Anomaly-Free Constraints in Neutrino Seesaw Models

David EMMANUEL-COSTA (CFTP, IST, Portugal)

In Collaboration with
E. Franco, R. González Felipe, Phys. Rev. D 79 (2009) 115001

9th Corfu Summer Institute of Elementary Particle Physics and Gravity

Workshops on Standard Model and Beyond and Standard Cosmology

Kє́ркира, 5th September 2009

Outline

ぬ Introduction

> Extra U(1)x Gauge Group

Seesaw mechanisms：type－I，type－II，type－III

ぬ Anomaly－free Constraints

ぬ Phenomenological Constraints

ぬ A Supersymmetric Case：type－III Seesaw

४ Conclusions

Motivations for an extra
 gauge symmetry

Extension of the Standard Model gauge group

[review see: Langacker 2008]
> The most simplest Abelian extension:

$$
\mathrm{SU}(3)_{\mathrm{C}} \times \mathrm{SU}(2)_{\mathrm{L}} \times \mathrm{U}(1)_{\mathbf{Y}} \times \mathrm{U}(1)_{\mathrm{X}}
$$

$>$ GUT SO(10) or E_{6} have rank larger than 4
> Superstrings often involve large gauge symmetries which break to SM with many $\mathrm{U}(1)$ in 4 D
> Little Higgs models which typically involve extended gauge structures

- Extra dimen. models, e.g.: orbifold GUT's SO(10) in 6D
> The $\mathrm{U}(1)_{\mathrm{x}}$ symmetry associated with a possible heavy X would have profound implications for particle physics and cosmology
- Could be accessible and detectable at the LHC

Particle content and charge assignments

$$
\begin{array}{ccc}
q \equiv(u, d)_{L}^{T} & (3,2,1 / 6) & x_{q} \\
u_{R} & (3,1,2 / 3) & x_{u} \\
d_{R} & (3,1,-1 / 3) & x_{d} \\
\ell \equiv(\nu, e)_{L}^{T} & (1,2,-1 / 2) & x_{\ell} \\
e_{R} & (1,1,-1) & x_{e} \\
\nu_{R} & (1,1,0) & x_{\nu} \\
T & (1,3,0) & x_{T}
\end{array}
$$

$H_{u, \nu}$	$(1,2,-1 / 2)$	$z_{u, \nu}$
$H_{d, e}$	$(1,2,1 / 2)$	$z_{d, e}$
H_{T}	$(1,2,-1 / 2)$	z_{T}
H_{δ}	$(1,2,-1 / 2)$	z_{δ}
Δ	$(1,3,1)$	z_{Δ}
ϕ	$(1,1,0)$	z_{ϕ}

Yukawa Constraints

[Barr, Bednarz, Benesh;Babu, Mohapatra Ma; Adhikari, Erler, Ma; ...]

Lagrangian for Yukawa Couplings

$$
\begin{aligned}
\mathscr{L}_{Y}= & Y_{u} \bar{q}_{L} u_{R} H_{u}+Y_{d} \bar{q}_{L} d_{R} H_{d}+Y_{e} \bar{\ell}_{L} e_{R} H_{e}+Y_{\nu} \bar{\ell}_{L} \nu_{R} H_{\nu} \\
& +Y_{T} \bar{\ell}_{L} i \tau_{2} T H_{T}+Y_{\mathrm{I}} \nu_{R}^{T} C_{\nu_{R}} \phi+Y_{\mathrm{II}} \ell_{L}^{T} C i \tau_{2} \ell_{L} \Delta \\
& +Y_{\mathrm{III}} \operatorname{Tr}\left(T^{T} C T\right) \phi+\lambda_{\Delta} H_{\delta} H_{\delta} \Delta+\text { H.c. }
\end{aligned}
$$

Bosonic Charges Constraints

$$
\begin{array}{rrr}
-x_{q}+x_{u}+z_{u}=0 & -x_{q}+x_{d}+z_{d}=0 \\
-x_{\ell}+x_{e}+z_{e}=0 & -x_{\ell}+x_{\nu}+z_{\nu}=0 \\
-x_{\ell}+x_{T}+z_{T}=0 & 2 x_{\nu}+z_{\phi}=0 \\
2 x_{\ell}+z_{\Delta}=0 & 2 x_{T}+z_{\phi}=0 \\
2 z_{\delta}+z_{\Delta}=0 &
\end{array}
$$

Yukawa Constraints

[Barr, Bednarz, Benesh;Babu, Mohapatra Ma; Adhikari, Erler, Ma; ...]

