpha'^3}{8} e^{-rac{3}{2}\phi} C^4$$

KSS formula is modified, but the bound not violated: Buchel-Liu-Starinets

$$\frac{\eta}{s}=\frac{1}{4\pi}\left(1+15\zeta(3)\lambda^{-3/2}+\cdots\right)$$

How about finite N corrections?

7-branes wrapping 3-cycles in SE_5 : Aharony-Pawelczyk-Theisen-Yankielowicz

$$\int C_{(4)} \wedge \operatorname{tr}(R \wedge R) \Rightarrow \int A \wedge \operatorname{tr}(R \wedge R) \Leftrightarrow \int R^2$$

The coefficient c_2 determined from trace/R anomaly

$$c_2 = rac{c-a}{a} \sim \mathcal{O}\left(rac{1}{N}
ight)$$

Viscosity-entropy ratio: Kats-Petrov, Brigante-Liu-Myers-Shenker-Yaida

$$\frac{\eta}{s} = \frac{1}{4\pi} \left(1 - \frac{c - a}{a} \right)$$

c - a ≥ 0 for any interacting CFT at large N?: Buchel-Myers-Sinha
KSS bound always violated!

Finite chemical potential?

Need to know...

- Chemical potential in CFT \sim BH charge in AdS
- R^2 , RF^2 and F^4 terms in 5d SUGRA: KH-Ohashi-Tachikawa
- \bullet Additional counter terms \rightarrow Order by order: <code>Buchel-Liu-Starinets</code>

Corrections to η/s : Cremonini-KH-Liu-Szepietowski, Paulos-Myers-Sinha

$$\frac{\eta}{s} = \frac{1}{4\pi} \left(1 - \frac{c-a}{a} \left(1 + \frac{3}{2\bar{\Phi}^2} \left(1 + \frac{4\bar{\Phi}^2}{3} - \sqrt{1 + \frac{8\bar{\Phi}^2}{3}} \right) \right) \right)$$

The range of η/s

$$\frac{1}{4\pi}\left(1-3\frac{c-a}{a}\right) \leq \frac{\eta}{s} \leq \frac{1}{4\pi}\left(1-\frac{c-a}{a}\right)$$

- KSS bound can be violated by finite N corrections
- Violation is enhanced in the presence of chemical potential
- Chemical potential for baryon number?
- Subleading corrections?
- Microcausality constraints on $\eta/s?$ Brigante-Liu-Myers-Shenker-Yaida
- Proof of $c a \ge 0$? Counterexample?