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What is String Phenomenology ?

- Embed Standard Model and GUT’s into a consistent

string construction : gauge group, spectrum, couplings.

- Stabilize all moduli fields.

- Break supersymmetry in a stable vacuum.

- address unification of gauge couplings : tree-level val-

ues, threshold corrections.

- provide correct dark matter.

- provide testable predictions : low-scale strings, large

extra dims, light moduli, anomalous couplings.

- Recently new applications : AdS/QCD, holography in

condensed matter (CFT/TCM): talks K.Skenderis,A.Pomarol.



Compactification to four-dimensions

The 4d theories are defined after compactification

M10 = M4 ×K6 ,

where M4 is the Minkowski spacetime and K6 is the

internal manifold; volume V traditionally defines the

compactification scale Mc

V = M−6
c ≡ M−6

GUT .

The GUT scale MGUT is identified with the compacti-

fication scale in a naive string unification picture.

• Not true in string models with large extra dims.



Ex : low scale unification (Dienes,E.D.,Gherghetta)



The massless fields in a toroidal compactification are

the zero modes of the 10d fields, that in more general

settings depend on the topology of the compact space

K6. If we denote by i, j six dimensional internal indices,

then we have, for example, the following decomposi-

tions:

gAB : gµν (graviton) , gmn (scalars) , gµm (vectors) ,

BAC : Bµν (axion) , Bmn (axions) , Bµm (vectors)



Toroidal compactification of superstring theories to four

dimensions gives rise to spectra with N = 4 SUSY.

Simple ways to reduce nb. SUSY : Calabi-Yau spaces,

orbifold compactifications, and intersecting branes.

We will be interested in 4d N = 1 orbifold models

(Dixon,Harvey,Vafa,Witten).

Introduce the three complex internal coordinates

z1 =
1√
2
(x4+ix5) , z2 =

1√
2
(x6+ix7) , z3 =

1√
2
(x8+ix9) ,

twisted by

θ (z1, z2, z3) = (e2iπv1z1, e2iπv2z2, e2iπv3z3) ,

where v ≡ (v1, v2, v3) is the twist vector.



For a ZN orbifold θN = 1. If

v1 ± v2 ± v3 = 0

with all vi 6= 0, the holonomy group is SU(3) and the

orbifold has generically N = 1 supersymmetry (1/4 of

original SUSY).

The compact space is flat, up a finite number of sin-

gularities, defined as the fixed points of the orbifold

operation, whose number is given by

Nf = det (1− θ) = 64
3∏

i=1

sin2(πvi) .



String compactifications have moduli fields, related to

the sizes and the shape of the compact space, including

the original 10d dilaton.



Simple example : two torus.

Geometric fields : the metric (symmetric) gij and an-

tisymmetric tensor Bij = εijB. From the 4d point of

view, two complex fields

T =
√

detg + iB , U =

√
detg + ig12

g22
,

T = Kähler (volume) modulus, U = complex structure

(shape) modulus.

• In a flat space (no fluxes or warping) susy compacti-

fications, moduli fields have no scalar potential and are

therefore flat directions of the 4d theory, associated to

massless 4d fields →



unacceptable modifications of the gravitational force by

inducing new macroscopic forces.

• Lifting flat directions (stabilization of moduli fields)

is one of the most important problems in string phe-

nomenology.



String models

Cartoon picture of type II orientifolds (Sagnotti) : open/closed

strings, Dp-branes/O-planes →



D-brane/O-planes have tension and charges (Tp, qp).

Crucial constraint: RR tadpole constraints ↔ UV finite-

ness ↔ Gauss law in internal space

∑

Dp

q
(n)
Dp +

∑

Op

q
(n)
Op = 0 ; SUSY → Tp = qp



Branes at angles : Intersecting brane worlds

(Bachas; Blumenhagen, Kors, Lust;

Angelantonj,Antoniadis,E.D.,Sagnotti)

Simple way of partially or totally breaking SUSY is by

rotating the branes in the compact space.

Type IIA orientifolds : there are three angles θ1, θ2, θ3

that D6 brane(s) can make with the horizontal axis

x4, x6, x8 of the three torii of the compact space. Pre-

served supercharge is (Berkooz,Douglas,Leigh)

Q + P Q̃ ,

P is the parity in the space transverse to the D6 brane(s).



For two distinct stacks of D-branes/O-planes D(1) and

D(2), relevant quantities are the relative angles

θ
(12)
i = θ

(1)
i − θ

(2)
i

The supercharges preserved by each stack are

Q + P (1) Q̃ , Q + P (2) Q̃

Two branes: The number of unbroken SUSY’s is

θ
(12)
3 = 0 , θ

(12)
1 ± θ

(12)
2 = 0 → N = 2 SUSY ,

θ
(12)
1 ± θ

(12)
2 ± θ

(12)
3 = 0 → N = 1 SUSY ,

θ
(12)
1 ± θ

(12)
2 ± θ

(12)
3 6= 0 → N = 0 SUSY .



