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Classical Starting Point

General Relativity, Classical Einstein Equations in its canonical form

Perform a 3+1 split of spacetime, qab,p
ab

hcan and constraints c(q,p), ca(q,p), moreover hcan ≈ 0

Possibilities to quantise systems with constraints

1.) Quantise the kinematical phase space and solve constraints in
quantum theory

2.) Solve constraints classically and quantise the reduced (physical)
phase space

Consider classically symmetry reduced sector and quantise it
(LQC lectures by Ashtekar)
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Dynamics in Loop Quantum Gravity

Option 1: (standard Dirac procedure)

Quantum Einstein’s equations, constraints become operators ĉ, ĉa

Gauge dof are quantised, kinematical algebra, kinem. Hilbert space Hkin

Solutions of ĉψ = 0 and ĉaψ = 0, physical Hilbert space

Option 2:

Gauge dof are reduced at the classical level, Construction of observables

Quantum Einstein’s equations involving physical Hamiltonian bHphys 6= 0

Only physical dof are quantised, algebra of observables, direct access to
Hphys
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Gauge dof are quantised, kinematical algebra, kinem. Hilbert space Hkin
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Dynamics in Loop Quantum Gravity

Option 1 or Option 2?

It does not mean that one of the options is preferred

Different strategies to quantise systems with constraints

Even a combination of both strategies might be useful:
Parts of the constraints are solved classically and the remaining ones in
quantum theory
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Task 1: Construct observables for General Relativity

Task 2: Discuss their evolution which cannot be generated by hcan
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Clocks for General Relativity

Explicit Construction of Observables for GR

Problem of time in GR: Gauge and physical evolution, hcan ≈ 0

Physical evolution can be defined in relational way [Bergmann’50][Rovelli ’90]

Introduction of reference fields

Choose clock and ruler to give time & space physical meaning

Choose clocks which lead to (partially) deparametrised form of GR

4 scalar fields, 4 dust fields ... dynamically coupled observer
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Brown-Kuchař-Mechanism [’95]

Add Dust Lagrangian to Gravity + Standard Model

Dust action

Sdust = −
1

2

Z

M

d4X
p

|det(g)|ρ(gµνUµUν + 1)

where Uµ = −T,µ + WJS
J
,µ is the four velocity, J = 1, 2, 3

After solving second class constraints for ρ and WJ we are left with T,SJ

Uµ = gµνUν is a geodesic, fields SJ are constant along geodesics, T
defines proper time along each geodesic

T becomes clock with values τ and Sj becomes ruler with values sJ

Dust fields mimic a free falling observer which is dynamically coupled to
GR
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Observables with respect to Dust Clock & Rulers

Space time points are labelled by τ and sj

(s1=1,s2=4,s3=35)

(s1=8,s2=0.3,s3=44)

x

τ proper time on each geodesic

x′
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Deparametrisation of the Constraints in GR [Brown – Kuchar ’90s]

Deparametrisation of the Constraints in GR

Canonical (3+1) – split:

(P,T), (SJ,PJ) dust variables

(qab,p
ab) etc. ( gravity and any standard matter)

Constraints:

ctot = cnd + cdust
, cdust = −

q
P2 + qabcdust

a cdust
b

ctot
a = cnd

a + cdust
a , cdust

a = PT,a + PJS
J
,a

Idea: Solve constraints for dust momenta P and Pj

c̃tot = P + h(qab,p
ab) , h =

q
(cnd)2 − qabcnd

a cnd
b

c̃tot
J = PJ + hJ(T,S

J
, qab,p

ab) , hJ = Sa
J(c

nd
a − hT,a)
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Observables & Physical Hamiltonian

Task 1: Observables: Gravity + any other standard matter

Relational formalism [Rovelli ’90],
Power series expression for observables [Dittrich ’05]

For any f not depending on dust dof we construct observables

Of,{T,SJ}(τ, s
J) := exp({hτ , .}) exp(

Z

σ

d3xβJ{ctot
J , .}) · f(t, x)

˛̨
βJ=sJ−SJ

hτ :=

Z

S

d3s(τ − T)h(s)

