

SLHC THE LHC UPGRADE

Emmanuel Tsesmelis Directorate Office, CERN

9th Corfu Summer Institute 5 September 2009

INTRODUCTION

Why Upgrade the LHC?

CERN Accelerator Complex

Why Upgrade the Injectors ?

Need for reliability:

- Accelerators are old [LINAC2 (1978), PSB (1975), PS (1959), SPS (1976)]
- They operate far from their design parameters and close to hardware limits
- The infrastructure has suffered from the concentration of resources on LHC during the past 10 years
- Need for better beam characteristics

Upgrade Procedure

Upgrade Procedure

Main performance limitation:

Incoherent space charge
tune spreads ΔQ_{SC} at injectionin thePSB (50 MeV) andPS (1.4 GeV) because of the
required beam brightness N/ϵ^* .

$$\Delta Q_{SC} \propto \frac{N_b}{\varepsilon_{X,Y}} \times \frac{R}{\beta \gamma^2}$$

⇒ need to increase the injection energy in the synchrotrons

Upgrade Procedure

Main performance limitation:

Incoherent space charge tune spreads ΔQ_{SC} at injection in the PSB (50 MeV) and PS (1.4 GeV) because of the required beam brightness N/ϵ^* .

$$\Delta Q_{SC} \propto \frac{N_b}{\varepsilon_{X,Y}} \times \frac{R}{\beta \gamma^2}$$

 \Rightarrow need to increase the injection energy in the synchrotrons

- Increase injection energy in the PSB from 50 to 160 MeV kinetic
- Increase injection energy in the SPS from 25 to 50 GeV kinetic
- Design the PS successor (PS2) with an acceptable space charge effect for the maximum beam envisaged for SLHC: => injection energy of 4 GeV

Present and Future Injectors

Proton flux / Beam power

Layout of the New Injectors

Stage 1: Linac4

Enabled by additional resources for "New Initiatives"

3 MeV 50 MeV 102 MeV 160 MeV H⁻ source − RFQ − chopper − DTL − CCDTL − PIMS →

352.2 MHz

Linac4 beam characteristics

lon species	H [.]
Output kinetic energy	160 MeV
Bunch frequency	352.2 MHz
Max. repetition rate	1.1 (2) Hz
Beam pulse duration	0.4 (1.2) ms
Chopping factor (beam on)	62%
Source current	80 mA
RFQ output current	70 mA
Linac current	64 mA
Average current during beam pulse	40 mA
Beam power	5.1 kW
Particles / pulse	1.0 10 ¹⁴
Transverse emittance (source)	0.2 mm mrad
Transverse emittance (linac)	0.4 mm mrad

Linac4 Civil Engineering

Linac4 Master Plan

Stage 2: LP-SPL

LP-SPL beam characteristics

Kinetic energy (GeV)	4
Beam power at 4 GeV (MW)	0.16
Rep. period (s)	0.6
Protons/pulse (x 10 ¹⁴)	1.5
Average pulse current (mA)	20
Pulse duration (ms)	1.2

PS2 main characteristics compared to the present PS

	PS2	PS
Injection energy kinetic (GeV)	4.0	1.4
Extraction energy kinetic (GeV)	~ 50	13/25
Circumference (m)	1346	628
Maximum intensity LHC (25ns) (p/b)	4.0 x 10 ¹¹	~1.7 x 10 ¹¹
Maximum intensity for fixed target physics (p/p)	1.2 x 10 ¹⁴	3.3 x 10 ¹³
Maximum energy per beam pulse (kJ)	1000	70
Max ramp rate (T/s)	1.5	2.2
Cycle time at 50 GeV (s)	2.4	1.2/2.4
Max. effective beam power (kW)	400	60

Stage 2: Planning

- Construction of LP-SPL and PS2 will not interfere with the regular operation of Linac4 + PSB for physics.
- Similarly, beam commissioning of LP-SPL and PS2 will take place without interference with physics.

Preliminary Improvements

Enabled by additional resources for "New Initiatives" + Support of EC-FP7 & US-LARP

IR Upgrade Phase 1

- Goal: Enable focusing of the beams to β*=0.25 m in IP1 and IP5, and reliable operation of the LHC at 2 - 3 × 10³⁴ cm⁻²s⁻¹.
- **Scope:**
 - Upgrade of ATLAS and CMS IRs.
 - Replace present triplets with wide aperture quadrupoles based on LHC dipole cables (Nb-Ti) cooled at 1.9 K.
 - Upgrade D1 separation dipole, TAS and other beam-line equipment so as to be compatible with the inner triplet aperture.
 - Modify matching sections (D2-Q4, Q5, Q6) to improve optics flexibility. Introduction of other equipment to the extent of available resources.
- Planning: operational for physics in 2013

