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Neutrino physics

 Neutrino evidence: Standard Model
 Neutrino oscillations: Neutrino masses and mixing
 New physics beyond the neutrino Standard Model:
See-saw mechanisms, A4 models 

 Dirac and Majorana mass effects 
 TeV signatures of see-saw messengers: 
Multilepton signals
 Non-standard neutrino interactions
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Neutrino evidence: Standard Model

 Pauli postulated the ν in 1933, a particle approximately massless and of spin ½; 
and Fermi formulated β decay in 1934. π+ ➝ µ+ν, νn ➝ µ-p; µ- ➝ e-γ; ...: 

                   Left-handed neutrinos and no Lepton Flavour Violation
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with total Lepton Number L = ∑i Li  
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 Neutrinos are massless within the minimal Standard Model for they have no 
Right-Handed counterparts, and Li are conserved:

ēνν̄µ

LY = −Y l
ααL̄LαHlRα + h.c.

H (≡ φ) ∼ (1, 2, 1
2)

LK.T. =
∑

α=e,µ,τ (L̄LαγλiDλLLα + l̄RαγλiDλlRα + h.c.) ,

LY = −Y l
αβL̄LαHlRβ + h.c.

LK.T. =
∑

α=e,µ,τ (L̄LαγλiDλLLα + h.c.) →

LW = − g√
2

∑

α=e,µ,τ
i=1,2,3

(l̄LαγλUαiνLiW
−
λ + h.c.)

− g√
2

∑

α=e,µ,τ (l̄LαγλνLαW−
λ + h.c.) ,

LY = −Y l
ααL̄LαHlRα + h.c.

LY = −Y ν
αβL̄LαH̃νRβ + h.c.

ē Γ ν ν̄ Γ′ µ
1̄ 2 3̄ 4 → 1̄ 4 3̄ 2

L5 = x5

Λ Lc
LαH̃∗H̃†LLβ + h.c.

M =

(

0 mD

mT
D M

)

, (1)

LM = −Y ν
αβL̄LαH̃NRβ − 1

2MαβN c
RαNRβ + h.c.

niL = {νeL, νc
eL, νµL, νc

µL} ,

nc
iR = {νc

eR, νeR, νc
µR, νµR} ,

3
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ēνν̄µ

LK.T. =
∑

α=e,µ,τ (L̄LαγλiDλLLα + h.c.) →

LW = − g√
2

∑
α=e,µ,τ
i=1,2,3

(l̄LαγλUαiνLiW
−
λ + h.c.)

LW = − g√
2

∑
α=e,µ,τ (l̄LαγλνLαW−

λ + h.c.) ,

LY = −YααL̄LαHlRα + h.c.

ē Γ ν ν̄ Γ′ µ
1̄ 2 3̄ 4 → 1̄ 4 3̄ 2

niL = {νeL, νc
eL, νµL, νc

µL} ,

nc
iR = {νc

eR, νeR, νc
µR, νµR} ,

nc
R = Cn̄T

L ,

g++
23 , g−+

13 , g+−
24 , g−−

14 , gLL
13 , gRL

23 , gLR
14 , gRR

24 , gT+
23 , gT+

14 ,
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 However, if neutrinos are massive as required by neutrino oscillations, we can 
not rotate them arbitrarily:
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ēνν̄µ

LY = −Y l
ααL̄LαHlRα + h.c.

H (≡ φ) ∼ (1, 2, 1
2)

LK.T. =
∑

α=e,µ,τ (L̄LαγλiDλLLα + l̄RαγλiDλlRα + h.c.) ,

LY = −Y l
αβL̄LαHlRβ + h.c.

LK.T. =
∑

α=e,µ,τ (L̄LαγλiDλLLα + h.c.) →

LW = − g√
2

∑

α=e,µ,τ
i=1,2,3

(l̄LαγλUαiνLiW
−
λ + h.c.)

− g√
2

∑

α=e,µ,τ (l̄LαγλνLαW−
λ + h.c.) ,

LY = −Y l
ααL̄LαHlRα + h.c.

LY = −Y ν
αβL̄LαH̃νRβ + h.c.
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VCKM ➝UPMNS
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CKM mixing matrix V is unitary but 

the field phases are unphysical 

n2 – 2n + 1 ➞  4 = 3 + 1
3 angles and 1 phase
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PMNS mixing matrix U is unitary 
but the l phases are unphysical 

 
 Non-zero phases in 
general stand for CP 
violation, with two of 
them only present for 
Majorana neutrinos,  
α1,2 . 
If | Ue3 | = 0, 1, CP is 
conserved for Dirac 
neutrinos.   

n2 – n ➞ 6 = 3 + 3 : 3 angles and 3 phases

 If Majorana νi = νic

and αi have a physical 
meaning but not in the 
Dirac case
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PMNS mixing matrix U is unitary 
but the l phases are unphysical 

 
 Non-zero phases in 
general stand for CP 
violation, with two of 
them only present for 
Majorana neutrinos,  
α1,2 . 
If | Ue3 | = 0, 1, CP is 
conserved for Dirac 
neutrinos.   

 No possible evidence 
up to now for (Dirac) 
CP violation 

➚

☐
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Neutrino oscillations: 
Neutrino masses and mixing

Neutrino Oscillation Phenomenology 3

N(N-1)/2 mixing angles

N(N-1)/2 complex phase factors

N(N-1) physically significant parameters in all

Throughout most of these lecture notes, we will assume that N = 3. Then the mixing
matrix contains three mixing angles and three complex phase factors. It can be shown that
this matrix can be written in the form

U =











1 0 0

0 c23 s23

0 −s23 c23











×











c13 0 s13e−iδ

0 1 0

−s13eiδ 0 c13











×











c12 s12 0

−s12 c12 0

0 0 1











×











eiξ1/2 0 0

0 eiξ2/2 0

0 0 1











. (3)

Here, cij ≡ cos θij and sij ≡ sin θij , where the θij are the three mixing angles. The quantities
δ, ξ1, and ξ2 are the three complex phases.

From Eq. (1), we observe that the amplitude for the decay W+ → $α + νi to yield the
particular charged-lepton mass eigenstate $α in combination with the particular neutrino
mass eigenstate νi is proportional to U∗

αi. Thus, if we define the “neutrino state of flavor α”,
|να〉, with α = e, µ, or τ , to be the neutrino state that accompanies the particular charged
lepton $α in leptonic W+ decay, then we must have

|να〉 =
3

∑

i=1

U∗
αi |νi〉 , (4)

From Eq. (1), the amplitude for this να to interact and produce the particular charged-lepton
$β is proportional to

3
∑

i=1

UβiU
∗
αi = δβα , (5)

where we have invoked the unitarity of U . We see that when a νe, the neutrino born in a
W+ decay that produced an ē, interacts and produces a second charged lepton, the latter
can only be an e. Similarly for νµ and ντ .

We may invert Eq. (4) to obtain

|νi〉 =
∑

α=e,µ,τ

Uαi|να〉 . (6)

This expresses the mass eigenstate |νi〉 in terms of the states of definite flavor, |να〉. We see
that the flavor-α fraction of |νi〉 is simply |Uαi|2.

2.1 Neutrino oscillation in vacuum

Consider the vacuum neutrino oscillation experiment depicted schematically in the upper
part of Figure 1. A neutrino source produces, via W exchange, the charged lepton $α of
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Here, cij ≡ cos θij and sij ≡ sin θij , where the θij are the three mixing angles. The quantities
δ, ξ1, and ξ2 are the three complex phases.

From Eq. (1), we observe that the amplitude for the decay W+ → $α + νi to yield the
particular charged-lepton mass eigenstate $α in combination with the particular neutrino
mass eigenstate νi is proportional to U∗

αi. Thus, if we define the “neutrino state of flavor α”,
|να〉, with α = e, µ, or τ , to be the neutrino state that accompanies the particular charged
lepton $α in leptonic W+ decay, then we must have

|να〉 =
3

∑

i=1

U∗
αi |νi〉 , (4)

From Eq. (1), the amplitude for this να to interact and produce the particular charged-lepton
$β is proportional to

3
∑

i=1

UβiU
∗
αi = δβα , (5)

where we have invoked the unitarity of U . We see that when a νe, the neutrino born in a
W+ decay that produced an ē, interacts and produces a second charged lepton, the latter
can only be an e. Similarly for νµ and ντ .

