Neutrino physics

- Neutrino evidence: Standard Model
- Neutrino oscillations: Neutrino masses and mixing
- New physics beyond the neutrino Standard Model:

See-saw mechanisms, A_{4} models

- Dirac and Majorana mass effects
- TeV signatures of see-saw messengers:

Multilepton signals

- Non-standard neutrino interactions

Some (recent) reviews

PDG: B. Kayser, ‘`Neutrino Mass, Mixing, and Flavor Change'’, arXiv:0804.1497 [hep-ph].
G. Altarelli, '"Lectures on Models of Neutrino Masses and Mixings", arXiv:0711.0161 [hep-ph].
S. King, '"Neutrino Mass Models: a road map", arXiv:0810.0492 [hep-ph].
E. Ma, "'Neutrino Mass: Mechanisms and Models", arXiv:0905.0221 [hep-ph].

Some global fits

M.C. Gonzalez-Garcia and M. Maltoni, '"Phenomenology with Massive Neutrinos", Phys. Rept. 460 (2008) 1 [arXiv:0704.1800 [hep-ph]].
T. Schwetz, M. Tortola and J.W.F. Valle, `'Three-flavour neutrino oscillation update", New J. Phys. 10 (2008) 113011 [arXiv:0808.2016 [hep-ph]]. M. Maltoni and T. Schwetz, " Three-flavour neutrino oscillation update and comments on possible hints for a non-zero theta_\{13\}", arXiv:0812.3161 [hep-ph]. G.L. Fogli, E. Lisi, A. Marrone, A. Palazzo and A.M. Rotunno, ` "What we (would like to) know about the neutrino mass", arXiv:0809.2936 [hep-ph].

Neutrino evidence: Standard Model

Pauli postulated the v in 1933, a particle approximately massless and of spin $1 / 2$; and Fermi formulated β decay in 1934. $\pi^{+} \rightarrow \mu^{+} v$, vn $\rightarrow \mu^{-} p ; \mu^{-} \rightarrow e^{-} \gamma ; \ldots:$

Left-handed neutrinos and no Lepton Flavour Violation

Left-Handed doublets	Q	L_{e}	L_{μ}	L_{T}
$\mathrm{~V}_{\mathrm{e}}$	0	1	0	0
e	-1	1	0	0
$\mathrm{~V}_{\mu}$	0	0	1	0
μ	-1	0	1	0
$\mathrm{~V}_{\boldsymbol{T}}$	0	0	0	1
T	-1	0	0	1

with total Lepton Number $L=\sum_{i} L_{i}$

$\mathrm{SU}(3)_{c} \otimes \mathrm{SU}(2)_{L} \otimes \mathrm{U}(1)_{Y}$	I	II	III
$\left(\mathbf{3}, \mathbf{2}, \frac{1}{6}\right)$	$\binom{u_{L}}{d_{L}}$	$\binom{c_{L}}{s_{L}}$	$\binom{t_{L}}{b_{L}}$
$\left(\mathbf{3}, \mathbf{1}, \frac{2}{3}\right)$	u_{R}	c_{R}	t_{R}
$\left(\mathbf{3}, \mathbf{1},-\frac{1}{3}\right)$	d_{R}	s_{R}	b_{R}
$\left(\mathbf{1}, \mathbf{2},-\frac{1}{2}\right)$	$\binom{v_{e_{L}}}{e_{L}}$	$\binom{v_{\mu_{L}}}{\mu_{L}}$	$\binom{v_{\tau_{L}}}{\tau_{L}}$
$(\mathbf{1}, \mathbf{1},-1)$	e_{R}	μ_{R}	τ_{R}

Neutrinos are massless within the minimal Standard Model for they have no Right-Handed counterparts, and L_{i} are conserved:

$$
\mathcal{L}_{K . T .}=\sum_{\alpha=e, \mu, \tau}\left(\bar{L}_{L \alpha} \gamma^{\lambda} i D_{\lambda} L_{L \alpha}+\text { h.c. }\right)
$$

$$
\begin{gathered}
\mathcal{L}_{K . T .}=\sum_{\alpha=e, \mu, \tau}\left(\bar{L}_{L \alpha} \gamma^{\lambda} i D_{\lambda} L_{L \alpha}+\bar{l}_{R \alpha} \gamma^{\lambda} i D_{\lambda} l_{R \alpha}+h . c .\right), \\
\mathcal{L}_{Y}=-Y_{\alpha \beta}^{l} \bar{L}_{L \alpha} H l_{R \beta}+h . c . \quad H(\equiv \phi) \sim\left(\mathbf{1}, \mathbf{2}, \frac{1}{2}\right) \\
L_{L \beta} \rightarrow U_{L \beta \alpha}^{l} L_{L \alpha}, l_{R \beta} \rightarrow U_{R \beta \alpha}^{l} l_{R \alpha} \\
Y_{\alpha \beta}^{l}=U_{L \alpha \rho}^{l \dagger} y_{\rho \rho}^{l} \delta_{\rho \eta} U_{R \eta \beta}^{l} \\
\mathcal{L}_{Y}=-y_{\alpha \alpha}^{l} \bar{L}_{L \alpha} H l_{R \alpha}+h . c . \\
\mathcal{L}_{K . T .}= \\
\sum_{\alpha=e, \mu, \tau}\left(\bar{L}_{L \alpha} \gamma^{\lambda} i D_{\lambda} L_{L \alpha}+h . c .\right) \rightarrow \\
\\
\quad-\frac{g}{\sqrt{2}} \sum_{\alpha=e, \mu, \tau}\left(\bar{l}_{L \alpha} \gamma^{\lambda} \nu_{L \alpha} W_{\lambda}^{-}+h . c .\right)
\end{gathered}
$$

However, if neutrinos are massive as required by neutrino oscillations, we can not rotate them arbitrarily:

$$
\begin{array}{cl}
l_{L \beta} \rightarrow U_{L \beta \alpha}^{l} l_{L \alpha}, \nu_{L \beta} \rightarrow U_{L \beta \alpha}^{\nu} \nu_{L \alpha} & U \equiv U_{L}^{l \dagger} U_{L}^{\nu} \\
\mathcal{L}_{W}=-\frac{g}{\sqrt{2}} \sum_{\substack{\alpha=e, \mu, \tau \\
i=1,2,3}}\left(\bar{l}_{L \alpha} \gamma^{\lambda} U_{\alpha i} \nu_{L i} W_{\lambda}^{-}+h . c .\right) & \mathrm{V}_{\mathrm{CKM}} \rightarrow U_{\mathrm{PMNS}}
\end{array}
$$

