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This is the very last talk of a three weeks summer institute which

comprised of three parts:

* School and Workshops on the Standard Model and Beyond

- Standard Cosmology

* School and Workshops on Cosmology - Strings: Theory -

Cosmology - Phenomenology

* 2nd School on Quantum Gravity and Quantum Geometry
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Although I have not been here all the time I assume that peo-

ple started talking in the first workshop of particle physics and

the standard model, then went to theories beyond it, then a

week of strings, and then we did not even show respect for the

very structure of spacetime, rendering it a network, foamy and

noncommutative

I will try to make the summer institute make a full circle and dis-

cuss particle physics in the context of noncommutative geometry

and matrix models

You will see that I have a substantial holonomy...
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Harold Steinacker has already introduce matrix models in this conference, but

to keep my talk self-contained I will quickly introduce them again

Consider a U(1) gauge theory in a space described by the Moyal
? product

The theory is noncommutative (also in the U(1) case), due to the noncom-

mutativity of the product

Fµν = ∂µAν − ∂νAµ − i[Aµ, Aν]?

Consider as usual the action to be the square of the curvature

S = −
1

4

∫
dxFµν ? F

µν

The theory is invariant for F → U ? F ? U † for U ? U † = 1

Considering Aµ = Aαµλ
α for λα generators of U(n) allows for noncommu-

tative Yang-Mills theories
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For the Moyal product ∂µ(f) = iθ−1
µν [xν, f ]

If one defines (Madore, Schraml, Schupp, Wess) the covariant

coordinates Xµ = xµ + θµνAν and

Dµf = iθ−1
µν [Xµ, f ]? = ∂µf − i[f,Aµ]?

we have

Fµν = [Dµ, Dν]? = [Xµ, Xν]? + θµν

And the constant can be reabsorbed by a field redefinition. The action is the

square of this quantity, integrated over spacetime
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The objects we have defined are elements of a noncommutative

algebra and we can always represent them as operators on a

Hilbert space, in this case the integral becomes a trace and this

suggests the use of the matrix action

S = −
1

4g
Tr [Xµ, Xν][Xµ′, Xν′]gµµ′gνν′

Where the X ’s are operators (matrices) and the metric gµµ′ is

the flat Minkowski (or Euclidean) metric

Harold has shown how gravity emerges from this action, and I

will take it to be my starting point (but I reserve the right to

add other, “soft’, terms)
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The equations of motion are

[Xµ, [Xν, Xµ′]]gµµ′ = 0

A possible vacuum (the U(1) Moyal vacuum) given by a set of

matrices X0 such that [Xµ
0 , X

ν
0] = iθµν con θ constant

This is some sort of semiclassical vacuum and we can consider

f(X0) as deformation of functions on a Moyal deformed space

This is the vacuum described earlier.
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An alternative vacuum, still solution of the equations of motion,
is

X̄
µ
0 = X

µ
0 ⊗ 1ln

Consider as the fluctuations
Xµ = X̄

µ
0 = X̄

µ
0 +A

µ
0 +Aµαλα

where in the fluctuations we have separated the traceless gener-
ators of SU(n) from the trace part ( A0 )

The U(1) trace part of the fluctuation gives rise to the gravitational coupling,

while the remaining Aα describe a SU(n) gauge theory

We are slightly better than usual noncommutative geometry
models which have U(n) symmetry. How to get closer to the
standard model?
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The plan is to find a matrix model with some coordinates (a

vacuum) and an action which reproduces, as close as possible,

the standard model

We should not be shy of making as many assumptions as are

needed. The game is not to find the standard model, but rather

to find a noncommutative geometry which “fits” it

We have already managed to find a SU(n) theory. We need

two more stages, first a modification of the model to allow

SU(3)× SU(2)× U(1) , and then a symmetry breaking mech-

anism

We also have to put fermions (in the right representation)
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What we are proposing is in some sense a fully noncommutative
version of the Connes-Lott and Chamseddine-Connes-Marcolli
models