We may invert Eq. (4) to obtain

|νi〉 =
∑

α=e,µ,τ

Uαi|να〉 . (6)

This expresses the mass eigenstate |νi〉 in terms of the states of definite flavor, |να〉. We see
that the flavor-α fraction of |νi〉 is simply |Uαi|2.

2.1 Neutrino oscillation in vacuum

Consider the vacuum neutrino oscillation experiment depicted schematically in the upper
part of Figure 1. A neutrino source produces, via W exchange, the charged lepton $α of
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oscillation να → νβ, only the relative phases of the propagation amplitudes Prop (νi) for
different mass eigenstates will have physical consequences. From the discussion above, the
relative phase of Prop (ν1) and Prop (ν2), δφ(12) is given by

δφ(12) = (E2t − p2L) − (E1t − p1L)

= (p1 − p2)L − (E1 − E2)t . (7)

In practice, experiments do not measure the transit time t. However, Lipkin has shown [6]
that, to an excellent approximation, t may be taken to be L/v̄, where

v̄ ≡
p1 + p2

E1 + E2

(8)

is an approximation to the average of the velocities of the ν1 and ν2 components of the beam.
We then have

δφ(12) ∼=
p2

1 − p2
2

p1 + p2

L −
E2

1 − E2
2

p1 + p2

L

= (m2
2 − m2

1)
L

p1 + p2

∼= (m2
2 − m2

1)
L

2E
, (9)

where, in the last step, we have used the fact that for highly relativistic neutrinos, p1 and
p2 are both approximately equal to the beam energy E. We conclude that all the relative
phases in Amp( να → νβ) will be correct if we take

Prop (νi) = e−im2
i L/2E . (10)

Combining the factors that appear in the lower part of Figure 1, we have

A (να → νβ) =
∑

i

U∗
αie

−im2
i L/2EUβi . (11)

Squaring, and making judicious use of the unitarity of U , we find that the probability of
να → νβ, P (να → νβ), is given by

P(να → νβ) = |Amp (να → νβ)|2

= δαβ − 4
∑

i>j

Re (U∗
αiUβiUαjU

∗
βj) sin2(∆m2

ijL/4E)

+ 2
∑

i>j

Im (U∗
αiUβiUαjU

∗
βj) sin(∆m2

ijL/2E) . (12)

Here, ∆m2
ij ≡ m2

i − m2
j is the splitting between the squared masses of νi and νj . It is clear

from the derivation of Eq. (12) that this expression would hold for any number of flavors
and equal number of mass eigenstates.

Given that the particles described by the oscillation probability of Eq. (12) are born with
an $α and convert into an $β in the detector, they are neutrinos, rather than antineutrinos
(should there be a difference). To obtain the corresponding oscillation probability for an-
tineutrinos, we observe that να → νβ is the CPT-mirror image of νβ → να. Thus, if CPT
invariance holds,

P(να → νβ) = P(νβ → να) . (13)

Neutrino propagation in vacuum

L = distance from the source to the detector  

t = distance (L) / average velocity (p/E)S D
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∆m2ij = m2i-m2j

Production Detection
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CP violating
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6 Boris Kayser

Now, from Eq. (12), we see that

P(νβ → να; U) = P(να → νβ; U∗) . (14)

Hence, assuming CPT invariance holds,

P(να → νβ ; U) = P(να → νβ; U∗) . (15)

That is, the probability for oscillation of an antineutrino is the same as that for a neutrino,
except that the mixing matrix U is replaced by its complex conjugate. Thus, from Eq. (12),

P(( )να → ( )νβ ) = δαβ − 4
∑

i>j

Re (U∗
αiUβiUαjU

∗
βj) sin2(∆m2

ijL/4E)

+

( − )
2

∑

i>j

Im (U∗
αiUβiUαjU

∗
βj) sin(∆m2

ijL/2E) . (16)

We see that if U is not real, the probabilities for να → νβ and for the corresponding an-
tineutrino oscillation, να → νβ , will in general differ. Since να → νβ and να → νβ are
CP-mirror-image processes, this difference will be a violation of CP invariance.

As Eq. (16) makes clear, neutrino oscillation in vacuum from one flavor α into a different
one β implies nonzero mass splittings ∆m2

ij , hence nonzero neutrino masses. It also implies
nontrivial leptonic mixing. That is, the mixing matrix U cannot be diagonal.

Including the so-far omitted factors of h− and c, we have

∆m2
ij

L

4E
= 1.27 ∆m2

ij(eV
2)

L(km)

E(GeV)
. (17)

From Eq. (16), if the U matrix cooperates, the probability for να → νβ , β #= α, will be
appreciable if the kinematical phase difference in Eq. (17) is O(1) or larger. This requires
only that for some ij,

∆m2
ij(eV

2) >∼
E(GeV)

L(km)
. (18)

Thus, for example, an experiment that studies 1 GeV neutrinos that travel a distance
L ∼ 104km, the diameter of the earth, will be sensitive to neutrino (mass)2 splittings ∆m2

ij

as small as 10−4eV2. Through quantum interference between neutrino mass eigenstates of
different masses, neutrino oscillation gives us sensitivity to very tiny (mass)2 splittings. How-
ever, as Eq. (16) underscores, oscillation cannot determine the masses mi of the individual
mass eigenstates. To learn those will require another approach.

There are basically two kinds of neutrino oscillation experiments. In the first, an ap-
pearance experiment, one starts with a beam of neutrinos that initially are purely of flavor
α, and looks for the appearance in this beam of neutrinos of a new flavor β, β #= α, that
were not originally present in the beam. In the second kind of experiment, a disappearance
experiment, one starts with a known flux of να, and looks to see whether some of the initial
να flux disappears as the beam travels.

By the definition of “probability”, the probability that a neutrino changes flavor, plus
the probability that it does not change flavor, must equal unity. That is, we must have

∑

β

P(να → νβ) =
∑

β

P(να → νβ) = 1 , (19)
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Now, from Eq. (12), we see that

P(νβ → να; U) = P(να → νβ; U∗) . (14)

Hence, assuming CPT invariance holds,

P(να → νβ ; U) = P(να → νβ; U∗) . (15)

That is, the probability for oscillation of an antineutrino is the same as that for a neutrino,
except that the mixing matrix U is replaced by its complex conjugate. Thus, from Eq. (12),

P(( )να → ( )νβ ) = δαβ − 4
∑

i>j

Re (U∗
αiUβiUαjU

∗
βj) sin2(∆m2

ijL/4E)

+

( − )
2

∑

i>j

Im (U∗
αiUβiUαjU

∗
βj) sin(∆m2

ijL/2E) . (16)

We see that if U is not real, the probabilities for να → νβ and for the corresponding an-
tineutrino oscillation, να → νβ , will in general differ. Since να → νβ and να → νβ are
CP-mirror-image processes, this difference will be a violation of CP invariance.

As Eq. (16) makes clear, neutrino oscillation in vacuum from one flavor α into a different
one β implies nonzero mass splittings ∆m2

ij , hence nonzero neutrino masses. It also implies
nontrivial leptonic mixing. That is, the mixing matrix U cannot be diagonal.

Including the so-far omitted factors of h− and c, we have

∆m2
ij

L

4E
= 1.27 ∆m2

ij(eV
2)

L(km)

E(GeV)
. (17)

From Eq. (16), if the U matrix cooperates, the probability for να → νβ , β #= α, will be
appreciable if the kinematical phase difference in Eq. (17) is O(1) or larger. This requires
only that for some ij,

∆m2
ij(eV

2) >∼
E(GeV)

L(km)
. (18)

Thus, for example, an experiment that studies 1GeV neutrinos that travel a distance
L ∼ 104km, the diameter of the earth, will be sensitive to neutrino (mass)2 splittings ∆m2

ij

as small as 10−4eV2. Through quantum interference between neutrino mass eigenstates of
different masses, neutrino oscillation gives us sensitivity to very tiny (mass)2 splittings. How-
ever, as Eq. (16) underscores, oscillation cannot determine the masses mi of the individual
mass eigenstates. To learn those will require another approach.

There are basically two kinds of neutrino oscillation experiments. In the first, an ap-
pearance experiment, one starts with a beam of neutrinos that initially are purely of flavor
α, and looks for the appearance in this beam of neutrinos of a new flavor β, β #= α, that
were not originally present in the beam. In the second kind of experiment, a disappearance
experiment, one starts with a known flux of να, and looks to see whether some of the initial
να flux disappears as the beam travels.