The ATLAS and CMS IRs

•	Triplet position	L* = 23 m
•	Triplet gradient	205 T/m
•	Triplet apertureCoil 70 mmBeam screen 60 mm	→ β* = 0.55 m
•	Power in triplet	→ L = 10 ³⁴ ~ 200 W @ 1.9 K

The Low- β Triplet at IR1

The Low- β Triplet at IR1

The Low- β Triplet at IR1

Project Milestones

Project Start	Jan 2008
CD Report	Nov 2008
TD Review	mid 2009
Model magnets	end 2009
Pre-series quadrupole	end 2010
String test	2012 -> 2013
Installation	shutdown 2013 -> 2014

"Phase-2" IR layouts

early-separation dipoles in side detectors , crab cavities \rightarrow hardware inside ATLAS & CMS detectors, first hadron crab cavities; off- $\delta \beta$

early-separation dipoles in side detectors , crab cavities \rightarrow hardware inside ATLAS & CMS detectors, first hadron crab cavities; off- $\delta \beta$ crab cavities with 60% higher voltage \rightarrow first hadron crab cavities, off- δ β -beat

early-separation dipoles in side detectors, crab cavities \rightarrow hardware inside ATLAS & CMS detectors, first hadron crab cavities; off- $\delta \beta$

L. Evans,

W. Scandale.

"Phase-2 IR layouts early separation (ES) stronger triplet J.-P. Koutchouk full crab crossing (FCC) magnets stronger triplet magnets_{F. Zimmermann} small-angle

early-separation dipoles in side detectors, crab cavities \rightarrow hardware inside ATLAS & CMS detectors, first hadron crab cavities; off- $\delta \beta$

crab cavities with 60% higher voltage \rightarrow first hadron crab cavities, off- δ β -beat

low emittance (LE)

L. Evans,

R. Garoby

small-angle

W. Scandale.

smaller transverse emittance

 \rightarrow constraint on new injectors, off- δ β -beat

stronger triplet magnets

PARAMETER	SYMBOL	NOMINAL	ULTIMATE	ES	FCC	LE	LPA
transverse emittance	ε [μm]	3.75	3.75	3.75	3.75	1.0	3.75
protons per bunch	N _b [10 ¹¹]	1.15	1.7	1.7	1.7	1.7	4.9
bunch spacing	Δt [ns]	25	25	25	25	25	50
beam current	I [A]	0.58	0.86	0.86	0.86	086	1.22
longitudinal profile		Gauss	Gauss	Gauss	Gauss	Gauss	Flat
rms bunch length	σ_{z} [cm]	7.55	7.55	7.55	7.55	7.55	11.8
beta* at IP1&5	β* [m]	0.55	0.5	0.08	0.08	0.1	0.25
full crossing angle	θ_{c} [µrad]	285	315	0	0	311	381
Piwinski parameter	$\phi = \theta_c \sigma_z / (2^* \sigma_x^*)$	0.64	0.75	0	0	3.2	2.0
geometric reduction		1.0	1.0	0.86	0.86	0.30	0.99
peak luminosity	$L [10^{34} \text{ cm}^{-2}\text{s}^{-1}]$	1	2.3	15.5	15.5	16.3	10.7
peak events per #ing		19	44	294	294	309	403
initial lumi lifetime	$\tau_L[h]$	22	14	2.2	2.2	2.0	4.5
effective luminosity $(T_{h}) = 10 \text{ h}$	L_{eff} [10 ³⁴ cm ⁻² s ⁻¹]	0.46	0.91	2.4	2.4	2.5	2.5
(turnaround 10 II)	T _{run,opt} [h]	21.2	17.0	6.6	6.6	6.4	9.5
effective luminosity (T _{turnaround} =5 h)	L_{eff} [10 ³⁴ cm ⁻² s ⁻¹]	0.56	1.15	3.6	3.6	3.7	3.5
	T _{run,opt} [h]	15.0	12.0	4.6	4.6	4.5	6.7
e-c heat SEY=1.4(1.3)	P [W/m]	1.1 (0.4)	1.04(0.6)	1.0	1.0 (0.6)	1.0 (0.6)	0.4 (0.1)
SR heat load 4.6-20 K	$P_{SR} [W/m]$	0.17	0.25	0.25	0.25	0.25	0.36
image current heat	$P_{IC} \left[W/m \right]$	0.15	0.33	0.33	0.33	0.33	0.78
gas-s. 100 h (10 h) τ _b	P _{gas} [W/m]	0.04 (0.4)	0.06 (0.6)	0.06	0.06 (0.56)	0.06 (0.56)	0.09 (0.9)

PRELIMINARY EXPECTATIONS

Peak Luminosity...