$$
\begin{aligned}
& \mathbf{V}=\left[\begin{array}{ccc}
\mathbf{V}_{u d} & \mathbf{V}_{u s} & \mathbf{V}_{u b} \\
\mathbf{V}_{c d} & \mathbf{V}_{c s} & \mathbf{V}_{c b} \\
\mathbf{V}_{t d} & \mathbf{V}_{t s} & \mathbf{V}_{t b}
\end{array}\right] \begin{array}{c}
\text { CKM mixing matrix } \mathrm{V} \text { is unitary but } \\
\text { the field phases are unphysical }
\end{array} \overline{\mathbf{u}}_{L} \mathbf{V} \mathbf{d}_{L} \\
& =\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{array}\right]\left[\begin{array}{ccc}
c_{13} & 0 & s_{13} \mathrm{e}^{-i \delta_{13}} \\
0 & 1 & 0 \\
-s_{13} \mathrm{e}^{i \delta_{13}} & 0 & c_{13}
\end{array}\right]\left[\begin{array}{ccc}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
c_{12} c_{13} & s_{12} c_{13} & s_{13} \mathrm{e}^{-i \delta_{13}} \\
-s_{12} c_{23}-c_{12} s_{23} s_{13} \mathrm{e}^{i \delta_{13}} & c_{12} c_{23}-s_{12} s_{23} s_{13} \mathrm{e}^{i \delta_{13}} & s_{23} c_{13} \\
s_{12} s_{23}-c_{12} c_{23} s_{13} \mathrm{e}^{i \delta_{13}} & -c_{12} s_{23}-s_{12} c_{23} s_{13} \mathrm{e}^{i \delta_{13}} & c_{23} c_{13}
\end{array}\right] \\
& c_{i j} \equiv \cos \theta_{i j} \quad s_{i j} \equiv \sin \theta_{i j}(i, j=1,2,3) \\
& c_{i j} \geq 0, s_{i j} \geq 0 \quad 0 \leq \delta_{13} \leq 2 \pi \\
& n^{2}-2 n+1 \rightarrow 4=3+1 \\
& 3 \text { angles and } 1 \text { phase }
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{U}=\left[\begin{array}{lll}
\mathbf{U}_{e 1} & \mathbf{U}_{e 2} & \mathbf{U}_{e 3} \\
\mathbf{U}_{\mu 1} & \mathbf{U}_{12} & \mathbf{U}_{13}
\end{array}\right] \begin{array}{l}
\text { PMNS mixing matrix } \mathbf{U} \text { is unitary } \\
\text { but the } \ell \text { phases are unphysical }
\end{array} \bar{\ell}_{\alpha} \gamma^{\mu}\left(1-\gamma_{5}\right) \mathbf{U}_{\alpha i} v_{i} \\
& n^{2}-n \rightarrow 6=3+3: 3 \text { angles and } 3 \text { phases } \\
& =\left[\begin{array}{ccc}
c_{12} c_{13} & s_{12} c_{13} & s_{13} \mathrm{e}^{-i \delta_{13}} \\
-s_{12} c_{23}-c_{12} s_{23} s_{13} \mathrm{e}^{i \delta_{13}} & c_{12} c_{23}-s_{12} s_{23} s_{13} \mathrm{e}^{i \delta_{13}} & s_{23} c_{13} \\
s_{12} s_{23}-c_{12} c_{23} s_{13} \mathrm{e}^{i \delta_{13}} & -c_{12} s_{23}-s_{12} c_{23} s_{13} \mathrm{e}^{i \delta_{13}} & c_{23} c_{13}
\end{array}\right]\left[\begin{array}{ccc}
\mathrm{e}^{i \alpha_{1}} & 0 & 0 \\
0 & \mathrm{e}^{i \alpha_{2}} & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Non-zero phases in general stand for CP violation, with two of them only present for Majorana neutrinos, $\alpha_{1,2}$. If $\left|U_{e 3}\right|=0,1, C P$ is conserved for Dirac neutrinos.

If Majorana $v_{i}=v_{i}{ }^{c}$ and a_{i} have a physical meaning but not in the Dirac case

$$
\begin{aligned}
& n^{2}-n \rightarrow 6=3+3: 3 \text { angles and } 3 \text { phases } \\
& =\left[\begin{array}{ccc}
c_{12} c_{13} & s_{12} c_{13} & s_{13} \mathrm{e}^{-i \delta_{13}} \\
-s_{12} c_{23}-c_{12} s_{23} s_{13} \mathrm{e}^{i \delta_{13}} & c_{12} c_{23}-s_{12} s_{23} s_{13} \mathrm{e}^{i \delta_{13}} & s_{23} c_{13} \\
s_{12} s_{23}-c_{12} c_{23} s_{13} \mathrm{e}^{i \delta_{13}} & -c_{12} s_{23}-s_{12} c_{23} s_{13} \mathrm{e}^{i \delta_{13}} & c_{23} c_{13}
\end{array}\right]\left[\begin{array}{ccc}
\mathrm{e}^{i \alpha_{1}} & 0 & 0 \\
0 & \mathrm{e}^{i \alpha_{2}} & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Non-zero phases in general stand for CP violation, with two of them only present for Majorana neutrinos,

$$
\alpha_{1,2}
$$

$$
\text { If }\left|U_{\mathrm{e} 3}\right|=0,1, \mathrm{CP} \text { is }
$$ conserved for Dirac neutrinos.

$$
|U|_{3 \sigma}=\left(\begin{array}{lll}
0.77 \rightarrow 0.86 & 0.50 \rightarrow 0.63 & \boxed{0.00} \rightarrow 0.22 \\
0.22 \rightarrow 0.56 & 0.44 \rightarrow 0.73 & 0.57 \rightarrow 0.80 \\
0.21 \rightarrow 0.55 & 0.40 \rightarrow 0.71 & 0.59 \rightarrow 0.82
\end{array}\right)
$$

No possible evidence up to now for (Dirac) CP violation

$$
\begin{aligned}
& \mathbf{U}=\left[\begin{array}{lll}
\mathbf{U}_{e 1} & \mathbf{U}_{e 2} & \mathbf{U}_{e 3} \\
\mathbf{U}_{\mu 1} & \mathbf{U}_{\mu 2} & \mathbf{U}_{\mu 3} \\
\mathbf{U}_{\tau 1} & \mathbf{U}_{\tau 2} & \mathbf{U}_{\tau 3}
\end{array}\right], \begin{array}{c}
\text { PMNS mixing matrix } \mathrm{U} \text { is unitary } \\
\text { but the } \ell \text { phases are unphysical }
\end{array} \bar{\ell}_{\alpha} \gamma^{\mu}\left(1-\gamma_{5}\right) \mathbf{U}_{\alpha i} v_{i} \\
& \\
& =\left[\begin{array}{ccc}
\mathrm{n}^{2}-\mathrm{n} \rightarrow 6=3+3: 3 \text { angles and } 3 \text { phases }
\end{array}\right. \\
& \left.\begin{array}{ccc}
c_{12} c_{13} & s_{12} c_{13} & s_{13} \mathrm{e}^{-i \delta_{13}} \\
-s_{12} c_{23}-c_{12} s_{23} s_{13} \mathrm{e}^{i \delta_{13}} & c_{12} c_{23}-s_{12} s_{23} s_{13} \mathrm{e}^{i \delta_{13}} & s_{23} c_{13} \\
s_{12} s_{23}-c_{12} c_{23} s_{13} \mathrm{e}^{i \delta_{13}} & -c_{12} s_{23}-s_{12} c_{23} s_{13} \mathrm{e}^{i \delta_{13}} & c_{23} c_{13}
\end{array}\right]\left[\begin{array}{ccc}
\mathrm{e}^{i \alpha_{1}} & 0 & 0 \\
0 & \mathrm{e}^{i \alpha_{2}} & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Non-zero phases in general stand for CP violation, with two of them only present for Majorana neutrinos, $\alpha_{1,2} \cdot$
If $\left|U_{e 3}\right|=0,1, C P$ is
conserved for Dirac
neutrinos.

$$
|U|_{3 \sigma}=\left(\begin{array}{lll}
0.77 \rightarrow 0.86 & 0.50 \rightarrow 0.63 & 0.00 \rightarrow 0.22 \\
0.22 \rightarrow 0.56 & 0.44 \rightarrow 0.73 & 0.57 \rightarrow 0.80 \\
0.21 \rightarrow 0.55 & 0.40 \rightarrow 0.71 & 0.59 \rightarrow 0.82
\end{array}\right)
$$

$$
U_{T B}=\left(\begin{array}{ccc}
\sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0 \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}}
\end{array}\right) \begin{aligned}
& \text { No possible evidence } \\
& \text { up to now for (Dirac) } \\
& \text { CP violation }
\end{aligned}
$$