Compact space : two important additional ingredients:

• rotations of branes in the compact space are quan-

tized, according to

tan θ
(a)
i =

m
(a)
i Ri2

n
(a)
i Ri1

,

where (m(a)
i , n

(a)
i ) are the wrapping numbers of the

brane(s) D(a) along the two compact directions of the

compact torus T2
i .

The total internal volume of the brane D(a) is then

V (a) = (2π)3
3∏

i=1

√
m

(a),2
i R2

i2 + n
(a),2
i R2

i1 .



For two stacks of branes D(a) and D(b), the number of

times they intersect in the compact torus T2
i is given

by the intersection number

I
(ab)
i = m

(a)
i n

(b)
i − n

(a)
i m

(b)
i .

Branes at angles generate 4d chirality. Example: type

IIA string with two sets of Ma coincident D(a) and Mb

coincident D(b) intersecting branes in toroidal compact-

ification :

- the gauge group is U(Ma)⊗ U(Mb).

- strings stretched between the two D-branes have chi-

ral fermions (Ma, M̄b)



Multiplicity equal to the total number of times the

branes intersect in the compact space

D(a)−D(b) : I(ab) =
3∏

i=1

I
(ab)
i =

3∏

i=1

(m(a)
i n

(b)
i − n

(a)
i m

(b)
i ) .



• Second important ingredient in compact space : RR

tadpole consistency conditions in SUSY compactifica-

tions can be satisfied only by including the negative

charge O-planes in orientifolds of type II strings.

For a general configuration of D6-branes D(a) the RR

tadpole conditions are

∑
a

Man
(a)
1 n

(a)
2 n

(a)
3 = 16 ,

∑
a

Man
(a)
1 m

(a)
2 m

(a)
3 = −16 ε1 ,

∑
a

Mam
(a)
1 n

(a)
2 m

(a)
3 = −16 ε2 ,

∑
a

Mam
(a)
1 m

(a)
2 n

(a)
3 = −16 ε3 ,

where

(ε1, ε2, ε3) = (0,0,0) toroidal comp. ,

(ε1, ε2, ε3) = (±1,±1,±1) in Z2 × Z2 comp. .



In the IIA language with D6 branes at angles, the type I

O9 plane becomes an O6 plane with wrapping numbers

O6 : (mi, ni) = (0,1) , (0,1) , (0,1) ,

whereas the three different type of O5i planes, i =

1,2,3 of type I strings become O6i planes with wrapping

numbers

O61 : (mi, ni) = (0,−ε1) , (1,0) , (1,0) ,

O62 : (mi, ni) = (1,0) , (0,−ε2) , (1,0) ,

O63 : (mi, ni) = (1,0) , (1,0) , (0,−ε3) .



Each stack of D-branes preserve the same N = 1 SUSY

if

m
(a)
1 n

(a)
2 n

(a)
3 v2v3+n

(a)
1 m

(a)
2 n

(a)
3 v1v3+n

(a)
1 n

(a)
2 m

(a)
3 v1v2 =

3∏

i=1

m
(a)
i , for any a ,

where vi are the volumes of the three compact torii.

In IIA with D6 branes at angles, each stack D(a) has a

mirror D(a′) with respect to the O6 planes, of wrapping

numbers (−m
(a)
i , n

(a)
i ).



The chiral spectrum for toroidal compactification con-

tains chiral fermions in

sector representation multiplicity of states

D(a) −D(b) (Ma, Mb) Iab

D(a) −D(b′) (Ma, Mb) Iab′

D(a) −D(a′) Ma(Ma − 1)

2

1

2
(Iaa′ + IaO)

D(a) −D(a′) Ma(Ma + 1)

2

1

2
(Iaa′ − IaO) .



Some phenomenology of intersecting branes

models

Standard Model like spectra

(Cvetic,Shiu,Uranga; Madrid group; Munich group)

Quasi-realistic models with intersecting were constructed

in the last couple of years. The generic Standard Model

type construction contains four (or more) stacks, con-

taining D-branes with a minimal gauge group U(3) ×
U(2)× U(1)2 = SU(3)× SU(2)× U(1)4.



”Standard Model” quiver



Intersection pattern



Yukawa couplings

Number of Generation = number of intersections be-

tween branes.

Then Yukawa couplings have a nice geometrical intepre-

tation

(Cremades,Ibanez,Marchesano)



• Out of the four abelian gauge factors, three are

anomalous by Stueckelberg mixing with axions and get

string scale masses. One linear combination is massless

and is the hypercharge Y .