By the definition of “probability”, the probability that a neutrino changes flavor, plus
the probability that it does not change flavor, must equal unity. That is, we must have

∑

β

P(να → νβ) =
∑

β

P(να → νβ) = 1 , (19)

CPT Probability 
amplitude

 Then, a phase in U given a different P for neutrinos and 
antineutrinos stands for CP violation

Neutrino propagation in matter

10 Boris Kayser

L/E such that ∆m2
32 L/E = O(1), then ∆m2

21 L/E ! 1, and in first approximation, this ex-
periment cannot “see” the small splitting ∆m2

21. Neglecting this small splitting in Eq. (16),
this equation and the unitarity of U imply that, for β "= α,

P(( )να → ( )νβ ) ∼= 4|Uα3Uβ3|2 sin2(∆m2
32L/4E) . (32)

Similarly, they imply that, for β = α,

P(( )να → ( )να) ∼= 1 − 4|Uα3|2(1 − |Uα3|2) sin2(∆m2
32L/4E) . (33)

We see that, by measuring these simple oscillation probabilities, experiments with ∆m2
32 L/4E

= O(1) can determine the flavor content of the isolated member of the spectrum, ν3.

2.2 Neutrino oscillation in matter

Inside matter, the coherent forward scattering of neutrinos from the electrons, protons, and
neutrons that make up the matter leads to neutrino effective masses and mixing angles
that differ from their vacuum counterparts. As a result, inside matter, the probabilities for
neutrino oscillations differ from their vacuum counterparts.

The Standard-Model interactions between neutrinos and other particles do not change
flavor. Thus, barring hypothetical non-Standard-Model flavor-changing interactions, the
observation of neutrino flavor change implies neutrino mass and leptonic mixing, even if the
observation involves neutrinos passing through matter.

Neutrino propagation in matter may be conveniently treated via the laboratory-frame
Schrödinger time-evolution equation

i
∂

∂t
Ψ(t) = HΨ(t) . (34)

Here, t is the time, and Ψ(t) is a multi-component neutrino wave function. Its α component,
Ψα(t), is the amplitude for the neutrino to have flavor α at time t. If there are N flavors,
the Hamiltonian H is an N × N matrix in flavor space. In matter, this matrix includes
interaction energies arising from neutrino-matter interactions mediated by W or Z exchange.
According to the Standard Model, the Z-mediated interactions neither change neutrino flavor
nor depend on the flavor. Thus, they add to H a term proportional to the identity matrix.
Such a term shifts all the eigenvalues of H by a common amount, leaving the splittings
between the eigenvalues unchanged. Now, as we have seen when discussing neutrino flavor
oscillation in vacuum, the amplitude for oscillation depends only on the relative phases of the
different neutrino eigenstates. This means that it depends only on the splittings between the
eigenvalues, and will not be affected by an interaction that merely shifts all the eigenvalues
by the same amount. Thus, if our purpose is to treat neutrino flavor oscillation, we may
omit the Z-exchange contribution to H.

The W -exchange contribution is another matter. From the Standard Model, it follows
that coherent forward νe-electron scattering via the W -exchange diagram of Figure 4 adds
to the νe-νe element of H, Hνeνe, an interaction energy

V =
√

2GF Ne . (35)

Here, GF is the Fermi coupling constant, and Ne is the number of electrons per unit volume
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To how small an | < mββ > | should a 0νββ search be sensitive? In an-
swering this question, it makes sense to assume there are only three neutrino
mass eigenstates — if there are more, | < mββ > | might be larger. Suppose
that there are just three mass eigenstates, and that the solar pair, ν1 and
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Atmospheric SK νµ disappearance

Accelerator K2K, MINOS νµ disappearance
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Accelerator Experiment

On going A factor of 3

NuFact 3 orders of magnitude
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To how small an | < mββ > | should a 0νββ search be sensitive? In an-
swering this question, it makes sense to assume there are only three neutrino
mass eigenstates — if there are more, | < mββ > | might be larger. Suppose
that there are just three mass eigenstates, and that the solar pair, ν1 and
ν2, is at the top of the spectrum, so that we have an inverted spectrum. If
the various νi are not much heavier than demanded by the observed split-
tings ∆m2

atm and ∆m2
$, then in | < mββ > |, Eq. the contribution of ν3

may be neglected, because both m3 and |U2
e3| = s2

13 are small. From Eqs. ,

3

approximating c13 by unity, we then have that
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≥10 meV for 
inverted hierarchy

---☐

U ≡ U l†
L Uν

L

mν " − V ∗2
lNi

mNi

LK.T. =
∑

α=e,µ,τ (L̄LαγλiDλLLα + h.c.) →

LW = − g√
2

∑

α=e,µ,τ
i=1,2,3

(l̄LαγλUαiνLiW
−
λ + h.c.)

− g√
2

∑

α=e,µ,τ (l̄LαγλνLαW−
λ + h.c.) ,

LY = −yl
ααL̄LαHlRα + h.c.

LY = −Y l
ααL̄LαHlRα + h.c.

LY = −Y ν
αβL̄LαH̃νRβ + h.c.

ē Γ ν ν̄ Γ′ µ
1̄ 2 3̄ 4 → 1̄ 4 3̄ 2

L5 = x5

Λ Lc
LαH̃∗H̃†LLβ + h.c.

|m11| = |(1 − s2
13)(m1c2

12e
−2iα1 + m2s2

12e
−2iα2) + m3s2

13e
2iδ13 |

M = U∗MdiagU †

M =

(

m mD

mT
D M

)

, (1)

LM = −Y ν
αβL̄LαH̃NRβ − 1

2MαβN c
RαNRβ + h.c.

LM = −Y ν
αβLLαH̃NRβ − 1

2MαβN c
RαNRβ + h.c.

−Y ν
αβLLαH̃NRβ + h.c.

4

Subir S.’s lectures

 If light neutrinos 
are Majorana, 
they can mediate 
double beta decay 
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U ≡ U l†
L Uν

L

mν " − V ∗2
lNi

mNi

LK.T. =
∑

α=e,µ,τ (L̄LαγλiDλLLα + h.c.) →

LW = − g√
2

∑

α=e,µ,τ
i=1,2,3

(l̄LαγλUαiνLiW
−
λ + h.c.)

− g√
2

∑

α=e,µ,τ (l̄LαγλνLαW−
λ + h.c.) ,

LY = −yl
ααL̄LαHlRα + h.c.

LY = −Y l
ααL̄LαHlRα + h.c.

LY = −Y ν
αβL̄LαH̃νRβ + h.c.

ē Γ ν ν̄ Γ′ µ
1̄ 2 3̄ 4 → 1̄ 4 3̄ 2

L5 = x5

Λ Lc
LαH̃∗H̃†LLβ + h.c.

|m11| = |(1 − s2
13)(m1c2

12 − m2s2
12) + m3s2

13e
2iφ|

M = U∗MdiagU †

M =

(

m mD

mT
D M

)

, (1)

LM = −Y ν
αβL̄LαH̃NRβ − 1

2MαβN c
RαNRβ + h.c.

LM = −Y ν
αβLLαH̃NRβ − 1

2MαβN c
RαNRβ + h.c.

−Y ν
αβLLαH̃NRβ + h.c.

4

 Both vertices must be the same. Then, if light neutrinos are Majorana, 
νi = νic, and the process is proportional to the ee entry of 

 Dirac neutrinos can not mediate such a process.
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 What do we need ?

• Double beta decay

• TB, s13 and CP violation

• Surprises (NP) in LFV processes or oscillation experiments 

• Collider signals
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Neutrino physics

 Neutrino evidence: Standard Model
 Neutrino oscillations: Neutrino masses and mixing
 New physics beyond the neutrino Standard Model:
See-saw mechanisms, A4 models 

 Dirac and Majorana mass effects 
 TeV signatures of see-saw messengers: 
Multilepton signals
 Non-standard neutrino interactions
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Models of neutrino masses and mixing

Light neutrino masses can be Dirac or Majorana   

 Within the SM ν masses are zero for 3 reasons:

• No νR’s 

• Only Higgs doublets

• Renormalizable theory

U ≡ U l†
L Uν

L

mν " − V ∗2
lNi

mNi

LK.T. =
∑

α=e,µ,τ (L̄LαγλiDλLLα + h.c.) →

LW = − g√
2

∑

α=e,µ,τ
i=1,2,3

(l̄LαγλUαiνLiW
−
λ + h.c.)