Neutrino oscillations: Neutrino masses and mixing

$$
\left|\nu_{\alpha}\right\rangle=\sum_{i=1}^{3} U_{\alpha i}^{*}\left|\nu_{i}\right\rangle, \quad \quad \sum_{i=1}^{3} U_{\beta i} U_{\alpha i}^{*}=\delta_{\beta \alpha}, \quad\left|\nu_{i}\right\rangle=\sum_{\alpha=e, \mu, \tau} U_{\alpha i}\left|\nu_{\alpha}\right\rangle .
$$

Neutrino propagation in vacuum

$$
\left.\begin{array}{l}
\text { Production } \mathcal{A}\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right)=\sum_{i} U_{\alpha i}^{*} e^{-i m_{i}^{2} L / 2 E} U_{\beta i} \quad \text { Detection } \\
\mathrm{S} \frac{\mathrm{~L}=\text { distance from the source to the detector }}{\mathrm{t}=\text { distance }(\mathrm{L}) / \text { average velocity }(\mathrm{p} / \mathrm{E})} \\
\mathrm{P}\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right)=\left|\mathcal{A}\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right)\right|^{2} \\
\mathrm{CP} \text { conserving }=\delta_{\alpha \beta}-4 \sum_{i>j} \operatorname{Re}\left(U_{\alpha i}^{*} U_{\beta i} U_{\alpha j} U_{\beta j}^{*}\right) \sin ^{2}\left(\Delta m_{i j}^{2} L / 4 E\right) \\
\mathrm{CP} \text { violating } \quad+2 \sum_{i>j} \operatorname{Im}\left(U_{\alpha i}^{*} U_{\beta i} U_{\alpha j} U_{\beta j}^{*}\right) \sin \left(\Delta m_{i j}^{2} L / 2 E\right) \\
\Delta \mathrm{m}^{2}=\mathrm{m}^{2} \mathrm{i}-\mathrm{m}^{2} \mathrm{j}
\end{array}\right] .
$$

$$
\begin{aligned}
\delta \phi(12) & =\left(E_{2} t-p_{2} L\right)-\left(E_{1} t-p_{1} L\right) \\
& =\left(p_{1}-p_{2}\right) L-\left(E_{1}-E_{2}\right) t \\
\text { city), }\} & \cong \frac{p_{1}^{2}-p_{2}^{2}}{p_{1}+p_{2}} L-\frac{E_{1}^{2}-E_{2}^{2}}{p_{1}+p_{2}} L \\
& =\left(m_{2}^{2}-m_{1}^{2}\right) \frac{L}{p_{1}+p_{2}} \cong\left(m_{2}^{2}-m_{1}^{2}\right) \frac{L}{2 E}
\end{aligned}
$$

$$
\left.\begin{array}{l}
\mathrm{t}=L / \bar{v} \text { (distance / average velocity), } \\
\text { with } \bar{v} \equiv \frac{p_{1}+p_{2}}{E_{1}+E_{2}}
\end{array}\right\} \cong \frac{p_{1}^{2}-p_{2}^{2}}{p_{1}+p_{2}} L-\frac{E_{1}^{2}-E_{2}^{2}}{p_{1}+p_{2}} L
$$

$$
\begin{array}{cl}
\mathrm{P}\left(\overline{\nu_{\alpha}} \rightarrow \overline{\nu_{\beta}} ; U\right)=\mathrm{P}\left(\nu_{\beta} \rightarrow \nu_{\alpha} ;\right. & U)=\mathrm{P}\left(\nu_{\alpha} \rightarrow \nu_{\beta} ; U^{*}\right) \\
\mathrm{CPT} & \text { Probability } \\
& \text { amplitude }
\end{array}
$$

Then, a phase in U given a different P for neutrinos and antineutrinos stands for CP violation

Neutrino propagation in matter

$$
\begin{gathered}
i \frac{\partial}{\partial t} \Psi(t)=\mathcal{H} \Psi(t) \\
\mathcal{H}=\frac{1}{2 E_{\nu}} U^{*}\left(\begin{array}{ccc}
m_{1}^{2} & 0 & 0 \\
0 & m_{2}^{2} & 0 \\
0 & 0 & m_{3}^{2}
\end{array}\right) U^{T}+\frac{1}{2 E_{\nu}}\left(\begin{array}{ccc}
A+A^{\prime} & 0 & 0 \\
0 & A^{\prime} & 0 \\
0 & 0 & A^{\prime}
\end{array}\right),
\end{gathered}
$$

Coherent forward scattering $\left\{\begin{array}{cc}\text { CC piece } A= \pm \frac{2 \sqrt{2} G_{F} Y \rho E_{\nu}}{m_{n}}+\text { for neutrino in matter }\end{array}\right.$ NC piece (involving the quarks) is universal A^{\prime}

Neutrinos	Experiment	
Atmospheric	SK	$\mathrm{V}_{\text {U }}$ disappearance
Accelerator	K2K, MINOS	$\mathrm{V}_{\text {U }}$ disappearance
Solar	Gallex, SNO Borexino	$\begin{aligned} & \begin{array}{l} \text { ve disappearance (CC) } \\ \text { and } \sum{ }_{a v a}(N C)\left[{ }^{B} B\right] \\ 7 B \end{array} \end{aligned}$
Reactor	Palo Verde, CHOOZ KamLAND	No $\bar{v}_{\mu} \rightarrow \overline{\mathrm{V}}_{\mathrm{e}}$ $\overline{\mathrm{V}}_{\text {e }}$ disappearance
LSND (Stopped $\mu+$ decay) $\overline{\mathrm{V}}_{\mathrm{e}}$ excess	KARMEN MiniBooNE	No $\bar{v}_{\mu} \rightarrow \overline{\mathrm{V}}_{\mathrm{e}}$ Search for $(\overline{\mathrm{v}})_{\mu} \rightarrow\left(\overline{\mathrm{V}}_{\text {e }}\right.$

In the Sun $+\mathrm{H}_{\mathrm{M}} \Rightarrow$ heaviest $P\left(\nu_{e} \rightarrow \nu_{e}\right)=\sin ^{2} \theta_{\odot}$ neutrino has lowest energy (opposite sign Hv)

SNO: $\nu+d \rightarrow e^{-}+p+p$,

$$
\begin{aligned}
& \nu+d \rightarrow \nu+p+n, \\
& \nu+e^{-} \rightarrow \nu+e^{-} \\
& \frac{\phi\left(\nu_{e}\right)}{\phi\left(\nu_{e}\right)+\phi\left(\nu_{\mu, \tau}\right)}=0.340 \pm 0.023 \text { (stat) }{ }_{-0.031}^{+0.029} \text { (syst) }
\end{aligned}
$$

$$
\begin{aligned}
\Delta m_{21}^{2}= & 7.67_{-0.21}^{+0.22}\left({ }_{-0.61}^{+0.67}\right) \times 10^{-5} \mathrm{eV}^{2}, \\
\Delta m_{31}^{2}= & \left\{\begin{array}{lll}
-2.39 \pm 0.12\left({ }_{-0.40}^{+0.37}\right) \times 10^{-3} \mathrm{eV}^{2} & \text { (inverted hierarchy), } 1 \sigma(3 \sigma) \\
+2.49 \pm 0.12\left({ }_{-0.36}^{+0.39}\right) \times 10^{-3} \mathrm{eV}^{2} & \text { (normal hierarchy), }
\end{array}\right. \\
|U|_{3 \sigma} & =\left(\begin{array}{lll}
0.77 \rightarrow 0.86 & 0.50 \rightarrow 0.63 & 0.00 \rightarrow 0.22 \\
0.22 \rightarrow 0.56 & 0.44 \rightarrow 0.73 & 0.57 \rightarrow 0.80 \\
0.21 \rightarrow 0.55 & 0.40 \rightarrow 0.71 & 0.59 \rightarrow 0.82
\end{array}\right)
\end{aligned}
$$