In their case the geometry is “almost commutative”, the product
of ordinary spacetime by a finite dimensional matrix, and the
action is either the square of the curvature (as basically is our
case) or the spectral action

The model I will present is incomplete and can be considered
as a first approximation. Remarkably however some key charac-
teristics of the standard model emerge naturally, which makes
us confident that a fully viable (and predictive) model is within
reach

In this talk I will mostly concentrate on the first stage, and
comments on the electroweak breaking at the end
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The first stage can be accomplished by considering the following

vacuum for which we add another coordinate, for which I will

use the index Φ and a different typeset to differentiate it from

the usual coordinates

XΦ =

 α11l2
α21l2

α31l3



with αi ∈ R

Since [Xµ,XΦ] = 0 the equations of motion are still satisfied,

but the gauge symmetry is reduced to

SU(2)× SU(2)× SU(3)× U(1)× U(1)
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The contribution to the action is a term of the kind

FµΦ = [X̄µ +Aµ, AΦ] + [Aµ, XΦ]

with

[X̄µ +Aµ,XΦ] = iθµνDνX
φ = iθµν(∂ν + iAν)Xφ,=

−(2π)2 Tr [Xµ,Xφ][Xν,Xφ]ηµν =
∫
d4xGµν

(
∂µX

Φ∂νX
Φ − [Aµ,X

Φ][Aν,X
Φ]
)
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The mixed terms vanish assuming the Lorentz gauge ∂µAµ = 0.

Since XΦ = const the first term in the above integral vanish

We can separate the fluctuations of this extra dimension which

are a field, the (high energy) Higgs field.

Consider the block form of Aµ

Aµ =

 A
µ
11 A

µ
12 A

µ
13

A
µ
21 A

µ
22 A

µ
23

A
µ
31 A

µ
32 A

µ
33



The first term of the curvature is the covariant derivative
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The second term instead is

[Aµ,Xφ] =

 0 (α2 − α1)Aµ12 (α3 − α1)Aµ13
(α1 − α2)Aµ21 0 (α3 − α2)Aµ23
(α1 − α3)Aµ31 (α2 − α3)Aµ32 0



If the differences α1 − α2 is large, all non diagonal blocks of Aµ

acquire large masses decoupling
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This extra dimension can have an interpretation in terms of fuzzy

spheres

The interpretation of matrix models as some sort of fuzzy sphere

Kaluza-Klein is a fascinating idea that goes back some time, and

the most relevant work in this context is a paper by Aschieri,

Grammatikopoulos, Steinacker and Zoupanos JHEP 0609:026,2006.

Add to the action some “soft” (lower order) terms

Vsoft(X
i) = Tr

(
c2XiXjδij + ic3εijkX

iXj Xk
)

Where the c ’s are real constants
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The equations of motions become

1

g2
[Xj, [Xi,Xj

′
]]δjj′ + c2 Xi +

3

2
ic3εijk[Xj,Xk] = 0

with solution

Xi = αJ iN

with

[J iN , J
j
N ] = iεijkJ

k
N J iNJ

i
N =

N2 − 1

4

with
1

g2
α2 + 3c3α+ c2 = 0
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Now consider a “stack” of fuzzy spheres:

Xi =


a1J

i
N1
⊗ 1l2 0 0

0 a2J
i
N2
⊗ σ3 0

0 0 a3J
i
N3
⊗ 1l3



Then the symmetry breaks to SU(3)× SU(2)× U(1)× U(1)× U(1) .

unless N1 = N2, α1 = α2 , then the symmetry is SU(4)× SU(3)× U(1)

which may be phenomenologically relevant

As noted by AGSZ the off diagonal elements of Aµ acquire a

large mass, in analogy with the previous case.
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For the diagonal blocks only the l = 0 mode of the decom-

position of the matrices into fuzzy spherical harmonics remain

massless, while all higher Kaluza-Klein modes acquire a mass

m2 ∼ α2l(l + 1)