Lagrangian for Yukawa Couplings

$$
\begin{aligned}
\mathscr{L}_{Y}= & Y_{u} \bar{q}_{L} u_{R} H_{u}+Y_{d} \bar{q}_{L} d_{R} H_{d}+Y_{e} \bar{\ell}_{L} e_{R} H_{e}+Y_{\nu} \bar{\ell}_{L} \nu_{R} H_{\nu} \\
& +Y_{T} \bar{\ell}_{L} i \tau_{2} T H_{T}+Y_{\mathrm{I}} \nu_{R}^{T} C_{\nu_{R}} \phi+Y_{\mathrm{II}} \ell_{L}^{T} C i \tau_{2} \ell_{L} \Delta \\
& +Y_{\mathrm{III}} \operatorname{Tr}\left(T^{T} C T\right) \phi+\lambda_{\Delta} H_{\delta} H_{\delta} \Delta+\text { H.c. }
\end{aligned}
$$

Bosonic Charges Constraints

$$
\begin{array}{ll}
z_{u}=x_{q}-x_{u} & z_{d}=x_{q}-x_{d} \\
z_{e}=x_{\ell}-x_{e} & z_{\nu}=x_{\ell}-x_{\nu} \\
z_{T}=x_{\ell}-x_{T} & z_{\phi}=-2 x_{\nu} \\
z_{\Delta}=-2 x_{\ell} & z_{\phi}=-2 x_{T} \\
z_{\delta}=x_{\ell} &
\end{array}
$$

Local Anomaly-free Conditions

$$
\begin{aligned}
& \mathrm{U}(1) \mathrm{x}\left[\mathrm{SU}(3)_{\mathrm{c}}\right]^{2} \\
& A_{1}=N_{g}\left(2 x_{q}-x_{u}-x_{d}\right)=0 \\
& \mathrm{U}(1)_{\mathrm{X}}\left[\mathrm{SU}(2)_{\mathrm{L}}\right]^{2} \\
& A_{2}=\frac{N_{g}}{2}\left(x_{\ell}+3 x_{q}\right)-2 N_{T} x_{T}=0 \\
& \mathrm{U}(1)_{\mathrm{X}}\left[\mathrm{U}(1)_{\mathrm{Y}}\right]^{2} \\
& A_{3}=N_{g}\left(6 y_{q}^{2} x_{q}+2 y_{\ell}^{2} x_{\ell}-3 y_{u}^{2} x_{u}-3 y_{d}^{2} x_{d}-y_{e}^{2} x_{e}\right)=0 \\
& {\left[\mathrm{U}(1)_{\mathrm{X}}\right]^{2} \mathrm{U}(1)_{\mathrm{Y}}} \\
& A_{4}=N_{g}\left(6 y_{q} x_{q}^{2}+2 y_{\ell} x_{\ell}^{2}-3 y_{u} x_{u}^{2}-3 y_{d} x_{d}^{2}-y_{e} x_{e}^{2}\right)=0 \\
& {[\mathbf{U}(1) x]^{3}} \\
& A_{5}=N_{g}\left(6 x_{q}^{3}+2 x_{\ell}^{3}-3 x_{u}^{3}-3 x_{d}^{3}-x_{e}^{3}\right)-N_{R} x_{\nu}^{3}-3 N_{T} x_{T}^{3}=0 \\
& \mathrm{U}(1) \mathrm{x} \times \text { [gravity }^{2} \\
& A_{6}=N_{g}\left(6 x_{q}+2 x_{\ell}-3 x_{u}-3 x_{d}-x_{e}\right)-N_{R} x_{\nu}-3 N_{T} x_{T}=0
\end{aligned}
$$