Accelerator	Experiment	
	On going	A factor of 3
	NuFact	3 orders of magnitude

If light neutrinos are Majorana, they can mediate double beta decay

$$
\begin{aligned}
& \quad\left|\sum_{i} m_{i} U_{e i}^{2}\right| \equiv \mathrm{m}_{\beta \beta} \\
& \geq \sqrt{\Delta m_{\mathrm{atm}}^{2}} \cos 2 \theta_{\odot} \\
& \geq 10 \mathrm{meV} \text { for } \\
& \text { inverted hierarchy }
\end{aligned}
$$

$$
\begin{aligned}
& 0.04<\mathrm{m}(\text { heaviest } \mathrm{v})<0.07-0.7 \mathrm{eV} \\
& \sqrt{\Delta \mathrm{~m}^{2} \mathrm{~atm}} \quad \sum \mathrm{~m}_{\mathrm{v}}(\text { cosmology })
\end{aligned}
$$

Subir S.'s lectures
$\left|m_{11}\right|=\left|\left(1-s_{13}^{2}\right)\left(m_{1} c_{12}^{2} e^{-2 i \alpha_{1}}+m_{2} s_{12}^{2} e^{-2 i \alpha_{2}}\right)+m_{3} s_{13}^{2} e^{2 i \delta_{13}}\right|$

Both vertices must be the same. Then, if light neutrinos are Majorana, $\mathrm{v}_{\mathrm{i}}=\mathrm{v}_{\mathrm{i}}{ }^{\mathrm{c}}$, and the process is proportional to the ee entry of

$$
M=U^{*} M_{d i a g} U^{\dagger}
$$

Dirac neutrinos can not mediate such a process.

What do we need?

- Double beta decay
- TB, S13 and CP violation
- Surprises (NP) in LFV processes or oscillation experiments
- Collider signals

Neutrino physics

- Neutrino evidence: Standard Model
- Neutrino oscillations: Neutrino masses and mixing
- New physics beyond the neutrino Standard Model:

See-saw mechanisms, A_{4} models

- Dirac and Majorana mass effects
- TeV signatures of see-saw messengers:

Multilepton signals

- Non-standard neutrino interactions

Models of neutrino masses and mixing

Within the SM v masses are zero for 3 reasons:

- No V_{R} 's
- Only Higgs doublets
- Renormalizable theory

$$
-Y_{\alpha \beta}^{\nu} \overline{L_{L \alpha}} \tilde{H} N_{R \beta}+\text { h.c. }
$$

$$
\frac{1}{\sqrt{2}} Y_{\alpha \beta}^{\nu} \overline{\tilde{L}_{L \alpha}}(\vec{\tau} \cdot \vec{\Delta}) L_{L \beta}+\text { h.c. } \quad \begin{aligned}
& \mathrm{L}_{\Delta}=-2 \text { but } \mathrm{m}_{\mathrm{v}} \neq 0 \\
& \Rightarrow \mathrm{LNV}
\end{aligned}
$$

$$
\frac{x_{5 \alpha \beta}}{\Lambda} \overline{L_{L \alpha}^{c}} \tilde{H}^{*} \tilde{H}^{\dagger} L_{L \beta}+\text { h.c. }
$$

LNV

$$
\begin{gathered}
\mathcal{L}_{M}=-\frac{1}{2} m_{\alpha \beta} \overline{\nu_{L \alpha}} \nu_{L \beta}^{c}-Y_{\alpha \beta}^{\nu} \frac{v}{\sqrt{2}} \overline{\nu_{L \alpha}} N_{R \beta}-\frac{1}{2} M_{\alpha \beta} \overline{N_{R \alpha}^{c}} N_{R \beta}+\text { h.c. } \\
\mathcal{M}=\left(\begin{array}{cc}
m & m_{D} \\
m_{D}^{T} & M
\end{array}\right)
\end{gathered}
$$

Light neutrino masses can be Dirac or Majorana

Which is the problem ?

$$
\begin{aligned}
& -Y_{\alpha \beta}^{\nu} \overline{L_{L \alpha}} \tilde{H} N_{R \beta}+h . c . \\
& \frac{1}{\sqrt{2}} Y_{\alpha \beta}^{\nu} \overline{\tilde{L}_{L \alpha}}(\vec{\tau} \cdot \vec{\Delta}) L_{L \beta}+\text { h.c. } \\
& \frac{x_{5 \alpha \beta}}{\Lambda} \overline{L_{L \alpha}^{c}} \tilde{H}^{*} \tilde{H}^{\dagger} L_{L \beta}+\text { h.c. }
\end{aligned}
$$

$$
\text { if } \mathrm{m}_{\mathrm{v}} \sim \mathrm{eV}, \mathrm{Y} \sim 10^{-11}
$$

$$
\text { [} \mathrm{N}_{\mathrm{R}} \mathrm{RH} \text { counterpart (D)] }
$$

introduce scalar triplet and

$$
\text { explain small } v_{\Delta} \text { and/or } Y
$$

$$
\text { if } x \sim 1, \Lambda \sim 10^{14} \mathrm{GeV}
$$

Bonus new heavy physics (NR): Leptogenesis
Margarida R.'s talk

A Dirac neutrino mass matrix, which is an arbitrary complex matrix, can accommodate some constraints (like special zeroes) that a Majorana neutrino mass matrix, which is complex but symmetric, can not. Although if we do not impose further constraints both can describe the same physics at low energy.

Harald F.'s talk

(1) Scale versus mixing
(2) Dirac or Majorana
(3) See-saw mechanisms

See-saw mechanisms (messengers of type I, II, III)

$$
\mathcal{L}=\mathcal{L}_{\ell}+\mathcal{L}_{h}+\mathcal{L}_{\ell h} \rightarrow \mathcal{O}_{5}=\overline{l_{L}^{c}} \tilde{\phi}^{*} \tilde{\phi}^{\dagger} l_{L}
$$

In the fermionic case: heavy neutrinos in singlets N (type I) or triplets Σ (type III)

$$
\begin{gathered}
\mathcal{L}_{\ell} \supset \overline{l_{L}^{i}} i \not D l_{L}^{i}+\overline{e_{R}^{i}} i \not D e_{R}^{i}-\left(\left(\lambda_{e}\right)_{i} \overline{l_{L}^{i}} \phi e_{R}^{i}+\mathrm{h.c.}\right) \\
\mathcal{L}_{h}=\eta_{L} \overline{L^{I}} i \not D L^{I}-\eta_{L} M_{I} \overline{L^{I}} L^{I} \quad \begin{array}{c}
\text { Change of notation } \\
\left.L_{L} \rightarrow\right|_{L}, Y^{\dagger}=\lambda \rightarrow \mathrm{Y}^{*}
\end{array} \\
\mathcal{L}_{\ell h}=-\left(\lambda_{L e}\right)_{I j} \overline{L_{L}^{I}} \Phi_{L e} e_{R}^{j}-\left(\lambda_{L l}\right)_{I j} \overline{L_{R}^{I}} \Phi_{L l} l_{L}^{j}+\text { h.c. }
\end{gathered}
$$