Integrated Luminosity...

sLHC

Extending the Physics Potential of

Electroweak Physics

- Production of multiple gauge bosons (nv3)
 - Triple & quartic gauge boson couplings
- Top quarks / rare decays

Higgs Physics

- Rare decay modes
- Higgs couplings to fermions & bosons
- Higgs self-couplings
- Heavy Higgs bosons of the MSSM
- Supersymmetry
- Extra Dimensions
 - Direct graviton production in ADD models
 - Resonance production in Randall-Sundrum models TeV-1 scale models
 - Black hole production
- Quark substructure
- Strongly-coupled vector boson system
 - $W_L Z_L g$, $W_L Z_L$, $Z_L Z_L$ scalar resonance, $W_L^+ W_L^+$

see CERN-TH/2002-078 hep-ph/0204087 April 1, 2002

Triple Gauge Couplings

Higgs Couplings

MSSM Higgs (h, H, A, H[±])

Heavy Higgs observable region extended by ~ 100 GeV

Supersymmetry

Indicative Physics Reach

Units : TeV (except W_LW_L reach)

Ellis, Gianotti, de Roeck Hep-ex/0112004 + updates

PROCESS	LHC	sLHC	LC	LC
	14 TeV	14 TeV	0.8 TeV	5 TeV
	100 fb ⁻¹	1000 fb ⁻¹	500 fb ⁻¹	1000 fb ⁻¹
Squarks	2.5	3	0.4	2.5
W _L W _L	2σ	4σ	6σ	30σ
Ζ'	5	6	8†	30†
Extra-dim (δ=2)	9	12	5-8.5†	30-55†
q*	6.5	7.5	0.8	5
۸compositeness	30	40	100	400
TGC (λ _γ)	0.0014	0.0006	0.0004	0.00008

† indirect search (from precision measurements)

LHC Upgrade Goals

- Phase-I luminosity around 3x10³⁴ cm⁻² s⁻¹ which means 75 events per BC at ATLAS and CMS; and 550 fb⁻¹ delivered
- Phase-II luminosity 10x10³⁴ cm⁻² s⁻¹ or more, and 300 400 collisions (or >~75 with luminosity levelling) per bunch crossing – very challenging to the detectors
- Independantly of machine upgrade, the inner trackers of both ATLAS and CMS will need replacing due to radiation damage
- LHCb does not use full LHC luminosity, and certainly not sLHC. But would like to increase luminosity from 2 x 10³² to 2 x 10³³, coupled with better efficiency for B-decay modes in order to get substantially larger data set

ALICE – increase PbPb luminosity by significant factor aiming at 5×10^{27} cm⁻² s⁻¹, Requiring upgrades to the TPC and DAQ.

Phase-1 Detector Changes

- CMS will replace the entire pixel detector with a new one (4 layers).
- ATLAS will insert one new pixel layer, inside the current pixel detector - "IBL Project"
 - These new detectors are needed because of radiation damage to the innermost layers, and to cope with the higher track rates
- Both experiments will complete staged muon chambers, necessary for the high rates at Phase-I
- Trigger-DAQ continuously evolves to cope with the data rate

ATLAS Phase-2 Changes

Limitations – occupancies of the chambers

Muon System:

- Large uncertainty factor 5 means we do not know how much of muon system needs replacing: Just forward region or nearly everthing?
- R&D Projects on-going for the technology choice: New high-rate TGCs, micromegas, small-diameter MDT

At least half of the chambers in the inner end-cap disk would have to be replaced by chambers with higher high rate capability.

If safety factor not needed

ATLAS Calorimeters

- Tiles and most of LAr calorimeter detectors perform well at sLHC
- But electronics and power supplies need replacing
 - New readout scheme, with all data moved to counting room at 40 MHZ
 - More flexibility in trigger
- Several possible problems of the small forward-most LAr known as FCAL, under study at Protvino testbeam:
 - (Fluctuating) HV drop
 - High Ion build up in gaps between electrodes
 - Heating causing boiling
- Two solutions considered:
 - Mini-FCAL in front
 - Replace FCAL
 - Major work in the pit
 - Can fit in the 18 month SD

ATLAS Inner Detector

- All new; higher granularity to keep occupancy low at the very high rates of sLHC
 - All silicon (no more TRT)
 - Layout Task Force starting to accelerate convergence on working layout
- New technologies being investigated for inner-most layers, where the nonionising dose can reach 2.5 x 10¹⁶ 1-MeV n_g/cm²
 - Planar-silicon, 3D silicon, diamond, and Gossip (gas pixel detector)

CMS Upgrade Summary

LHCb Changes

- Read out all detectors at beam crossing rate of 40 MHz, in order to have all detector information available for trigger
- Upgrade Vertex Detector, trackers, RICH in order take into account higher rates and improve performance
- Increase event output rate from 2 kHz \Rightarrow 20 kHz

Conclusions

- Projects and scenarios for upgrading the LHC and its injection chain have been presented taking into account the physics motivation.
- Outlined the corresponding detector R&D priorities for the 4 large LHC experiments.
- It is very important to keep reviewing the physics drivers for CERN's future proton accelerator options.
 - In parallel, it would be necessary to compare physics opportunities offered by proton accelerators with those available at a linear e+e- collider.