The low-energy sector of such a fuzzy sphere vacuum is essen-

tially captured by the effective single-variable described earlier

This is a geometrical version of the usual Higgs effect. However,

the fuzzy sphere scenario provides a natural origin of a Higgs

potential with nontrivial minimum.
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We now need to introduce fermions. They are described by the

matrix

Ψ =

(
L4×4 Q
Q′ 03×3

)

L contains leptons (color-blin, Q and Q′ contain quarks (which

we assume to be in (3̄) for convenience)

L =

02×2 LL

L′L
0 eR
e′R 0


LL =

(
l̃L lL

)
, lL =

(
νL
eL

)
, l̃L =

(
ẽL
ν̃L

)
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Here lL is the standard (left-handed) leptons, eR the right-

handed electron, l̃ corresponds to additional leptons with the

same quantum numbers as Higgsinos in principle allowed by the

model.

The fields with a prime may or may not be new independent

fields. They provide some sort of “mirror sector”, and can be

set to zero)

The quark matrix is

Q =

(
QL
QR

)
, QL =

(
uL
dL

)
, QR =

(
dR
uR

)
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The correct hypercharge, electric charge and baryon number are then repro-

duced by the following traceless generators

Y =

02×2
−σ3

−1
31l3×3

− 1

7

Q = T3 +
Y

2
=

1

2

σ3
−σ3

−1
31l3×3

− 2

7
1l

B =

0
0

−1
31l3×3

− 1

7

which act in the adjoint

Weak and colour interactions sit in the first and last diagonal blocks
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The charges of all fermions turn out to be the correct ones, which is non

trivial, not every charge of the fermions can be obtained

Moreover in this case the “gauge charge” problem does not appear

In usual noncommutative gauge theories all fermions transform under the

same representation of the group (or the trivial one), including the case for

which the group is U(1)

This is a problem because there are fermions with different hypercharge and

electric charge

The proposed solution uses the Seiberg-Witten map and the enlargment of

the theory to the universal enveloping algebra

In our case, at the level of matrix models the problem is not posed at all in the

full noncommutative theory, and the limit gives the correct representations
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The electroweak breaking can be accomplished by another extra coordinate

Xϕ =



02×2 ϕ 02×1 02×1 02×1 02×1
ϕ† 0 0 0 0 0

01×2 0 0 0 0 0
01×2 0 0 0 0 0
01×2 0 0 0 0 0
01×2 0 0 0 0 0


Where ϕ is the usual 2-component Higgs with vacuum expectation value

〈ϕ〉 =

(
0
v

)
I will not discuss in detail this other breaking for lack of time (see my Wroclaw

talk), but I mention that this model gives the correct form of the Yukawa

couplings

Fuzzy sphere breaking is also possible
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Let me discuss now the “holonomy” of the full circle of this

conference

We have a matrix model, based on a noncommutative spacetime,

which reproduces gravity with an emergent mechanism and con-

tains gauge theories

The same model, modulo some modifications (like soft terms in

the action) contains a vacuum with a symmetry which resembles

the correct gauge interactions

Therefore I claim we are “close” to phenomenology, and hence

the full circle

But we are not there...
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The gauge group is too big (also after the second breaking),

we eliminate one U(1) with gravity, but we still have unwanted

generators

The Yukawa couplings pairs the correct left-right particles, but

the couplings are all the same (before renormalization)

No generations

. . .

Hopefully a better understanding of the model will indicate the

necessary modifications to render trivial or vanishing the holon-

omy
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But to get around the full circle you need parallel transport, and

we have to thank for this trip: J. Barrett, H. Grosse, L. Jonke

and G. Zoupanos

We better use local operators otherwise we cannot properly de-

fine holonomy: K.N. Anagnostopoulos, P. Anastasopoulos,

R. Avramidou, N. Irges, A. Kehaigias and again G. Zoupanos

And we need smooth operators: I. Moraiti

Thanks to all!!!
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