(Some) problems:

• SUSY realistic models (MSSM) difficult to realize.

• Gauge coupling unification is not automatic.

• For SU(5) GUT’s, top coupling 10 10 5H perturba-

tively forbidden.

• No SO(10) spinor representations in the perturbative

spectrum → heterotic or F-theory models



Stringy instanton effects

(Witten,Ganor, ...Blumenhagen,Cvetic,Weigand; Ibanez,Uranga)

Stringy instantons : nonperturbative (non-gauge) in-

stantonic effects on D-branes . Ex :

- E1 effects on D9 branes in type I

- E3 effects on D3 branes in type IIB

- E2 effects on D6 branes in IIA

Effects of the type e−Si O, where instanton action Si

(>> 1) = volume wrapped by the instantonic brane.

They arise from instanton couplings to D-brane fields.



Two different types of zero-modes: - neutral : xµ, θα...

- charged : η, in the byfund. repres. of E1-D9. Ex :

Sinst = SE1 +
4∑

i,j=1

ηi Φij ηj ,

where Φij is a D-brane field. If the E1 instanton has

only 2 neutral fermionic zero-modes θα, integration over

charged zero-modes η → non-pert. superpotential

Wnon−pert = e−SE1
4∑

i,j,k,l=1

εijklΦijΦkl

mass term for Φij.



Phenomenological interest :

• Generation of perturbatively forbidden couplings. Ex:

W = e−T
∏

i

Φi

where under ”anomalous” U(1)X gauge trans.

VX → VX + Λ + Λ̄ , T → T + δ Λ,
∑

i

Xi = δ .

Applications :

- Majorana neutrino masses Mij Ni Nj

- Higgs µ-term in MSSM µ H1 H2

- top Yukawa couplings in SU(5) GUT’s λT 10 10 5H,



but naturally suppressed → F-theory ?

• Moduli stabilization: moduli-dependent corrections to

superpotential, Kahler and gauge kinetic functions.

• Instanton breaking of perturbative conformality.

• Open string tadpoles : gauge symmetry breaking,

potentials for open moduli.

- Supersymmetry breaking and gauge mediation ?



Mechanisms for supersymmetry breaking

- Scherk-Schwarz

- non-BPS configurations

- internal magnetic fields ↔ branes at angles

- internal fluxes

- nonperturbative effects

The Scherk-Schwarz mechanism

(Scherk-Schwarz;Fayet;Ferrara,Kounnas,Porrati,Zwirner)

Main idea : use symmetries S of the higher-dimensional

theory which do not commute with supersymmetry : R-

symmetries or the fermion number (−1)F .



After being transported around the compact space, bosonic

and fermionic fields Φi return to the initial value (at

y = 0) only up to a symmetry operation

Φi(2πR, x) = Uij(ω)Φj(0, x) ,

where the matrix U ∈ S is different for bosons and

fermions.



Φ(y,x) =
∑

k

e
iky
R Φ(x)(k) → Mk =

k

R
,

Ψ(y,x) =
∑

k

e
i(k+1/2)y

R Φ(x)(k) → Mk =
(k + 1/2)

R

• This procedure is very similar to the breaking of super-

symmetry at finite temperature → the terms breaking

supersymmetry are UV finite, even at the field theory

level.



In models with D-branes there are two different ways

in which supersymmetry can be broken by compactifi-

cation (Antoniadis,E.D.,Sagnotti):

- The D brane is parallel to the direction of breaking ;

massless D brane spectrum has tree-level SUSY break-

ing. This is the analog of the heterotic constructions.

- the D brane is perpendicular to the direction of the

breaking; massless D brane spectrum is SUSY at tree-

level. SUSY breaking transmitted by radiative correc-

tions from the brane massive states or from the gravi-

tational sector.



Parallel and perpendicular Scherk-Schwarz breaking

Parallel dims → TeV radii MSUSY ∼ R−1.

Perpendicular dims→ intermediate radii MSUSY ∼ R−2/MP .

Problem : large cosmological constant.



Non-BPS systems: Brane supersymmetry breaking

(Sugimoto; Antoniadis, E.D.,Sagnotti)

In these constructions, the closed (bulk) sector is SUSY

to lowest order, whereas SUSY is broken at the string

scale on some stack of (anti)branes.

- String consistency asks for the existence of exotic

O9+ planes of positive RR charge. Then charge con-

servation /RR tadpoles ask for antibranes in the open

sector.



SUSY case (SO gauge group) : Bose-Fermi degeneracy



Brane SUSY breaking case (USp gauge group):

spectrum is ”misaligned”



- Dp−Op+ system is non-BPS but tachyon-free. Breaks

SUSY at string scale.

