

9th Hellenic School and Warkshops on Elementary Particle Physics and Gravity Corfu, Greece August 30 - September 20, 2009

1

Higgs Search Prospects for CMS

Albert De Roeck CERN and University of Antwerp and the IPPP Durham

Electro-Weak Symmetry Breaking (EWSB)

- Why are the masses of the fundamental particles not equal to zero
 - ⇒ Electroweak Symmetry breaking
 - EWSB mechanism requires (at least) one new particle
 - energy scale of EWSB must be ~ TeV to preserve unitarity of V-V (V=W, Z) scattering matrix
- Current wisdom: SB mechanism generates Goldstone bosons \rightarrow longitudinal degrees of freedom for W & Z
 - But underlying nature of dynamics not known → traditionally:two possibilities: weakly-coupled and strongly-coupled dynamics
- Weakly-coupled: self-interacting scalar ds: E.g the BEH (Higgs) field
 - Self-interaction \rightarrow non-vanishing vacuum expectation value
 - Then: interactions with bosons/fermions \rightarrow gives mass to them
 - Must stabilize mass of the field \rightarrow some additional mechanism (SUSY?)
 - New ideas: whole new "world": extra space dimensions
- Strongly-coupled: new strong interaction at ~TeV scale
 - Fermion-antifermion pair condensates

The BEH Mechanism!(*)

\Rightarrow At least one BEH particle, called "Higgs" from now on..

Tevatron Run II Preliminary, L=0.9-4.2 fb⁻¹ 95% CL Limit/SM 5 **LEP Exclusion** Tevatron Exclusion Expected Observed ±1o Expected ±2σ Expected 1 SM March 5, 2009 100 110 120 130 140 150 160 170 180 190 200 m = 163 GeV March 2009 6 $\Delta \alpha_{\rm had}^{(5)} =$ 5 -0.02758±0.00035 ····· 0.02749±0.00012 ••• incl. low Q² data 4 $\Delta \chi^2$ з 2 1 Excluded Preliminary 0 100 30 300

m_⊣ [GeV]

The SM Higgs @ the LHC

WW, ZZ fusion

SM Higgs Search Channels

Low mass	M _H ≲ 200	GeV
----------	----------------------	-----

Production DECAY	Inclusive	VBF	WH/ZH	ttH
$H \rightarrow \gamma \gamma$	YES	YES	YES	High lumi
H → bb			YES?	High lumi
$H \to \tau\tau$		YES		
$H \rightarrow WW^*$	YES	YES	YES	
$H \rightarrow ZZ^*, Z \rightarrow \ell^+ \ell^-, \ell = e, \mu$	YES			
$H \rightarrow Z\gamma, Z \rightarrow \ell^+\ell^-, \ell=e,\mu$	very low σ			

Intermediate mass (200 GeV ≤ M_H ≤700 GeV)

inclusive $H \rightarrow WW$ inclusive $H \rightarrow ZZ$ High mass (M_H ≥ 700 GeV)

VBF qqH \rightarrow ZZ \rightarrow $\ell \ell \nu \nu$ VBF qqH \rightarrow WW $\rightarrow \ell \nu$ jj

 $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4\ell$ are the only channels with a very good mass resolution ~1%

High Luminosity Studies

Assume O(10) fb⁻¹ or more

SM: Higgs @ LHC: prospects ~ 2006

CMS has to extended the VBF $qq \rightarrow qqH$, $H \rightarrow \tau\tau$ and WW* inclusive channel

Combining experiments...

Note: ATLAS+CMS combination at an early stage is taken very seriously

Higgs →γγ

Still a main search channel. Summary in the PTDR (2006)

- More complete study of the backgrounds, K factors
- Optimized analysis (Neural Network)

CMS H→yy Analysis

Optimized analysis Use event kinematics, event classification etc.. ⇒ Improve sensitivity by factor 1.4-2

Discovery potential for Higgs $\rightarrow \gamma\gamma$

 30 fb⁻¹ (low luminosity) 100 fb⁻¹ (high luminosity)

100

110

0 โลกไลการการในการการในการการในการการในการการไม 120

m_{γγ} (GeV)

130

140

150

Higgs \rightarrow ZZ \rightarrow µµµµ,µµee, eeee

Golden mode: allows to fully reconstruct the Higgs

H (150 GeV) \rightarrow Z^OZ^{O*} \rightarrow 4 μ

Background: tt->WbWb->llvvbb, ZZ->41, llbb ("Zbb")

Selections:

- lepton isolation in tracker and calo
- lepton impact parameter, µµ, ee vertex
- mass windows $M_{Z(*)}$, M_H

The Channel ttH with $H \rightarrow bb \Rightarrow R.I.P?$

ttH is (was?) the best bet to see $H \rightarrow bb$

Perhaps ttH with $H \rightarrow \gamma \gamma$ will be observable but with O(100) fb⁻¹

So is H→bb Hopeless? Maybe not...

- New idea from Butterworth et al. arXiv:0802.2470
- Use high P_T associated WH production
- Use subjet analysis techniques & recover WH for O(30 fb⁻¹)

CMS Reach Summary

Benchmark luminosities:

- 0.1 fb⁻¹: exclusion limits will start carving into SM Higgs cross section
- 1 fb⁻¹: discoveries become possible if M_H~160-170 GeV
- 10 fb⁻¹: SM Higgs is discovered (or excluded) including low mass range (CMS)

First Physics in 2010 \Rightarrow 30-50 pb⁻¹ at 7 TeV ? \Rightarrow 200 pb⁻¹ at 10 TeV ?