Type I	Dimension	Operator	Coefficient
	5	$\mathcal{O}_{5}=\overline{l_{L}^{c}} \widetilde{\phi}^{*} \tilde{\phi}^{\dagger} l_{L}$	$\frac{1}{2} Y_{N}^{T} M_{N}^{-1} Y_{N}$
	6	$\begin{aligned} \mathcal{O}_{\phi l}^{(1)} & =\left(\phi^{\dagger} i D_{\mu} \phi\right)\left(\bar{l}_{L} \gamma^{\mu} l_{L}\right) \\ \mathcal{O}_{\phi l}^{(3)} & =\left(\phi^{\dagger} i \sigma_{a} D_{\mu} \phi\right)\left(l_{L} \sigma_{a} \gamma^{\mu} l_{L}\right) \end{aligned}$	$\begin{gathered} \frac{1}{4} Y_{N}^{\dagger}\left(M_{N}^{\dagger}\right)^{-1} M_{N}^{-1} Y_{N} \\ -\frac{1}{4} Y_{N}^{\dagger}\left(M_{N}^{\dagger}\right)^{-1} M_{N}^{-1} Y_{N} \end{gathered}$
Type II	Belén G.'s talk		
	Dimension	Operator	Coefficient
	4	$\mathcal{O}_{4}=\left(\phi^{\dagger} \phi\right)^{2}$	$2\left\|\mu_{\Delta}\right\|^{2} / M_{\Delta}^{2}$
	5	$\mathcal{O}_{5}=\overline{l_{L}^{c}} \hat{\phi}^{*} \hat{\phi}^{\dagger} l_{L}$	$-2 Y_{\Delta} \mu_{\Delta} / M_{\Delta}^{2}$
	6	$\begin{aligned} \mathcal{O}_{l l}^{(1)} & \left.=\frac{1}{2}\left(\overline{l_{L}^{i}}\right\rangle^{\mu} l_{L}^{j}\right)\left(\overline{l_{L}^{k}} \gamma_{\mu} l_{L}^{l}\right) \\ \mathcal{O}_{\phi} & =\frac{1}{3}\left(\phi^{\dagger} \phi\right)^{3} \\ \mathcal{O}_{\phi}^{(1)} & =\left(\phi^{\dagger} \phi\right)\left(D_{\mu} \phi\right)^{\dagger} D^{\mu} \phi \\ \mathcal{O}_{\phi}^{(3)} & =\left(\phi^{\dagger} D_{\mu} \phi\right)\left(D^{\mu} \phi^{\dagger} \phi\right) \end{aligned}$	$\begin{gathered} 2\left(Y_{\Delta}\right)_{j l}\left(Y_{\Delta}^{\dagger}\right)_{k i} / M_{\Delta}^{2} \\ -\left.6\left(\lambda_{3}+\lambda_{5}\right) \mu_{\Delta}\right\|^{2} / M_{\Delta}^{4} \\ 4\left\|\mu_{\Delta}\right\|^{2} / M_{\Delta}^{4} \\ 4\left\|\mu_{\Delta}\right\|^{2} / M_{\Delta}^{4} \end{gathered}$

Type III

Dimension	Operator	Coefficient
5	$\mathcal{O}_{5}=\bar{l}_{L}^{\top} \hat{\phi}^{\dagger} \phi^{\dagger} l_{L}$	$\frac{1}{2} Y_{\Sigma}^{T} M_{\Sigma}^{-1} Y_{\Sigma}$
6	$\mathcal{O}_{\phi l}^{(1)}=\left(\phi^{\dagger} i D_{\mu} \phi\right)\left(\overline{l_{L}} \gamma^{\mu} l_{L}\right)$	$\frac{3}{4} Y_{\Sigma}^{\dagger}\left(M_{\Sigma}^{\dagger}\right)^{-1} M_{\Sigma}^{-1} Y_{\Sigma}$
	$\mathcal{O}_{\phi l}^{(3)}=\left(\phi^{\dagger} i \sigma_{a} D_{\mu} \phi\right)\left(\bar{l}_{L} \sigma_{a} \gamma^{\mu} l_{L}\right)$	$\frac{1}{4} Y_{\Sigma}^{\dagger}\left(M_{\Sigma}^{\dagger}\right)^{-1} M_{\Sigma}^{-1} Y_{\Sigma}$
	$\mathcal{O}_{e \phi}=\left(\phi^{\dagger} \phi\right) \overline{l_{L}} \phi e_{R}$	$Y_{\Sigma}^{\dagger}\left(M_{\Sigma}^{\dagger}\right)^{-1} M_{\Sigma}^{-1} Y_{\Sigma} Y_{e}$

There is a question about the relative size of the coefficients of the operators of dimension 5 and 6:
Can the dimension 5 operator coefficient be negligible but dimension 6 operator coefficients sizeable?
The answer is positive, for instance, if Lepton Number is (quasi-)conserved.

| ν_{L} | N |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ν_{L} | |
| N | |\(\left(\begin{array}{cc}0 \& Y_{N}^{T} \frac{v}{\sqrt{2}}

Y_{N} \frac{v}{\sqrt{2}} \& M_{N}\end{array}\right) \longrightarrow\)| ν_{L} |
| :---: |
| ν_{L} |
| N_{L} |
| N_{R}^{c} |\(\left(\begin{array}{ccc}0 \& N_{L} \& N_{R}^{c}

0 \& 0 \& \frac{y_{N} v}{\sqrt{2}}

\frac{y_{N} v}{\sqrt{2}} \& m_{N} \& 0\end{array}\right) \quad\)| Type I and III: |
| :---: |
| Light neutrinos |
| are massless. |

$$
\left.\begin{array}{c}
\nu_{L} \\
\nu_{L} \\
N_{L} \\
N_{R}^{c}
\end{array} \begin{array}{ccc}
0 & 0 & N_{R}^{c} \\
0 & \mu & m_{N} \\
\frac{y_{N} v}{\sqrt{2}} & m_{N} & 0
\end{array}\right) \begin{gathered}
\text { Type I and III: } \\
\text { Light neutrinos get a mass } \\
\text { proportional to the LN breaking } \\
\text { parameter } \mu \text {. [lf } \mu \text { is in the (1,1) } \\
\text { entry, the light neutrino masses } \\
\text { are } \sim \mu, \text { and } 0 \text {-up to r.c.- if it } \\
\text { is in the position (3,3)]. }
\end{gathered}
$$

(Neutrino models based on) A_{4}

$$
M=U^{*} M_{d i a g} U^{\dagger}
$$

If U is the HPS matrix (which is real):

$$
U_{H P S}=\left(\begin{array}{ccc}
\sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0 \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}
\end{array}\right)
$$

$$
M=\frac{1}{6}\left(\begin{array}{ccc}
4 m_{1}+2 m_{2} & -2 m_{1}+2 m_{2} & -2 m_{1}+2 m_{2} \\
-2 m_{1}+2 m_{2} & m_{1}+2 m_{2}+3 m_{3} & m_{1}+2 m_{2}-3 m_{3} \\
-2 m_{1}+2 m_{2} & m_{1}+2 m_{2}-3 m_{3} & m_{1}+2 m_{2}+3 m_{3}
\end{array}\right)=\left(\begin{array}{ccc}
x & y & y \\
y & x+v & y-v \\
y & y-v & x+v
\end{array}\right)
$$

$$
x=\frac{1}{3}\left(2 m_{1}+m_{2}\right), y=\frac{1}{3}\left(-m_{1}+m_{2}\right), v=\frac{1}{2}\left(-m_{1}+m_{3}\right)
$$