− g√
2

∑

α=e,µ,τ (l̄LαγλνLαW−
λ + h.c.) ,

LY = −yl
ααL̄LαHlRα + h.c.

LY = −Y l
ααL̄LαHlRα + h.c.

LY = −Y ν
αβL̄LαH̃νRβ + h.c.

ē Γ ν ν̄ Γ′ µ
1̄ 2 3̄ 4 → 1̄ 4 3̄ 2

L5 = x5

Λ Lc
LαH̃∗H̃†LLβ + h.c.

M =

(

0 mD

mT
D M

)

, (1)

LM = −Y ν
αβL̄LαH̃NRβ − 1

2MαβN c
RαNRβ + h.c.

LM = −Y ν
αβLLαH̃NRβ − 1

2MαβN c
RαNRβ + h.c.

−Y ν
αβLLαH̃NRβ + h.c.

x5αβ

Λ Lc
LαH̃∗H̃†LLβ + h.c.

1√
2
Y ν

αβL̃Lα(#τ · #∆)LLβ + h.c.

LM = −1
2mαβνLανc

Lβ − Y ν
αβ

v√
2
νLαNRβ − 1

2MαβN c
RαNRβ + h.c.
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lNi

mNi
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0 mD

mT
D M
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, (1)

LM = −Y ν
αβL̄LαH̃NRβ − 1

2MαβN c
RαNRβ + h.c.

LM = −Y ν
αβLLαH̃NRβ − 1

2MαβN c
RαNRβ + h.c.

−Y ν
αβLLαH̃NRβ + h.c.

x5αβ

Λ Lc
LαH̃∗H̃†LLβ + h.c.
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2
Y ν

αβL̃Lα(#τ · #∆)LLβ + h.c.

LM = −1
2mαβνLανc

Lβ − Y ν
αβ

v√
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νLαNRβ − 1

2MαβN c
RαNRβ + h.c.

4

LNC [NR RH 
counterpart (D)]
LΔ=−2 but mν≠0
⇒ LNV

LNV

U ≡ U l†
L Uν

L

mν " − V ∗2
lNi

mNi

LK.T. =
∑

α=e,µ,τ (L̄LαγλiDλLLα + h.c.) →

LW = − g√
2

∑

α=e,µ,τ
i=1,2,3

(l̄LαγλUαiνLiW
−
λ + h.c.)

− g√
2

∑

α=e,µ,τ (l̄LαγλνLαW−
λ + h.c.) ,

LY = −yl
ααL̄LαHlRα + h.c.

LY = −Y l
ααL̄LαHlRα + h.c.
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1̄ 2 3̄ 4 → 1̄ 4 3̄ 2

L5 = x5

Λ Lc
LαH̃∗H̃†LLβ + h.c.

M =

(

m mD

mT
D M

)

, (1)

LM = −Y ν
αβL̄LαH̃NRβ − 1

2MαβN c
RαNRβ + h.c.

LM = −Y ν
αβLLαH̃NRβ − 1

2MαβN c
RαNRβ + h.c.

−Y ν
αβLLαH̃NRβ + h.c.

x5αβ

Λ Lc
LαH̃∗H̃†LLβ + h.c.

1√
2
Y ν

αβL̃Lα(#τ · #∆)LLβ + h.c.

LM = −1
2mαβνLανc

Lβ − Y ν
αβ

v√
2
νLαNRβ − 1

2MαβN c
RαNRβ + h.c.

4
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 Which is the problem ?

U ≡ U l†
L Uν

L

mν " − V ∗2
lNi

mNi

LK.T. =
∑

α=e,µ,τ (L̄LαγλiDλLLα + h.c.) →

LW = − g√
2

∑

α=e,µ,τ
i=1,2,3

(l̄LαγλUαiνLiW
−
λ + h.c.)

− g√
2

∑

α=e,µ,τ (l̄LαγλνLαW−
λ + h.c.) ,
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αβL̄LαH̃νRβ + h.c.
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Λ Lc
LαH̃∗H̃†LLβ + h.c.

M =

(

0 mD

mT
D M

)

, (1)

LM = −Y ν
αβL̄LαH̃NRβ − 1

2MαβN c
RαNRβ + h.c.

LM = −Y ν
αβLLαH̃NRβ − 1

2MαβN c
RαNRβ + h.c.

−Y ν
αβLLαH̃NRβ + h.c.

x5αβ

Λ Lc
LαH̃∗H̃†LLβ + h.c.

1√
2
Y ν

αβL̃Lα(#τ · #∆)LLβ + h.c.

LM = −1
2mαβνLανc

Lβ − Y ν
αβ

v√
2
νLαNRβ − 1

2MαβN c
RαNRβ + h.c.

4

if mv ∼ eV, Y ∼ 10−11 
[NR RH counterpart (D)]
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L Uν
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lNi

mNi
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∑
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4

if x ∼ 1, Λ ∼ 1014 GeV

introduce scalar triplet and 
explain small vΔ and/or Y

Bonus new heavy physics (NR): Leptogenesis          Margarida R.’s talk

 A Dirac neutrino mass matrix, which is an arbitrary complex matrix, can 
accommodate some constraints (like special zeroes) that a Majorana neutrino 
mass matrix, which is complex but symmetric, can not. Although if we do not 
impose further constraints both can describe the same physics at low energy. 

                                                                                        Harald F.’s talk         
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➁

 

➁

➀

➂

➀ Scale versus mixing
➁ Dirac or Majorana
➂ See-saw mechanisms
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Berthold S.’s talk
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See-saw mechanisms (messengers of 
type I, II, III)

 
In the fermionic case: heavy neutrinos in singlets N (type I) or triplets Σ (type III)    

➞ 

Change of notation 
LL ➝ lL ,  Y† =  λ ➝ Y* 
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YNT YN
µΔ

YΔ

YΔT YΔ

The three mechanisms must violate Lepton Number for they are assumed 
to generate Majorana masses,                             . I and III involve fermions: 

singlets N (I) or triplets Σ (III), and II scalar triplets: Δ.  

        1/2YN
Τ ΜN

−1YΝ           −2 YΔµΔΜΔ
−2            1/2YΣ

Τ ΜΣ
−1YΣ

     Phase cancellation        small coupling(s)         Phase cancellation
     or small couplings                                             or small couplings
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Type I

Type II

Belén G.‘s talk
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Type III

 There is a question about the relative size of the coefficients of the operators of 
dimension 5 and 6: 
 Can the dimension 5 operator coefficient be negligible but dimension 6 operator 
coefficients sizeable ? 
 The answer is positive, for instance, if Lepton Number is (quasi-)conserved. 

Type I and III: 
Light neutrinos 
are massless.
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Type I and III: 

  Light neutrinos get a mass 
proportional to the LN breaking 
parameter µ. [If µ is in the (1,1) 
entry, the light neutrino masses 
are ~ µ, and 0 –up to r.c.− if it 
is in the position (3,3)].
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(Neutrino models based on) A4 

If U is the HPS matrix (which is real):

U ≡ U l†
L Uν

L

mν " − V ∗2
lNi

mNi

LK.T. =
∑

α=e,µ,τ (L̄LαγλiDλLLα + h.c.) →
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13)(m1c2
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M =

(
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D M
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4
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m mD

mT
D M

)
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x = 1
3(2m1 + m2), y = 1

3(−m1 + m2), v = frac13(−m1 + m3) .

M =
1

6





4m1 + 2m2 −2m1 + 2m2 −2m1 + 2m2

−2m1 + 2m2 m1 + 2m2 + 3m3 m1 + 2m2 − 3m3

−2m1 + 2m2 m1 + 2m2 − 3m3 m1 + 2m2 + 3m3



 =





x y y
y x + v y − v
y y − v x + v
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α=e,µ,τ
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They form a group
relevant for mDTM−1mD

Neglecting Majorana phases, otherwise 
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ν + e− → ν + e− .