First, we have to "re-discover" the Standard Model to be prepared for Higgs discovery: QCD jets, W/Z(+jets), tt~, WW, ZZ,

Zbb,Zcc, Wbb, Wcc, W/Z+n, Z to tau decays...

Early data: $H \rightarrow ZZ \rightarrow leptons$

14 TeV

$m_{\rm ex} \left(C_{\rm e} N/c^2 \right)$	Events at 1 fb ⁻¹		Significanco	P	
m_H (Gev/C)	N_{s+b}	N_b	Significance	N95% C.L.	
120	0.52	0.19	0.13	10.3	
130	1.56	0.29	1.32	2.79	
140	2.85	0.42	2.22	1.55	
150	3.52	0.47	2.64	1.29	
160	1.98	0.47	1.36	2.53	
170	1.34	0.61	0.50	5.35	
180	3.16	1.38	1.09	2.64	
190	9.24	2.74	2.92	0.89	
200	10.6	3.52	2.87	0.89	
250	8.02	2.66	2.49	1.06	

•Cuts optimized for startup luminosity

•Assume 1 fb⁻¹

95% CL limits probe SM region

20

m_H [GeV]

Early Data: VBF with H→ττ

Cuts optimized for startup luminosity
Assume 1 fb⁻¹

• 95% CL limits probe SM region

Early Searches/Reduced Energy

2010 will not be "the Year of the Higgs" for LHC...

Determining properties of the Higgs

Very High Luminosity

Higgs Mass Measurements

Using the golden channels into $\gamma\gamma$ and ZZ

Ratios of couplings

How to learn something on the Couplings of the Higss to the Bosons and fermions?

This is important to establish that We are really looking at the Higgs

Coupling ~ mass of the particle!

LHC solution: measure ratios

Example

$$-\frac{\sigma \times \mathsf{BR}(\mathsf{H} \to \mathsf{WW}^*)}{\sigma \times \mathsf{BR}(\mathsf{H} \to \mathsf{ZZ}^*)} = \frac{\Gamma_g \Gamma_W}{\Gamma_g \Gamma_Z} = \frac{\Gamma_W}{\Gamma_Z}$$
$$-\frac{\sigma \times \mathsf{BR}(\mathsf{H} \to \mathsf{YZ}^*)}{\sigma \times \mathsf{BR}(\mathsf{H} \to \mathsf{ZZ}^*)} = \frac{\Gamma_g \Gamma_\gamma}{\Gamma_g \Gamma_Z} \sim \frac{\Gamma_W}{\Gamma_Z}$$

Coupling Mass Relation

NB before the ttH "disappeared"

Gianotti, Ellis, ADR et al.

Spin/CP information on the Higgs

In ZZ decays (if Higgs heavy ie > 200 GeV)

In VBF ->WW decays

- In decays to taus?
- Exclusive production?

Beyond the Standard Model

Usually more that one Higgs E.g. Supersymmetry:

Mass spectra for M_{susy}=1TeV

The good news: $M_h < 135 \text{ GeV/c}^2$

5 physical Higgs bosons 2 charged : H⁺ and H⁻ 2 CP even neutral : H and h 1 CP odd neutral : A

Two-loop / RGE-improved radiative corrections included

30

Heavy Neutral Higgs

00000

0000

h/H/A

- given the H/A mass degeneracy, they are often referred to as Φ
- production in association with bb (especially good at large tanβ)
- Decays (large tanβ):
 - bb-decay mode (~90%) is overwhelmed with QCD background
 - ττ-decay mode (~10%) is the best bet
 - $\mu\mu$ -decays (~0.03%) allow for direct measurement of Γ

CMS Reach

pp→bbφ→**bb**μμ

Discovery reach at low M_A , "intensive coupling" and decoupling regimes

Possible constraint on tan β by measuring width of A/H-> $\mu\mu$

EWSB: What if no Higgs exists?

Vector Boson scattering amplitudes violate unitarity for s~ 1TeV New physics must enter to cure this problem

- Examples
 - Strongly interacting vector bosons
 - Study WW,WZ,ZZ scattering
 - Technicolor
 - New particles (Techni- ρ , techni- π ,...)

Mantra: LHC will either discover Higgs or find new dynamics ~ 1 TeV

No Higgs...

CMS note 2007/05

• EW theory uses an AD HOC minimal Higgs sector ...

fine tunning "problems"

• Higgs mass has quadratic divergences \Rightarrow naturalness and

Summary: What can the LHC do?

- LHC will discover the SM Higgs in the full region up to 1 TeV or exclude its existence (1-10 fb⁻¹). If no Higgs, other new phenomena in VV \rightarrow VV should be observed around 1 TeV, but may need high luminosity
- The LHC will measure with full luminosity ($\geq 100 \text{ fb}^{-1}$)
 - The Higgs mass with 0.1-1% precision
 - The Higgs width, for m_{H} > 200 GeV, with ~5-8% precision
 - Cross sections x branching ratios with 5-20% precision
 - Ratios of couplings with 10-30% precision
 - Absolute couplings only with additional assumptions
 - Spin information in the ZZ channel for m_H >200 GeV and VBF \rightarrow WW
 - CP information from exclusive central production: $pp \rightarrow pHp$
 - However: no information on the Higgs potential

..⇒will get a pretty good picture of the Higgs @ LHC More detailed information from a Linear Collider