Anomaly-free Constraints and Solutions

$x_{q}, x_{\ell}, x_{u}, x_{d}$ as functions of x_{e}, x_{R}, x_{T}

$$
\begin{aligned}
& x_{q}=-\frac{N_{g} x_{e}+N_{R} x_{\nu}-5 N_{T} x_{T}}{6 N_{g}} \\
& x_{\ell}=\frac{N_{g} x_{e}+N_{R} x_{\nu}+3 N_{T} x_{T}}{2 N_{g}} \\
& x_{U}=-\frac{2 N_{g} x_{e}-N_{R} x_{\nu}-N_{T} x_{T}}{3 N_{g}} \\
& x_{d}=\frac{N_{g} x_{e}-2 N_{R} x_{\nu}+4 N_{T} x_{T}}{3 N_{g}}
\end{aligned}
$$

Anomaly-free Conditions (cont.)

$>A_{4}$ anomaly-free condition

$$
A_{4}=-\frac{4 N_{R} N_{T} x_{\nu} x_{T}}{N_{g}}=0
$$

$>$ only the trivial solutions $N_{R}=0, N_{T}=0, x_{\nu}=0$ or $x_{T}=0$
> It is not possible to have an anomaly-free local $U(1)_{X}$ and, simultaneously, type-I $\left(N_{R} \neq 0\right)$ and type-III $\left(N_{T} \neq 0\right)$ seesaw models, unless $U(1)_{X}$ is proportional to the hypercharge $U(1)_{Y}$
$>A_{5}$ anomaly-free condition

$$
\begin{aligned}
A_{5}= & \left(N_{R}^{2}-N_{g}^{2}\right) N_{R} x_{\nu}+3\left(N_{T}^{2}-N_{g}^{2}\right) N_{T} x_{T} \\
& -\frac{3}{4} A_{4}\left(4 x_{e}-N_{R} x_{\nu}+5 N_{T} x_{T}\right) N_{g}^{2}
\end{aligned}
$$

Anomaly-free Conditions (cont.)

$>A_{4}$ anomaly-free condition

$$
A_{4}=-\frac{4 N_{R} N_{T} x_{\nu} x_{T}}{N_{g}}=0
$$

$>$ only the trivial solutions $N_{R}=0, N_{T}=0, x_{\nu}=0$ or $x_{T}=0$
> It is not possible to have an anomaly-free local $U(1)_{X}$ and, simultaneously, type-I $\left(N_{R} \neq 0\right)$ and type-III $\left(N_{T} \neq 0\right)$ seesaw models, unless $U(1)_{X}$ is proportional to the hypercharge $U(1)_{Y}$
$>A_{5}$ anomaly-free condition

$$
A_{5}=\left(N_{R}^{2}-N_{g}^{2}\right) N_{R} x_{\nu}+3\left(N_{T}^{2}-N_{g}^{2}\right) N_{T} x_{T}
$$

Anomaly-free Conditions (cont.)

$>A_{4}$ anomaly-free condition

$$
A_{4}=-\frac{4 N_{R} N_{T} x_{\nu} x_{T}}{N_{g}}=0
$$

$>$ only the trivial solutions $N_{R}=0, N_{T}=0, x_{\nu}=0$ or $x_{T}=0$
> It is not possible to have an anomaly-free local $U(1)_{X}$ and, simultaneously, type-I $\left(N_{R} \neq 0\right)$ and type-III $\left(N_{T} \neq 0\right)$ seesaw models, unless $U(1)_{X}$ is proportional to the hypercharge $U(1)_{Y}$
$>A_{5}$ anomaly-free condition

$$
\begin{gathered}
A_{5}=\left(N_{R}^{2}-N_{g}^{2}\right) N_{R} x_{\nu}+3\left(N_{T}^{2}-N_{g}^{2}\right) N_{T} x_{T} \\
N_{R}=N_{g} \text { or } N_{T}=N_{g}
\end{gathered}
$$

- Combined type-II seesaw is always allowed

Anomaly-free Conditions

Ways Out

1 Both types of seesaw could coexist if new extra matter content is added to the theory. In such a case, at least two extra singlets charged under $U(1)_{X}$ are needed to cancel the A_{4} and A_{5} anomalies, respectively.