φ(νe)
φ(νe)+φ(νµ,τ ) = 0.340 ± 0.023 (stat) +0.029
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degenerate:
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normal hierarchy: m3 >> m1,2

inverted hierarchy: m1,2 >> m3

x = 1
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3(−m1 + m2), v = 1
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 A4 = {Even permutations of 4 objects} ⊂ S4

generated by { 

∋ T ➚

∋ S ➙
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1
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+ (x + 2y + v) 
1 1

1 1
1 1

 

 

 
  

 

 

 
  

+ (x − y + v) 
2 −1 −1
−1 2 −1
−1 −1 2

 

 

 
  

 

 

 
  

(3X3)symm =

1+1’+1’’+

3symm

In the basis where the charged 
lepton masses are diagonal

They form a group
<1> It is not in A4:

<1’>=<1’’>
<3>~(1,1,1)

C.G.’s: 
(up to global factors)
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• No φ ↔ φ’ exchange (extra symmetries)
• hu,d = Λ = 1
• < > dynamically generated 

U ≡ U l†
L Uν

L

mν " − V ∗2
lNi

mNi

LK.T. =
∑

α=e,µ,τ (L̄LαγλiDλLLα + h.c.) →

LW = − g√
2

∑

α=e,µ,τ
i=1,2,3

(l̄LαγλUαiνLiW
−
λ + h.c.)

− g√
2

∑

α=e,µ,τ (l̄LαγλνLαW−
λ + h.c.) ,

LY = −yl
ααL̄LαHlRα + h.c.

LY = −Y l
ααL̄LαHlRα + h.c.

LY = −Y ν
αβL̄LαH̃νRβ + h.c.

ē Γ ν ν̄ Γ′ µ
1̄ 2 3̄ 4 → 1̄ 4 3̄ 2

L5 = x5

Λ Lc
LαH̃∗H̃†LLβ + h.c.

|m11| = |(1 − s2
13)(m1c2

12e
−2iα1 + m2s2

12e
−2iα2) + m3s2

13e
2iδ13 |

M = U∗MdiagU †

M =

(

m mD

mT
D M

)

, (1)

hu,d = Λ = 1

< ξ >= u

< ϕ′ >=
1√
3





v′

v′

v′
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Review summary

• Many experiments give a consistent picture of non-zero 
neutrino masses and charged Lepton Flavour transitions

• In contrast with the quark sector the mixing angles are 
large, and the neutrino masses tiny

• A bottom-up approach leave many questions open, giving  
further motivation to new experiments 

• There are many models which do accommodate the 
observed pattern, with no apparently favoured scenario 
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TeV signatures of see-saw messengers: 
Multilepton signals

Lepton Number Violating
mν ∼ 2 YΔ µΔ v2 ΜΔ

−2 
➞ l+ l+ W- W-

Lepton Number Conserving
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 LNV signals have smaller backgrounds than LNC ones BUT for a fixed number of
final particles. As a matter of fact the significance of trilepton LNC signals is similar 
to the  significance of LNV dilepton signals.
 At any rate, multilepton signals are complementary in order to discriminate 
between models. Scalar and fermion triplets mediating the see-saw mechanism 
have final states with many leptons (up to 6), as many other new particles at the 
TeV scale (as, for example, heavy leptons or quarks, or new neutral gauge bosons 
decaying into them).
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Fermion singlet N

 The production mechanism is proportional to the mixing between the light leptons 
and the new heavy neutrino N, as there are the light neutrino masses (if they have 
a see-saw origin as in the usual MAJORANA case). BUT in the first case enters 
the specific mixing matrix element and in the second one the combination of all of 
them and cancellations are possible. Although this can be considered arbitrary in 
the absence of a symmetry, and unstable because corrections may be large. 

with v = 246 GeV. Since N ′
iR are SM singlets, gauge symmetry allows a Majorana mass

term

LM = −
1

2
MijN ′

iLN ′
jR + H.c. , (5)

with M a 3 × 3 symmetric matrix and N ′
iL ≡ N

′c
iR.1 Defining ν ′

iR ≡ ν
′c
iL, where ν ′

iL are

the SM neutrino eigenstates, the full neutrino mass term reads

Lmass = −
1

2

(

ν̄ ′
L N̄ ′

L

)

(

0 v√
2
Y

v√
2
Y T M

) (

ν ′
R

N ′
R

)

+ H.c. . (6)

The neutrino gauge interactions are the same as in the SM,

LW = −
g√
2

(

l̄′iLγµν ′
iL W−

µ + ν̄ ′
iLγµl′iL W+

µ

)

,

LZ = −
g

2cW
ν̄ ′

iLγµν ′
iL Zµ , (7)

with l′iL the charged lepton weak eigenstates and cW the cosine of the weak mixing

angle. The interaction with the Higgs boson H , with the usual normalisation φ0 =

(v + H + iχ)/
√

2, is

LH = −
1√
2

(

ν̄ ′
iLYijN

′
jR + N̄ ′

jRY †
jiν

′
iL

)

H . (8)

Then, the relevant interaction terms for the heavy neutrino mass eigenstates Ni %
N ′

iR can be obtained by diagonalising the mass matrix in Eq. (??) and rewriting the

interactions in the mass eigenstate basis (for details see for example Refs. [?,?]). For

a heavy Majorana neutrino N (dropping the subindex) and l = e, µ, τ we have

LW = −
g√
2

(

VlN l̄γµPLN W−
µ + V ∗

lN N̄γµPLl W+
µ

)

,

LZ = −
g

2cW

(

VlN ν̄lγ
µPLN + V ∗

lN N̄γµPLνl

)

Zµ ,

LH = −
g mN

2MW

(

VlN ν̄lPRN + V ∗
lN N̄PLνl

)

H , (9)

where mN is the heavy neutrino mass and

VlN %
YlNv√
2mN

(10)

is the mixing between the charged lepton l and the heavy neutrino N . Due to the

Majorana character of N and νl, the last terms in the Z, H Lagrangians can be

1We avoid writing parentheses in charge conjugate fields to simplify the notation, and write ψc
L ≡

(ψL)c, ψc
R ≡ (ψR)c.

6

mν ! − V ∗2
lNi

mNi

LK.T. =
∑

α=e,µ,τ (L̄LαγλiDλLLα + h.c.) →

LW = − g√
2

∑

α=e,µ,τ
i=1,2,3

(l̄LαγλUαiνLiW
−
λ + h.c.)

− g√
2

∑

α=e,µ,τ (l̄LαγλνLαW−
λ + h.c.) ,

LY = −yl
ααL̄LαHlRα + h.c.

LY = −Y l
ααL̄LαHlRα + h.c.

LY = −Y ν
αβL̄LαH̃νRβ + h.c.

ē Γ ν ν̄ Γ′ µ
1̄ 2 3̄ 4 → 1̄ 4 3̄ 2

L5 = x5

Λ Lc
LαH̃∗H̃†LLβ + h.c.

M =

(

0 mD

mT
D M

)

, (1)

LM = −Y ν
αβL̄LαH̃NRβ − 1

2MαβN c
RαNRβ + h.c.

niL = {νeL, νc
eL, νµL, νc

µL} ,

nc
iR = {νc

eR, νeR, νc
µR, νµR} ,

nc
R = Cn̄T

L ,

g++
23 , g−+

13 , g+−
24 , g−−

14 , gLL
13 , gRL

23 , gLR
14 , gRR

24 , gT+
23 , gT+

14 ,

| < mββ > | ≡

∣

∣

∣

∣

∣

∑

i

mi U
2
ei

∣

∣

∣

∣

∣

≡ ,

4
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{ ( )
Overwhelming 
background

Too small 
cross section Majorana particles give LNV as well as LNC 

signals, whereas Dirac particles only give LNC 
ones. In any case there are SM backgrounds.

    90 % C.L.
|V

eN
|2 < 0.003

|V
µN

|2 < 0.0032

|V
τN

|2 < 0.0062     unobservable

 Total cross sections are the same, 
although the total width for a Majorana 
neutrino is twice than for a Dirac one
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Difference due 
to kinematics

mN = 100 GeV
|V|2 = 0.003

Coupling to
 e and µ, 

respectively 

LNC signals may be more significant than LNV ones 

☐
☐

(    )

(    )

A case for MULTILEPTON searches

Broad dilepton invariant mass distributions
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Large backgrounds
Likelihood analysis  

with many distributions

(    )
(    )

Limit on their mass  
~ 120 (150) GeV for D (M)

principle. Likewise, other single production processes like

qq̄ → Z∗ → νN ,

gg → H∗ → νN (49)

give "± and "+"− final states which are unobservable due to the huge backgrounds.

Pair production

qq̄ → Z∗ → NN (50)

has its cross section suppressed by |VlN |4, phase space and the Z propagator, and is

thus negligible.