Neglecting Majorana phases, otherwise $m_{1,2} \rightarrow m_{1,2} e^{-2 i \alpha_{1,2}}$

They form a group relevant for $\mathrm{m}_{\mathrm{D}}{ }^{\top} \mathrm{M}^{-1} \mathrm{~m}_{\mathrm{D}}$

$A_{4}=\{$ Even permutations of 4 objects $\} \subset S_{4}$

$$
\text { generated by }\left\{\begin{array}{l}
S=(4321) \\
T=(2314)
\end{array}\right.
$$

$C 1: I=(1234)$
$C 2: T=(2314), S T=(4132), T S=(3241), S T S=(1423)$
$C 3: T^{2}=(3124), S T^{2}=(4213), T^{2} S=(2431), T S T=(1342)$
$C 4: S=(4321), T^{2} S T=(3412), T S T^{2}=(2143)$

Class	χ^{1}	$\chi^{1^{\prime}}$	$\chi^{1^{1 "}}$	χ^{3}
C_{1}	1	1	1	3
C_{2}	1	ω	ω^{2}	0
C_{3}	1	ω^{2}	ω	0
C_{4}	1	1	1	-1

0 \& \omega \& 0

0 \& 0 \& \omega^{2}\end{array}\right)\)

$(l)_{\text {symmetric }}$:

$(3 X 3)_{\text {sym }}=$
C.G.'s:

$$
a=\left(\begin{array}{lll}
1 & & \\
& & 1 \\
& 1 &
\end{array}\right), b=\left(\begin{array}{lll}
& & 1 \\
& 1 & \\
1 & &
\end{array}\right), c=\left(\begin{array}{lll}
& 1 & \\
1 & & \\
& & 1
\end{array}\right), \quad 1+1^{\prime}+1^{\prime \prime}+
$$

(up to global factors) $d=\left(\begin{array}{lll}2 & & \\ & & -1\end{array}\right), e=\left(\begin{array}{lll} & & -1 \\ & 2 & \\ -1 & & \end{array}\right), f=\left(\begin{array}{lll} & -1 & \\ -1 & & \\ & & 2\end{array}\right) \quad 3_{\text {sym }}$

In the basis where the charged $a, b+c, d+e+f$
lepton masses are diagonal

$$
\left.\begin{array}{ccc}
3\left(\begin{array}{ccc}
x & y & y \\
y & x+v & y-v \\
y & y-v & x+v
\end{array}\right) & (x+2 y-2 v)\left(\begin{array}{ccc}
1 & & \\
& & 1 \\
& 1
\end{array}\right)+(x+2 y+v)\left(\begin{array}{ccc}
& 1 & 1 \\
1 & 1 & \\
1 & & 1
\end{array}\right)+(x-y+v)
\end{array}\left(\begin{array}{ccc}
2 & -1 & -1 \\
-1 & 2 & -1 \\
-1 & -1 & 2
\end{array}\right) \right\rvert\,
$$

$$
\begin{aligned}
\mathcal{L}_{Y} & =y_{e} e^{c}(\varphi l)+y_{\mu} \mu^{c}(\varphi l)^{\prime \prime}+y_{\tau} \tau^{c}(\varphi l)^{\prime} \\
& +x_{a} \xi(l l)+x_{d}\left(\varphi^{\prime} l l\right)+\text { h.c. }+\ldots
\end{aligned}
$$

- No $\varphi \leftrightarrow \varphi^{\prime}$ exchange (extra symmetries)
- $h_{u, d}=\Lambda=1$
- < > dynamically generated

$$
\left.\langle\varphi\rangle=\left(\begin{array}{l}
v \\
0 \\
0
\end{array}\right),\left\langle\varphi^{\prime}\right\rangle=\frac{1}{3}\left(\begin{array}{c}
v^{\prime} \\
v^{\prime} \\
v^{\prime}
\end{array}\right), \quad<\xi\right\rangle=u
$$

- with $\frac{<>}{\Lambda}<0.05$ giving the size of the corrections

$$
\begin{aligned}
& m_{\nu}=\frac{v_{u}^{2}}{\Lambda}\left(\begin{array}{ccc}
a+2 d / 3 & -d / 3 & -d / 3 \\
-d / 3 & 2 d / 3 & a-d / 3 \\
-d / 3 & a-d / 3 & 2 d / 3
\end{array}\right) \\
& a \equiv x_{a} \frac{u}{\Lambda} \quad, d \equiv x_{d} \frac{v^{\prime}}{\Lambda}
\end{aligned}
$$

Review summary

- Many experiments give a consistent picture of non-zero neutrino masses and charged Lepton Flavour transitions
- In contrast with the quark sector the mixing angles are large, and the neutrino masses tiny
- A bottom-up approach leave many questions open, giving further motivation to new experiments
- There are many models which do accommodate the observed pattern, with no apparently favoured scenario

TeV signatures of see-saw messengers: Multilepton signals

LNV signals have smaller backgrounds than LNC ones BUT for a fixed number of final particles. As a matter of fact the significance of trilepton LNC signals is similar to the significance of LNV dilepton signals.
At any rate, multilepton signals are complementary in order to discriminate between models. Scalar and fermion triplets mediating the see-saw mechanism have final states with many leptons (up to 6), as many other new particles at the TeV scale (as, for example, heavy leptons or quarks, or new neutral gauge bosons decaying into them).

Fermion singlet N

$$
V_{l N} \simeq \frac{Y_{l N} v}{\sqrt{2} m_{N}}
$$

$$
m_{\nu} \simeq-V_{l N_{i}}^{* 2} m_{N_{i}}
$$

(I)

The production mechanism is proportional to the mixing between the light leptons and the new heavy neutrino N , as there are the light neutrino masses (if they have a see-saw origin as in the usual MAJORANA case). BUT in the first case enters the specific mixing matrix element and in the second one the combination of all of them and cancellations are possible. Although this can be considered arbitrary in the absence of a symmetry, and unstable because corrections may be large.

$$
\begin{aligned}
\mathcal{L}_{W} & =-\frac{g}{\sqrt{2}}\left(V_{l N} \bar{l} \gamma^{\mu} P_{L} N W_{\mu}^{-}+V_{l N}^{*} \bar{N} \gamma^{\mu} P_{L} l W_{\mu}^{+}\right), & & 90 \% \mathrm{C.L.} \\
\mathcal{L}_{Z} & =-\frac{g}{2 c_{W}}\left(V_{l N} \bar{l}_{l} \gamma^{\mu} P_{L} N+V_{l N}^{*} \bar{N} \gamma^{\mu} P_{L} \nu_{l}\right) Z_{\mu}, & & \left|\mathrm{V}_{\text {eN }}\right|^{2}<0.003 \\
\mathcal{L}_{H} & =-\frac{g m_{N}}{2 M_{W}}\left(V_{l N} \bar{\nu}_{l} P_{R} N+V_{l N}^{*} \bar{N} P_{L} \nu_{l}\right) H, & & \left|\mathrm{~V}_{\text {тN }}\right|^{2}<0.0032
\end{aligned}
$$

$$
\left|V_{T N}\right|^{2}<0.0062 \text { unobservable }
$$

$$
N \rightarrow \ell W \quad\left\{\begin{array}{cc}
\ell^{+} N \rightarrow \ell^{+} \ell^{-} W^{+} \\
\ell^{+} N \rightarrow \ell^{+} \ell^{+} W^{-}
\end{array}\binom{\rightarrow \ell^{+} \ell^{-} \ell^{+} \bar{\nu}}{\rightarrow \ell^{+} \ell^{+} \ell^{-} \nu}\right.
$$

Majorana particles give LNV as well as LNC signals, whereas Dirac particles only give LNC ones. In any case there are SM backgrounds.