For simplicity denote observables by capital letters: f(t, x) −→ F(τ, s)

Task 2: Physical Hamiltonian for GR

Hphys =

Z

S

d3sH(s) with H(s) =
q

(Cnd)2 − QabCnd
a Cnd

b Hphys 6= 0

F(τ, s)

dτ
= {Hphys,F(τ, s)} true physical evolution

Kristina Giesel Loop Quantum Gravity
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Task 3: Quantisation

Task 1: Observables

Task 2: Evolution in terms of Hphys

We need to find representations for the observable algebra

Kristina Giesel Loop Quantum Gravity



Classical Setup
Quantisation

Summary & Conclusions

Observables for GR & Evolution
Brown-Kuchař-Mechanism

Task 3: Quantisation

Task 1: Observables

Task 2: Evolution in terms of Hphys

We need to find representations for the observable algebra

Kristina Giesel Loop Quantum Gravity



Classical Setup
Quantisation

Summary & Conclusions

Reduced Quantisation
Semiclassical Analysis

Quantisation

Reduced Phase Space Quantisation

Algebra of observables is in general more complicated than the
kinematical one

Here we have

{PIJ(τ, s) , QKL(τ, s′)} = δ
I
Kδ

J
Lδ

3(s, s′)

Easy to find representations: Quantisation trivial? Fock space possible?

No! We also need

Hphys =

Z

S

d3s
q

(Cnd)2 − QIJCnd
I Cnd

J

Introduction of Ashtekar variables becomes necessary
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No! We also need

Hphys =

Z

S

d3s
q

(Cnd)2 − QIJCnd
I Cnd

J

Introduction of Ashtekar variables becomes necessary
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Classical kinematical phase space for LQG

Elementary kinematical variables

Instead of QIJ,P
IJ we work with Aj

I,E
I
j :=

p
det(Q)eI

j now

Additional Gauß Constraint:

Ctot(A,E) = 0, Ctot
a (A,E) = 0, Gtot

j (A,E) = 0

Constraints closer to lattice gauge theory

Ggrav
j = DIE

I
j , Cgrav

I = Tr(FIJE
J)

Cgrav =
Tr(FIJ[E

I,EJ])p
|det(E)|

+ ...

Physical Hamiltonian: τj = −iσj

Hphys =

Z

S

p
Tr(F ∧ e)2 − Tr(F ∧ eτj)Tr(F ∧ eτk)δjk
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Classical kinematical phase space for LQG

Physical Hamiltonian

Cotriad e in Hphys cannot be promoted to a well defined operator,
instead e ∼ {A,V} [Thiemann ’96]

Hphys =
1

κ

Z

S

d3s
p

−ηµνTr(τµF ∧ {A,V})Tr(τνF ∧ {A,V})

with V :=
R
S

d3s
p

| det(E)| and τµ = (1, τj)

Now we can adopt techniques from Lattice Gauge theory in order to
regularise the classical expression
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Quantisation

Holonomies and Fluxes

Holonomy A(e)

edge e

S

flux Ej(S)
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Classical physical phase space for reduced LQG

Recall: Symmetries of Hphys

Symmetry group of Hphys : S = N ⋊ Diff(S)

{Cj(s),Hphys} = 0, {H(s),H(s′)} = 0

N : Abelian subgroup of H(s), Diff(S) active diffeom.

Symmetries should be preserved after quantisation

Consequence of Symmetry:

bHphys has to be quantised subgraph preserving

This means: bHphys,γHγ ⊆ Hγ

Infinitely many conservation laws that are classically absent
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Task 3: Quantisation

Here we consider Algebraic Quantum gravity framework (AQG):

[K.G., Thiemann ’06]

LQG inspired quantisation on a fixed infinite abstract graph α

In LQG many things do not depend on the embedding

Instead of LQG representation we use HITP

LQG: infinitely many finite graphs, AQG: one infinite abstract
graph

Subgraphs of α need not to be preserved only α itself

In AQG information about embedding into a classical manifold
is only encoded in coherent states

Check that semiclassical limit of Ĥphys is correct
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Kristina Giesel Loop Quantum Gravity