In a previous work [?] we have studied in great detail the observability of heavy

neutrino singlets in the like-sign dilepton final state for mN > MW as well as for

mN < MW , performing sophisticated likelihood analyses to effectively suppress the

backgrounds. We found that a heavy neutrino coupling only to the electron with

|VeN |2 = 0.0054 could be discovered up to mN = 145 GeV, and if it couples to the muon

with |VµN |2 = 0.0096 it could be discovered up to 200 GeV. (If it couples only to the tau

the signals are swamped by the SM background.) For heavy neutrinos lighter than the

W boson, we found that, for example, a 60 GeV neutrino coupling to the muon might

be discovered up to |VµN |2 = 4.9×10−5. These limits, however, are obtained from very

optimised analyses which use as input the heavy neutrino mass to build the probability

distributions for the heavy neutrino signal. In this section we will take the opposite

approach, following the philosophy of this paper: we will investigate whether with

“generic” model-independent cuts the heavy neutrino (as well as seesaw II and seesaw

III signals) might be observable. Of course, dedicated experimental searches can be

carried out assuming some value for mN and optimising the kinematical distributions

for this mass to achieve the best sensitivity. But, at least in a first step, LHC searches

are likely to be performed with general and model-independent event selections.

A major difference between heavy neutrino signals studied in this section and scalar

triplet and fermion triplet signals concerns lepton flavour. For the latter, the SM

backgrounds involving electrons and muons are alike at large transverse momenta,

and it makes sense to perform “flavour blind” searches summing electrons and muons.

This is also sensible from the point of view of the signals, which have the same cross

sections if the new states couple to the electron, the muon or both, as it will be argued

in sections ?? and ??. On the other hand, for heavy neutrino production the situation

is clearly different. At low transverse momenta SM backgrounds involving electrons

are much larger than those involving muons, as shown in Ref. [?], and searches must be

performed independently in order to avoid that a possible signal in muon final states is
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CLIC does better
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Figure 2: Left: Kinematical distribution at pre-selection of the like-sign dilepton in-

variant mass for the signals in the two heavy neutrino scenarios. Right: the same, for

the SM and the SM plus the signal in scenario S2 at the selection level. The luminosity

is 30 fb−1.

new physics signal. This implies that, in order to be detected, heavy neutrino signals

require dedicated analyses, often optimised for a given mN value, as the one presented

in Ref. [?]. For this specific heavy neutrino signal there are additional cuts which can

be imposed to further reduce backgrounds. For an improved event selection we ask

that

(i) no b jets can be present in the final state;

(ii) the like-sign leptons must be back-to-back, with their angle in transverse plane

larger than π/2.

These selection criteria are convenient for this heavy neutrino singlet signal but rather

inadequate for fermion triplet signals in the same final state. The number of events

after these additional requirements is given in the last two columns of Table ??. The

statistical significance does not reach 5σ in any of the cases: S20 = 1.1 in scenario S1

and S20 = 2.6 in S2. The variable selection can still be improved and cuts optimised

for this particular value of mN , obtaining S20 = 1.7 in scenario S1 and S20 = 3.7 in

S2 (allowing discovery with 180 fb−1), and we expect that much better results will be

obtained with a probabilistic analysis. This is in agreement with our statement that

heavy neutrino singlets require dedicated searches, optimised for their detection.
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1 Introduction

SSSSS
Preselection:

• Three charged leptons (e or µ)

• Same sign leptons with pT > 30 GeV
(to reduce b’s)

Selection:

• Invariant mass of oppossite sign pairs
differing from the Z boson mass by at
least 10 GeV

Improved selection:

• No b jets

• Like sign leptons back-to-back (> π/2)

ēνν̄µ

LY = −Y l
ααL̄LαHlRα + h.c.

H (≡ φ) ∼ (1, 2, 1
2)

LK.T. =
∑

α=e,µ,τ (L̄LαγλiDλLLα + l̄RαγλiDλlRα + h.c.) ,

LY = −Y l
αβL̄LαHlRβ + h.c.

LLβ → U l
LβαLLα , lRβ → U l

RβαlRα

Y l
αβ = U l†

Lαρ yl
ρρ δρη U l

Rηβ

lLβ → U l
LβαlLα , νLβ → Uν

LβανLα

U ≡ U l†
L Uν

L

2

events for the signal and the largest backgrounds is given in Table ?? for these two

stages of event selection.

Pre-selection Selection Impr. selection

2e 2µ 2e 2µ 2e 2µ

N (S1) 37.1 0 32.4 0 28.6 0

N (S2) 0 37.8 0 33.1 0 29.6

tt̄nj 244.8 78.0 159.8 52.4 58.4 16.3

tW 14.8 3.0 10.5 1.7 6.5 0.6

Wtt̄nj 25.6 19.9 20.6 14.5 3.8 2.6

Zbb̄nj 17.1 16.2 1.1 0.9 0.5 0.1

Ztt̄nj 82.5 69.9 10.3 6.5 2.6 1.1

WZnj 2166.4 1947.3 49.2 24.3 36.8 17.8

ZZnj 141.0 135.0 2.8 1.4 1.6 1.2

WWWnj 10.8 12.0 7.9 8.9 4.7 5.3

WWZnj 23.9 18.8 1.1 0.7 0.8 0.4

Table 2: Number of events for !±!±!∓ signals and main backgrounds with a luminosity

of 30 fb−1.

The invariant mass of the like-sign leptons m!1!2 is a good discriminant among

different sources of new physics giving !±!±!∓ signals. In the case of heavy neutrino

production this distribution, presented in Fig. ??, is broad and without a long tail. For

larger N masses the m!1!2 tail will be longer, but in this case the cross sections are much

smaller. In dimuon final states the backgrounds are very small and a signal in scenario

S2 might be detected (although with a significance smaller than 5σ) without the need

of further improvements in the analysis, provided that the background uncertainties are

small. Neglecting them, the excess of events would amount to a statistical significance

S0 = 3.1σ, whereas if we consider a 20% systematic uncertainty in the background the

significance is smaller, S20 = 1.3σ. This excess is distributed across the m!1!2 range, as

it is shown on the right side of Fig. ??, and does not display a peak as it does in scalar

triplet production (see next section) nor a long tail as in fermion triplet production

(see section ??). This fact makes it difficult to normalise the background directly from

data in a given “control” region to extract the significance of an excess in another phase

space region, as it will be done in some of the cases analysed in this paper.

Other kinematical distributions, for example the transverse momenta of the like-

sign leptons, exhibit analogous behaviour with the event excess distributed in a wide

range but without long tails which would be a clear indication of the presence of a
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 Process Decay L Events

tt̄nj, n = 0, . . . , 6 semileptonic 300 fb−1 60.8 M

tt̄nj, n = 0, . . . , 6 dileptonic 300 fb−1 15.2 M

bb̄nj, n = 0, . . . , 3 all 0.075 fb−1 116 M

cc̄nj, n = 0, . . . , 3 all 0.075 fb−1 145 M

tj W → lν 300 fb−1 9.5 M

tb̄ W → lν 300 fb−1 540 K

tW all 300 fb−1 16 M

tt̄tt̄ all 300 fb−1 1.6 K

tt̄bb̄ all 300 fb−1 340 K

Wnj, n = 0, 1, 2 W → lν 10 fb−1 557.4 M

Wnj, n = 3, . . . , 6 W → lν 30 fb−1 10 M

Wbb̄nj, n = 0, . . . , 4 W → lν 300 fb−1 5.2 M

Wcc̄nj, n = 0, . . . , 4 W → lν 300 fb−1 5.5 M

Wtt̄nj, n = 0, . . . , 4 W → lν 300 fb−1 50.6 K

Z/γ nj, n = 0, 1, 2, mll < 120 GeV Z → l+l− 10 fb−1 54.9 M

Z/γ nj, n = 3, . . . , 6, mll < 120 GeV Z → l+l− 30 fb−1 1.1 M

Z/γ nj, n = 0, . . . , 6, mll > 120 GeV Z → l+l− 300 fb−1 17.3 M

Zbb̄nj, n = 0, . . . , 4 Z → l+l− 300 fb−1 2 M

Zcc̄nj, n = 0, . . . , 4 Z → l+l− 300 fb−1 1.8 M

Ztt̄nj, n = 0, . . . , 4 Z → l+l− 300 fb−1 18.7 K

WWnj, n = 0, . . . , 3 W → lν 300 fb−1 2.9 M

WZnj, n = 0, . . . , 3 W → lν, Z → l+l− 300 fb−1 377 K

ZZnj, n = 0, . . . , 3 Z → l+l− 300 fb−1 37.4 K

WWWnj, n = 0, . . . , 3 2W → lν 300 fb−1 14.7 K

WWZnj, n = 0, . . . , 3 all 300 fb−1 48.7 K

WZZnj, n = 0, . . . , 3 all 300 fb−1 15.3 K

ZZZnj, n = 0, . . . , 3 2Z → l+l− 300 fb−1 114

Table 1: Background processes considered in the simulations. The second column

indicates the decay modes included (where l = e, µ, τ), and the third column the

luminosity equivalent generated. The last column corresponds to the number of events

after matching, with K and M standing for 103 and 106 events, respectively.