Total cross sections are the same, although the total width for a Majorana neutrino is twice than for a Dirac one

$$
\begin{array}{ll}
q \vec{q}^{\prime} \rightarrow W^{*} \rightarrow l^{ \pm} N, & q \bar{q} \rightarrow Z^{*} \rightarrow \nu N, \\
& g g \rightarrow H^{*} \rightarrow \nu N
\end{array}
$$

Overwhelming background
$q \bar{q} \rightarrow Z^{*} \rightarrow N N$
Too small cross section

LNC signals may be more significant than LNV ones

$\begin{gathered} \mathrm{m}_{\mathrm{N}}=100 \mathrm{GeV} \\ \|\mathrm{~V}\|^{2}=0.003 \end{gathered}$				
	$\ell^{ \pm} \ell^{ \pm} \ell^{\mp}(2 e)$	$\ell^{ \pm} \ell^{ \pm} \ell^{\mp}(2 \mu)$	$\ell^{ \pm} \ell^{ \pm}(2 e)$	$\ell^{ \pm} \ell^{ \pm}(2 \mu)$
$N(\mathrm{~S} 1, \mathrm{M})$	28.6 Piffer	nce due ${ }^{0}$	(11.3)	0
$N(\mathrm{~S} 1, \mathrm{D})$	44.8 to kir	matics 0	0.4	0
$N(\mathrm{~S} 2, \mathrm{M})$	0	29.6	0	(13.4)
$N(\mathrm{~S} 2, \mathrm{D})$	0	45.8	0	0.5
SM Bkg	116.4	45.6	36.1	20.2

Table 1: Number of events with $30 \mathrm{fb}^{-1}$ for the Majorana (M) and Dirac (D) neutrino singlet signals in scenarios S1 and S2, and SM background in different final states.

Coupling to
e and μ,
respectively
Broad dilepton invariant mass distributions

> A case for MULTILEPTON searches

	Pre-selection				Selection		
	$\mu^{ \pm} \mu^{ \pm}$	$e^{ \pm} e^{ \pm}$	$\mu^{ \pm} e^{ \pm}$	$\mu^{ \pm} \mu^{ \pm}$	$e^{ \pm} e^{ \pm}$	$\mu^{ \pm} e^{ \pm}$	
$N(\mathrm{a})$	113.6	0	0	(59.1)	0	0	
$N(\mathrm{~b})$	0	72.0	0	0	(17.6)	0	
$N(\mathrm{c})$	78.4	25.5	82.6	41.6	4.7	22.4	
$b \bar{b} n j$	14800	52000	82000	0	0	0	
$c \bar{n} j$	(11)	300	200	(0)	0	0	
$t \bar{t} n j$	1162.1	8133.0	15625.3	2.4	8.3	7.7	
$t j$	60.8	176.5	461.5	0.0	0.0	0.1	
$W b \bar{b} n j$	124.9	346.7	927.3	0.4	0.6	0.3	
$W t \bar{t} n j$	75.7	87.2	166.9	0.3	0.0	0.0	
$Z b \bar{b} j$	12.2	68.9	117.0	0.0	0.2	0.0	
$W W n j$	82.8	89.0	174.8	0.5	0.1	0.7	
$W Z n j$	162.4	252.0	409.2	4.8	1.8	2.3	
$Z Z n j$	3.8	13.3	12.9	0.0	0.6	0.1	
$W W W n j$	31.9	30.1	64.8	0.9	0.1	0.0	

Table 1: Number of $\ell^{ \pm} \ell^{ \pm} j j$ events at LHC for $30 \mathrm{fb}^{-1}$, at the pre-selection and selection levels. The heavy neutrino signal is evaluated assuming $m_{N}=150 \mathrm{GeV}$ and coupling (a) to the muon, $V_{\mu N}=0.098$; (b) to the electron, $V_{e N}=0.073$; (c) to both, $V_{e N}=0.073$ and $V_{\mu \mathrm{N}}=0.098$.

Large backgrounds
Likelihood analysis with many distributions

Limit on their mass
~ 120 (150) GeV for D (M)

CLIC does better

60 GeV neutrino coupling to the muon up to $\left|V_{\mu N}\right|^{2}=4.9 \times 10^{-5}$

Corfu, September 2009
F. del Águila

Corfu, September 2009

Process	Decay
$t \bar{t} n j, n=0, \ldots, 6$	semileptonic
$t \bar{t} n j, n=0, \ldots, 6$	dileptonic
$b \bar{b} n j, n=0, \ldots, 3$	all
$c \bar{c} n j, n=0, \ldots, 3$	all
$t j$	$W \rightarrow l \nu$
$t \bar{b}$	$W \rightarrow l \nu$
$t W$	all ALPGEN for the backgrounds (interfaced to
$t \bar{t} t \bar{t}$	all PYTHIA using the MLM prescription)
$t \bar{t} b \bar{b}$	all PYTHIA using the MLM prescription)
$W n j, n=0,1,2$	$W \rightarrow l \nu$
$W n j, n=3, \ldots, 6$	$W \rightarrow l \nu \quad$ Signals calculated with a Monte Carlo generator
$W b \bar{b} n j, n=0, \ldots, 4$	$W \rightarrow l \nu$, \quad (TRIADA -for triplets-, ALPGEN -for singlets-)
$W c \bar{c} n j, n=0, \ldots, 4$	
$W t \bar{t} n j, n=0, \ldots, 4$	$W \rightarrow l \nu \quad$ using HELAS (width and spin), VEGAS (phase
$Z / \gamma n j, n=0,1,2, m_{l l}<120 \mathrm{GeV}$	$Z \rightarrow l^{+} l^{-}$space integration), interface to PYTHIA (ISR and
$Z / \gamma n j, n=3, \ldots, 6, m_{l l}<120 \mathrm{GeV}$	$Z \rightarrow l^{+} l^{-} \quad$ FSR, pile-up, and hadronisation , and AcerDET
$Z / \gamma n j, n=0, \ldots, 6, m_{l l}>120 \mathrm{GeV}$	$Z \rightarrow l^{+} l^{-}$ $Z \rightarrow l^{+} l^{-}$$\quad$ (fast LHC detector simulation)
Zbbnj, $n=0, \ldots, 4$	
$Z c \bar{c} n j, n=0, \ldots, 4$	$Z \rightarrow l^{+} l^{-}$
$Z t \bar{t} n j, n=0, \ldots, 4$	$Z \rightarrow l^{+} l^{-}$
$W W n j, n=0, \ldots, 3$	$W \rightarrow l \nu$
$W Z n j, n=0, \ldots, 3$	$W \rightarrow l \nu, Z \rightarrow l^{+} l^{-}$
$Z Z n j, n=0, \ldots, 3$	$Z \rightarrow l^{+} l^{-}$
$W W W n j, n=0, \ldots, 3$	$2 W \rightarrow l \nu$
$W W Z n j, n=0, \ldots, 3$	all
$W Z Z n j, n=0, \ldots, 3$	all
$Z Z Z n j, n=0, \ldots, 3$	$2 Z \rightarrow l^{+} l^{-}$