Classical Setup
Quantisation

Summary & Conclusions

Reduced Quantisation
Semiclassical Analysis

Task 3: Quantisation

Here we consider Algebraic Quantum gravity framework (AQG):

[K.G., Thiemann ’06]

LQG inspired quantisation on a fixed infinite abstract graph α

In LQG many things do not depend on the embedding

Instead of LQG representation we use HITP

LQG: infinitely many finite graphs, AQG: one infinite abstract
graph

Subgraphs of α need not to be preserved only α itself

In AQG information about embedding into a classical manifold
is only encoded in coherent states

Check that semiclassical limit of Ĥphys is correct
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Quantisation of Ĥphys

Example: Cubic Graph

Kristina Giesel Loop Quantum Gravity



Classical Setup
Quantisation

Summary & Conclusions

Reduced Quantisation
Semiclassical Analysis

Example: Cubic Graph

Operator for Hphys

Physical Hamiltonian bHphys [Thiemann ’96 – ’05, Thiemann, K.G. ’06]

bHphys =
~

ℓ4p

X

v∈V(α)

vuut
˛̨
˛

4X

µ=0

ηµµ
h 3X

a=1

Tr
“
τµA(αa

v)A(ea
v)

ˆ
A(ea

v)−1,Vv

˜”i2 ˛̨
˛

Volume operator:

Vv =
p

|ǫabcTr (E(Sa
v)E(Sb

v)E(Sc
v))|
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Fundamental Algebraic Graph

Information about embedding are encoded in coherent states
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Semiclassical Analysis

Coherent States

Choose manifold σ and an embedding X of the algebraic graph α,
X(α) = γ

Choose cell complex γ∗, dual to γ s.t. e ↔ Se

Choose classical field configuration (A0,E0)

Coherent States [Hall 90’s], [Sahlmann, Thiemann, Winkler 00’s]

ψ(A0,E0) :=
O

e∈γ

ψe, ψe(A(e)) :=
X

j

p
2j + 1e−tej(j+1)Tj(Z(e))Tj(A

−1(e))

These states satisfy for all e ∈ E(γ):

〈ψ(A0,E0), bA(e)ψ(A0,E0)〉 = A0(e) + O(~)

〈ψ(A0,E0), bEj(Se)ψ(A0,E0)〉 = E0,j(Se) + O(~)
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Coherent States [Hall ’90s] [Sahlmann, Thiemann, Winkler ’00s]

Coherent States peaked around classical phase space point (A0, E0)
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Semiclassical Limit [K.G., Thiemann 06 – ’07]

Theorem: For any sufficiently fine X(α) and any (A0,E0)

1. Exp. value:

〈ψ(A0,E0) , bHphys ψ(A0,E0)〉 = Hphys(A0,E0) + O(~)

2. Fluctuations:

〈 bH2
phys〉ψ(A0,E0)

−
`
〈 bHphys〉ψ(A0,E0)

´2
= O(~)

Corollary

i. Quantum Hamiltonian is correctly implemented

ii. For sufficiently small τ

eiτ bHphysψ(A0,E0) ≈ ψ(A0(τ),E0(τ))
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Summary

Reduced Phase Space Quantisation for LQG [K.G.,Thiemann ’07]

By means of additional matter component (dust) constraints of GR can
be reduced

Gauge invariant analogue of Einstein’s equation with true Hamiltonian

Reduced phase space approach provides direct access to Hphys

Algebra of observables and Hphys can be quantised

Semiclassical limit of bHphys correct

Reduced LQG is formulated as (background independent) Hamiltonian
Lattice Gauge Theory
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Open Questions

Anomalies of bHphys: Naive quantisation [work in progress K.G, Thiemann]

Observer – dependent QFT, Unitary equivalence between different
observers at the quantum level

Analysing the quantum dynamics more in detail:

Coherent states that are sufficiently stable under evolution of
Ĥphys

Scattering theory with Ĥphys QFT on curved spacetimes
[work in progress: K.G., Tambornino, Thiemann]

Reduced Approach might help to extract some physics out of LQG

New techniques in reduced LQG might also help for unreduced LQG
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Ĥphys
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