Pythia and the “hard” jets generated by Alpgen avoiding double counting. Background

samples are generated with large statistics, often 300 fb−1, in order to avoid fluctuations

in the final selected samples. This is a demanding computational task, which would

take around ten years in a modern single processor system. The backgrounds generated

and the corresponding luminosities are collected in Table 1. For bb̄nj and cc̄nj the

15

 ALPGEN for the backgrounds (interfaced to 
PYTHIA using the MLM prescription)

 Signals calculated with a Monte Carlo generator 
(TRIADA -for triplets-, ALPGEN -for singlets-)
using HELAS (width and spin), VEGAS (phase 
space integration), interface to PYTHIA (ISR and 
FSR, pile-up, and hadronisation), and AcerDET 
(fast LHC detector simulation) 
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1 Introduction

SSSSS
Preselection:

• Three charged leptons (e or µ)

• Same sign leptons with pT > 30 GeV
(to reduce b’s)

Selection:

• Invariant mass of oppossite sign pairs
differing from the Z boson mass by at
least 10 GeV

Improved selection:

• No b jets

• Like sign leptons back-to-back (> π/2)

ēνν̄µ

LY = −Y l
ααL̄LαHlRα + h.c.

H (≡ φ) ∼ (1, 2, 1
2)

LK.T. =
∑

α=e,µ,τ (L̄LαγλiDλLLα + l̄RαγλiDλlRα + h.c.) ,

LK.T. = (Dµ%∆)† · (Dµ
%∆) →

LY = −Y l
αβL̄LαHlRβ + h.c.

LLβ → U l
LβαLLα , lRβ → U l

RβαlRα

Y l
αβ = U l†

Lαρ yl
ρρ δρη U l

Rηβ

lLβ → U l
LβαlLα , νLβ → Uν

LβανLα

2
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Figure 6: Branching ratio reµ to electron and muon final states for normal and inverted

hierarchy, and quasi-degenerate neutrinos.

two extreme cases: (i) NH with s13 = 0, β2 −β3 = π, for which reµ = 0.21; (ii) IH with

s13 = 0, β2 = β3 = 0, for which reµ = 0.65. For squared mass differences and mixing

angles we take the central values in Ref. [?].

In the rest of this section we study the observability of the scalar triplets in several

final states, which we classify according to the number of charged leptons in the sample:

(a) #+#+#−#−X; (b) #±#±#∓X; (c) #±#±X; (d) #+#−jτX; (e) #±jτjτ jτX, where # only

corresponds to electrons and muons (but not necessarily all with the same flavour), jτ

denotes a jet tagged as a tau jet and X refers to additional jets, tagged or not. We

assume a common mass M∆++ = M∆+ = 300 GeV.

5.1 Final state #+#+#−#−

This is a very good channel for the observation of ∆++∆−− production, because of its

practically absent SM background. However, the scalar triplet signals in this decay

mode are smaller than in other final states, because
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assume a common mass M∆++ = M∆+ = 300 GeV.

5.1 Final state #+#+#−#−

This is a very good channel for the observation of ∆++∆−− production, because of its

practically absent SM background. However, the scalar triplet signals in this decay

mode are smaller than in other final states, because
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the parent τ . Hadronic tau decays can only be tagged with a certain efficiency, and

always suffer the contamination from SM backgrounds with fake tau tags from jets.

(For example, corresponding to a τ tag efficiency of 50%, the fake rate is around 1%.)

The relevant quantity which determines the observability of ∆±± is the branching ratio

to electrons and muons,

reµ ≡ Br(∆±± → e±e±/µ±µ±/e±µ±) . (57)

From the point of view of the signal, electrons and muons are quite alike, with similar

detection efficiencies. From the point of view of SM backgrounds, at high transverse

momenta (such as those involved in the decay of ∆±± with few hundreds of GeV) like-

sign dielectron and dimuon final states are comparable, in contrast with the behaviour

at lower transverse momenta, where dielectrons are much more abundant [?]. In our

analysis we will sum over final states with electrons and muons. A detailed examination

of the relative number of each is crucial to reconstruct the MNS matrix [?, ?, ?] but

hardly affects the observability of doubly charged scalars.

In Fig. ?? we present the 67.3% CL allowed regions for reµ for normal hierarchy

(NH), inverted hierarchy (IH) and quasi-degenerate (QD) neutrino masses. In the first

and second cases we assume that the lightest neutrino is massless. The MNS mixing

matrix is parameterised as usual,

VMNS =







c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13







× diag (1, e−iβ2/2, e−iβ3/2) . (58)

We use the best fit values of mass differences and mixing angles in Ref. [?] with the

errors quoted there, and for the unknown Majorana phases we assume a flat probability.

The 67.3% CL regions are obtained with the acceptance-rejection method, as described

in detail in Ref. [?] for the program TopFit. The bands show the dependence of reµ

on one phase or combination of phases, with the dependence on the rest of parameters

(additional phases, the unknown value of s13, etc.) reflected in the band width. For NH

reµ mainly depends on the phase difference β2 − β3 but the variation is moderate. We

observe that the total branching ratio to electrons and muons is modest, around 30%,

and for β2 −β3 = π it can be as low as 5%, making the doubly charged scalars hard to

discover in this case. For IH reµ is much larger, about 60%, depending on β2. For QD

neutrinos reµ depends on both phases and only the dependence on β2−β3 (which is the

strongest) is shown. For this mass hierarchy reµ ∼ 0.45, between the values obtained

for NH and IH. For our simulations we select two benchmark scenarios illustrating the

29

 Δ BR’s into leptons are a high energy window to neutrino masses and mixings, and may even allow for 
reconstructing the MNS matrix.

 They depend on the neutrino masses and mixings, being 
the main dependance on α2 (in the plots β2−β3 and β2 , 
respectively. We assume in our simulations:

A. Hektor, M. Kadastik, M. Muntel, M. Raidal and L. Rebane, 
B. Nucl. Phys. B787 (2007) 198

P. Fileviez Perez, T. Han, G.-Y. Huang, T. Li and K. Wang, 
Phys. Rev. D78 (2008) 015018

F.A. and J.A. Aguilar-Saavedra, 
Nucl. Phys. B813 (2009) 22 

J. Garayoa and T. Schwetz, 
JHEP 0803 (2008) 009

Vector Field Operators

1 PL = 1
2(1 − γ5) ×2

γ5 PR = 1
2(1 + γ5) ×2

γλ γλPL ×2

γλγ5 γλPR ×2

tαβ = i
2
√

2
[γα, γβ] tαβ δα

α′δ
β
β′ , ε

αβ
α′β′

Hµ O(8,3)
qq

B1
µ O(1)

ud ,O(8)
ud , ——O(1)

φ ,O(3)
φ ,Oφud

W1
µ ——O(1)

φ ,O(3)
φ

G1
µ O(1)

ud ,O(8)
ud

Table 1: Dimension six operators arising from the integration of each vector
boson. Operators with no observable effects are crossed out. Among the
other, operators that can be constrained by EWPD appear underlined.

e±e± µ±µ± µ±τ± τ±τ±

NH 0.00 0.20 0.49 0.29

IH 0.50 0.15 0.25 0.10

Table 2: Dimension six operators arising from the integration of each vector
boson. Operators with no observable effects are crossed out. Among the
other, operators that can be constrained by EWPD appear underlined.