Scalar triplet Δ

$$
\begin{aligned}
\mathcal{L}_{W}= & -i g\left[\left(\partial^{\mu} \Delta^{--}\right) \Delta^{+}-\Delta^{--}\left(\partial^{\mu} \Delta^{+}\right)\right] W_{\mu}^{+}, \\
& -i g\left[\left(\partial^{\mu} \Delta^{-}\right) \Delta^{++}-\Delta^{-}\left(\partial^{\mu} \Delta^{++}\right)\right] W_{\mu}^{-}, \\
\mathcal{L}_{K . T .}=\left(D^{\mu} \vec{\Delta}\right)^{\dagger} \cdot\left(D_{\mu} \vec{\Delta}\right) \rightarrow \quad \mathcal{L}_{Z}= & \frac{i g}{c_{W}}\left(1-2 s_{W}^{2}\right)\left[\left(\partial^{\mu} \Delta^{--}\right) \Delta^{++}-\Delta^{--}\left(\partial^{\mu} \Delta^{++}\right)\right] Z_{\mu} \\
& -\frac{i g}{c_{W}} s_{W}^{2}\left[\left(\partial^{\mu} \Delta^{-}\right) \Delta^{+}-\Delta^{-}\left(\partial^{\mu} \Delta^{+}\right)\right] Z_{\mu}, \\
\mathcal{L}_{\gamma}= & i 2 e\left[\left(\partial^{\mu} \Delta^{--}\right) \Delta^{++}-\Delta^{--}\left(\partial^{\mu} \Delta^{++}\right)\right] A_{\mu} \\
& +i e\left[\left(\partial^{\mu} \Delta^{-}\right) \Delta^{+}-\Delta^{-}\left(\partial^{\mu} \Delta^{+}\right)\right] A_{\mu} .
\end{aligned}
$$

$\Delta B R$'s into leptons are a high energy window to neutrino masses and mixings, and may even allow for reconstructing the MNS matrix.

$$
r_{e \mu} \equiv \operatorname{Br}\left(\Delta^{ \pm \pm} \rightarrow e^{ \pm} e^{ \pm} / \mu^{ \pm} \mu^{ \pm} / e^{ \pm} \mu^{ \pm}\right)
$$

They depend on the neutrino masses and mixings, being the main dependance on α_{2} (in the plots $\beta_{2}-\beta_{3}$ and β_{2}, respectively. We assume in our simulations:
F.A. and J.A. Aguilar-Saavedra,

Nucl. Phys. B813 (2009) 22

	$e^{ \pm} e^{ \pm}$	$\mu^{ \pm} \mu^{ \pm}$	$\mu^{ \pm} \tau^{ \pm}$	$\tau^{ \pm} \tau^{ \pm}$
NH	0.00	0.20	0.49	0.29
IH	0.50	0.15	0.25	0.10

Fermion triplet Σ

See Juan Antonio A.-S.'s talk for this case and comparison with other new particles

Summary of the LHC reach ($30 \mathrm{fb}^{-1}$ and 14 TeV)

$N: 120(150) \mathrm{GeV}$ for D / M coupling to $e(\mu)$
$\Delta: 600(800) \mathrm{GeV}$ for NH (IH)
$\Sigma: 750(700) \mathrm{GeV}$ for Majorana (Dirac) coupling to e or μ

Non-standard neutrino interactions

In general the dimension 6 operators must have coefficients not much larger than 1 \% (taking one at a time)

See Belén G.'s talk (and collaborators)

$$
\begin{array}{rl}
\mathcal{L}_{\mathrm{NSI}}^{M}= & -2 \sqrt{2} G_{F} \varepsilon_{\alpha \beta}^{f P}\left[\bar{f} \gamma^{\mu} P f\right]\left[\bar{\nu}_{\alpha} \gamma_{\mu} P_{L} \nu_{\beta}\right] \\
\left|\varepsilon_{\alpha \beta}^{\mu e}\right|< & \left(\begin{array}{lll}
0.025 & 0.030 & 0.030 \\
0.025 & 0.030 & 0.030 \\
0.025 & 0.030 & 0.030
\end{array}\right), \\
\left|\varepsilon_{\alpha \beta}^{u d}\right|< & \left(\begin{array}{cccc}
0.041 & 0.025 & 0.041 \\
1.8 \cdot 10^{-6} & 0.078 & 0.013 \\
0.026 & \\
0.11 & 0.016 & 0.13
\end{array}\right), \\
0.13 & 0.022 \\
\left|\varepsilon_{\alpha \beta}^{e}\right|< & \left(\begin{array}{ccc}
0.06 & 0.10 & 0.4 \\
0.14 & 0.27 \\
0.10 & 0.03 & 0.10 \\
0.4 & 0.10 & 0.16 \\
0.27 & 0.4
\end{array}\right),
\end{array}
$$

$\varepsilon_{\alpha \boldsymbol{\beta}}^{\mu e}$	Kin. $\boldsymbol{F}_{\boldsymbol{F}}(L, R)$	CKM unit. (V)	Lept. univ. (A)	Oscillation (L, R)
$\varepsilon_{e e}^{\mu e}$	<0.030	<0.030	<0.080	<0.025
$\varepsilon_{e \mu}^{\mu e}$	$(-1.4 \pm 1.4) \cdot 10^{-3}(\mathbb{R}, L)$	$<4 \cdot 10^{-4}(\mathbb{R})$	$(-0.4 \pm 3.5) \cdot 10^{-3}(\mathbb{R})$	-
$\varepsilon_{e \tau}^{\mu e}$	<0.030	<0.030	<0.080	<0.087
$\varepsilon_{\mu e}^{\mu e}$	<0.030	<0.030	<0.080	<0.080
$\varepsilon_{\mu \mu}^{\mu e}$	<0.030	<0.030	<0.080	<0.025
$\varepsilon_{\mu \tau}^{\mu e}$	<0.030	<0.030	<0.080	-0.087
$\varepsilon_{\tau e}^{\mu e}$	<0.030	<0.030	<0.080	<0.025
$\varepsilon_{\tau \mu}^{\mu e}$	<0.030	<0.030	<0.080	-
$\varepsilon_{\tau \tau}^{\mu e}$	<0.030	<0.030		-0.080

$$
\begin{aligned}
& \left|\varepsilon_{\alpha \beta}^{u}\right|<\left(\begin{array}{ccc}
1.0 & 0.05 & 0.5 \\
0.7 & & \\
0.05 & 0.003 & 0.05 \\
& 0.008 & \\
0.5 & 0.05 & 1.4 \\
3
\end{array}\right) \\
& \left.\left|\varepsilon_{\alpha \beta}^{d}\right|<\left(\begin{array}{ccc}
0.3 & 0.05 & 0.5 \\
0.6 & & \\
& 0.05 & 0.003
\end{array}\right) 0.05\right)
\end{aligned}
$$

Summary

- Many experiments give a consistent picture of non-zero neutrino masses and charged Lepton Flavour transitions
- In contrast with the quark sector the mixing angles are large, and the neutrino masses tiny
- A bottom-up approach leave many questions open, giving further motivation to new experiments
- There are many models which do accommodate the observed pattern, with no apparently favoured scenario given the preferred hipotheses
- LHC may observed see-saw messengers below $\sim 700 \mathrm{GeV}$ studying multilepton channels, which are the main signatures for many other new particles
- Indirect limits constrain new physics relevant for neutrino oscillation experiments typically below 1 \% (at the amplitude level), making their effects hardly visible

Thanks for your attention

Universidad
de Granada