- There is a NS-NS dilaton tadpole

∑

Dp

T
(n)
Dp +

∑

Op

T
(n)
Op 6= 0

- Singlet in the open string fermionic spectrum which

can be correctly identified with the goldstino realizing

a nonlinear SUSY on antibranes (E.D.,Mourad).

- No obvious candidate for decay to a SUSY vacuum

( folklore : non-SUSY vacua decay into SUSY ones).

Suggestion : nonperturbative instabilites (Angelantonj,E.D.)

- low-string scale → light moduli m ∼ M2
s /MP .



Internal magnetic fields / intersecting branes

(Bachas)

Particles of different spin couple differently to magnetic

field, breaking supersymmetry. Define

θi = arctan(πq
(i)
L Hi) + arctan(πq

(i)
R Hi)

Mass splittings of string states are

δm2 = (2n + 1)|εi|+ 2Σiεi ,

where n are the Landau levels of the charged particles

in the magnetic field and Σi are internal helicities.

Generic problem : NS-NS tadpoles.



Anomalous U(1) + gaugino condensation breaks

SUSY

(Binetruy,E.D.; E.D.,Vempati;Viladoro,Zwirner)

The hidden sector is an asymptotically free gauge the-

ory, ex. super Yang-Mills, dynamical scale Λ

Λ = MP e
− 1

2b0g20 ,

b0= beta function of the hidden sector gauge theory.

In string (or brane) context, gauge couplings are vev’s

of moduli fields.



Modulus T = t + ia ; hidden sector gauge coupling is

1

g2
0

= 〈t〉

Gaugino condensation generate nonperturbative moduli

potentials

non− SUSY : V (t) ∼ Λ4 = e
−2t

b0

SUSY : W (T ) ∼ e
− 3T

2b0

SUSY example in type IIB (if all other moduli stabi-

lized): gaugino cond. on D7 branes or E3 instantons

K = −3 ln(T + T̄ )

W = W0 + e
− 3T

2b0



Refine previous ex : add a magnetic flux on another

D7 brane which wraps an internal 4-space of volume

V = T + T̄
∫

d8x e−φ √g8FijF
ij → c

(T + T̄ )3

By doing this, the axionic partner of V, T = V + ia,

becomes charged under gauge transformations of the ”

magnetized’” brane

VX → VX + Λ + Λ̄ , T → T + δGSΛ .

The Kahler potential of T is of the form

K(S, S̄) = − 3 ln (T + T̄ − δGS VX)



Condensation term e−bT not gauge-invariant. Hidden

sector (Nc D7) intersect Nf times U(1) brane: charged

fields Q, Q̄, condense into ”mesons” M = QQ̄:

W = W0 + a

(
e−bT

detM

) 1
Nc−Nf

+ ΦM

A careful anomaly analysis shows that the nonpertur-

bative term is gauge invariant. The gauge (D-term)

contribution to the vacuum energy is

VD ∼ 1

T + T̄

(
−|Φ|2 + Tr(M̄M)1/2 +

3δGS

2(T + T̄ )

)2

• The dynamics of the model breaks SUSY, with

MSUSY ∼ Λ2

ξ
, ξ2 =

3δGS

2(T + T̄ )



Cartoon of moduli stabilization in type IIB

• Stabilize all moduli by

- adding all possible 3-form fluxes : stabilize the dilaton,

shape (complex structure) moduli in type IIB strings,

but not volume (Kahler) moduli Ti

- add non-perturbative effects (gaugino condensation

on D7 branes) to stabilize Ti

→ end up in anti-de Sitter SUSY space.

• ” Uplift ” vacuum energy to zero (or positive) by a

dynamical SUSY breaking sector.

In practice, these two steps are not really decoupled.



Obs: D-terms generically not enough for the ”uplift” :

(too small vacuum energy), unless m3/2 À TeV .

- Dynamical F-term SUSY breaking and uplifting (E.D.,Papineau;

Nilles et al.)

Use a sector which dynamically breaks SUSY by F-terms

in the global limit ( ex. ISS model). Then

Vuplift ∼ Λ4
dyn ∼ 3m2

3/2M2
P

could lead to a TeV gravitino mass, for Λ ∼ 1011 GeV.

Several constraints : Λ depends on stabilized moduli

(ex. D3 branes).

Typically metastable vacua, but very large lifetime.



Challenges for string phenomenology

D-branes and low-scale strings triggered important phe-

nomenological activity, some of predictions are testable

(low string or KK scale). The main goals of string phe-

nomenology are however still ahead of us :

• Progress in stringy instantonic effects, but not yet in

quasi-realistic models.

• No explicit string example with full moduli stabiliza-

tion.

• Simplest toroidal orbifold models too simple; need



more involved models.

• Supersymmetry breaking still an open problem.

• Implementation of inflation in string theory not sat-

isfactory.

• · · · · · ·
• No hint for a small cosmological constant.