3
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Figure 8: !1!2 invariant mass distribution for the SM and the SM plus the scalar triplet

signal in the cases of NH (left) and IH (right). The luminosity is 30 fb−1.

of events at the peak is small even for 30 fb−1. In Table ?? we collect the number of

signal and background events at the peak, taken as the window

280 < m!1!2 < 320 GeV , (59)

and making the two hypotheses for the background normalisation mentioned in sec-

tion ??:

(a) The SM background normalisation does not have any uncertainty, so that all the

event excess at the peak can be interpreted as signal.

(b) The SM background must be normalised directly from data, in which case the off-

peak signal contributes as combinatorial background, reducing the significance of

the peak.

The situation in a real experiment will be between these two cases. We also include in

Table ?? the luminosity needed to have 5σ significance, for which we require to have

an event excess not compatible with a background fluctuation at 5σ, and to have at

least 10 signal (!+!+!−!−) events.

We finally investigate if the scalar nature of ∆±± can be established. We examine

the opening angle distribution, defined in terms of the angle θ between the momenta

of ∆++ and the estimated direction of the incoming quark (positive z if the ∆++∆−−

system moves in this direction or negative z otherwise) in the ∆++∆−− centre of mass

(CM) frame. In order to ensure a correct reconstruction of this frame we require that

both dilepton pairs have a mass close to the peak, between 280 and 320 GeV. The de-

pendence of the peak cross section on the opening angle is presented in Fig. ?? for both
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Figure 12: Multiplicity of τ -tagged jets for the SM background and the NH, IH signals

in trilepton final states at pre-selection level.

whose distribution is plotted in Fig. ?? for the SM backgrounds only and for the SM

backgrounds plus the NH signal (left) and the IH signal (right) after event selection

criteria. The peaks are much more pronounced than in the four lepton final state,
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Figure 13: "1"2 invariant mass distribution for the SM and the SM plus the scalar

triplet signal in the cases of NH (left) and IH (right). The luminosity is 30 fb−1.

making the discovery of the ∆±± signal in this final state much easier. The number of

signal and background events at the peak

280 < m!1!2 < 320 GeV (60)

is collected in Table ??, together with the luminosity necessary for a 5σ discovery. We

distinguish the two cases: (a) if the SM background can be predicted with negligible

uncertainty and (b) if it is normalised from data. For NH the luminosity needed to

discover ∆±± is 4−5 times smaller than in the four lepton final state, and for IH three
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with trilepton and four lepton final states, they concentrate at low dilepton invariant

masses. Hence, even with the loose pre-selection cuts used here, the presence of a

∆±± resonance can be spotted with the examination of the m!1!2 distribution, shown

in Fig. ?? for the SM background alone and also including the NH and IH signals. The

∆±± peaks are less pronounced than in the three and four lepton final states. Despite

the larger backgrounds at the peak region

280 < m!1!2 < 320 GeV (66)

(see Table ??), the larger number of signal events provides a signal significance very

similar to the one in the four lepton final state, and the luminosities required for 5σ

discovery in both NH and IH scenarios, listed in Table ??, are comparable to the

four lepton channel. Nevertheless, a disadvantage of the "±"± final state is that the

full event reconstruction, with two competing signal processes and several missing

particles, is much more involved. The opening angle distribution obtained in this case

is very distorted from the theoretical value and a background subtraction must also be

performed. This study is beyond the scope of the present work.
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Figure 18: "1"2 invariant mass distribution for the SM and the SM plus the triplet

signal in the cases of NH (left) and IH (right). The luminosity is 30 fb−1.

Case (a) Case (b)

S B L S B L

NH 56.5 51.7 15 fb−1 53.4 54.7 17.4 fb−1

IH 114.3 51.7 4.4 fb−1 114.3 51.7 4.4 fb−1

Table 10: Number of signal (S) and background (B) events at the m!1!2 peak for 30

fb−1 and luminosity L required to have a 5σ discovery in the "±"± final state.
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in Fig. ?? for the SM background alone and also including the NH and IH signals. The

∆±± peaks are less pronounced than in the three and four lepton final states. Despite

the larger backgrounds at the peak region

280 < m!1!2 < 320 GeV (66)

(see Table ??), the larger number of signal events provides a signal significance very

similar to the one in the four lepton final state, and the luminosities required for 5σ

discovery in both NH and IH scenarios, listed in Table ??, are comparable to the

four lepton channel. Nevertheless, a disadvantage of the "±"± final state is that the

full event reconstruction, with two competing signal processes and several missing

particles, is much more involved. The opening angle distribution obtained in this case

is very distorted from the theoretical value and a background subtraction must also be

performed. This study is beyond the scope of the present work.

0 200 400
m
l
1
l
2

0

50

100

150

200

250

300

E
v

en
ts

 /
 1

0
 G

eV

SM bkg + ! (NH)

SM bkg

l
±
l
±

0 200 400
m
l
1
l
2

0

50

100

150

200

250

300

E
v

en
ts

 /
 1

0
 G

eV

SM bkg + ! (IH)

SM bkg

l
±
l
±

Figure 18: "1"2 invariant mass distribution for the SM and the SM plus the triplet

signal in the cases of NH (left) and IH (right). The luminosity is 30 fb−1.

Case (a) Case (b)

S B L S B L

NH 56.5 51.7 15 fb−1 53.4 54.7 17.4 fb−1

IH 114.3 51.7 4.4 fb−1 114.3 51.7 4.4 fb−1

Table 10: Number of signal (S) and background (B) events at the m!1!2 peak for 30

fb−1 and luminosity L required to have a 5σ discovery in the "±"± final state.

43

with trilepton and four lepton final states, they concentrate at low dilepton invariant

masses. Hence, even with the loose pre-selection cuts used here, the presence of a

∆±± resonance can be spotted with the examination of the m!1!2 distribution, shown

in Fig. ?? for the SM background alone and also including the NH and IH signals. The

∆±± peaks are less pronounced than in the three and four lepton final states. Despite

the larger backgrounds at the peak region

280 < m!1!2 < 320 GeV (66)

(see Table ??), the larger number of signal events provides a signal significance very

similar to the one in the four lepton final state, and the luminosities required for 5σ

discovery in both NH and IH scenarios, listed in Table ??, are comparable to the

four lepton channel. Nevertheless, a disadvantage of the "±"± final state is that the

full event reconstruction, with two competing signal processes and several missing

particles, is much more involved. The opening angle distribution obtained in this case

is very distorted from the theoretical value and a background subtraction must also be

performed. This study is beyond the scope of the present work.

0 200 400
m
l
1
l
2

0

50

100

150

200

250

300
E

v
en

ts
 /

 1
0

 G
eV

SM bkg + ! (NH)

SM bkg

l
±
l
±

0 200 400
m
l
1
l
2

0

50

100

150

200

250

300

E
v

en
ts

 /
 1

0
 G

eV

SM bkg + ! (IH)

SM bkg

l
±
l
±

Figure 18: "1"2 invariant mass distribution for the SM and the SM plus the triplet

signal in the cases of NH (left) and IH (right). The luminosity is 30 fb−1.

Case (a) Case (b)

S B L S B L

NH 56.5 51.7 15 fb−1 53.4 54.7 17.4 fb−1

IH 114.3 51.7 4.4 fb−1 114.3 51.7 4.4 fb−1

Table 10: Number of signal (S) and background (B) events at the m!1!2 peak for 30

fb−1 and luminosity L required to have a 5σ discovery in the "±"± final state.

43

30 fb−1 for mΔ = 300 GeV

LHC reach
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Fermion triplet Σ

See Juan Antonio A.-S.’s talk
for this case and comparison 
with other new particles

Summary of the LHC reach 
(30 fb−1 and 14 TeV)
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Non-standard neutrino interactions

 In general the dimension 
6 operators must have 
coefficients not much 
larger than 1 % (taking 
one at a time)

See Belén G.’s talk 
(and collaborators)     
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Summary

 • Many experiments give a consistent picture of non-zero neutrino masses and 
charged Lepton Flavour transitions

• In contrast with the quark sector the mixing angles are large, and the neutrino 
masses tiny

• A bottom-up approach leave many questions open, giving  further motivation to 
new experiments 

• There are many models which do accommodate the observed pattern, with no 
apparently favoured scenario given the preferred hipotheses

• LHC may observed see-saw messengers below ∼ 700 GeV studying multilepton 
channels, which are the main signatures for many other new particles

• Indirect limits constrain new physics relevant for neutrino oscillation 
experiments typically below 1 % (at the amplitude level), making their effects 
hardly visible
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Thanks for your attention