2 In the case of $N_{T}=0$, can we have $N_{R} \neq N_{g}$? Yes! Provide we add an extra singlet that cancels the A_{5} anomaly. $N_{R}=2$ can accommodate oscillation neutrino data, predicts a massless neutrino and a "sterile" neutrino

Solutions

$$
\begin{aligned}
& \text { Type-I/II } \\
& x_{u}=(\alpha-2) x_{q} \\
& x_{d}=(4-\alpha) x_{q} \\
& x_{\ell}=-3 x_{q} \\
& x_{\nu}=(\alpha-6) x_{q}
\end{aligned}
$$

$$
\alpha \equiv-x_{e} / x_{q}
$$

Solutions

$$
\begin{aligned}
& \text { Type-I/II } \\
& x_{u}=4 x_{q} \\
& x_{d}=-2 x_{q} \\
& x_{\ell}=-3 x_{q} \\
& x_{\nu}=0
\end{aligned}
$$

Replic of the
Hypercharge

Solutions

Type-I/II
$x_{u}=x_{q}$
$x_{d}=x_{q}$
$x_{\ell}=-3 x_{q}$
$x_{\nu}=-3 x_{q}$
B-L Symmetry

$$
\alpha \equiv-x_{e} / x_{q}
$$

Solutions

$$
\begin{aligned}
& \text { Type-I/II } \\
& \begin{array}{l}
x_{u}=(\alpha-2) x_{q} \\
x_{d}=(4-\alpha) x_{q} \\
x_{\ell}=-3 x_{q} \\
x_{\nu}=(\alpha-6) x_{q} \\
\\
z_{u}=(3-\alpha) x_{q} \\
z_{d}=(\alpha-3) x_{q} \\
z_{e}=(\alpha-3) x_{q} \\
z_{\nu}=(3-\alpha) x_{q} \\
z_{\phi}=2(6-\alpha) x_{q} \\
z_{\Delta}=6 x_{q} \\
z_{\delta}=-3 x_{q}
\end{array}
\end{aligned}
$$

$$
\alpha \equiv-x_{e} / x_{q}
$$

$$
\begin{aligned}
& \text { Type-I/II } \\
& \begin{array}{l}
x_{u}=(\alpha-2) x_{q} \\
x_{d}=(4-\alpha) x_{q} \\
x_{\ell}=-3 x_{q} \\
x_{\nu}=(\alpha-6) x_{q} \\
\\
z_{u}=(3-\alpha) x_{q} \\
z_{d}=(\alpha-3) x_{q} \\
z_{e}=(\alpha-3) x_{q} \\
z_{\nu}=(3-\alpha) x_{q} \\
z_{\phi}=2(6-\alpha) x_{q} \\
z_{\Delta}=6 x_{q} \\
z_{\delta}=-3 x_{q}
\end{array}
\end{aligned}
$$

$$
\alpha \equiv-x_{e} / x_{q}
$$

Type-III/II

$$
\begin{aligned}
& x_{u}=\frac{1}{5}(2+3 \alpha) x_{q} \\
& x_{d}=\frac{1}{5}(8-3 \alpha) x_{q} \\
& x_{\ell}=\frac{1}{5}(9-4 \alpha) x_{q} \\
& x_{T}=\frac{1}{5}(6-\alpha) x_{q}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Type-I/II } \\
& x_{u}=(\alpha-2) x_{q} \\
& x_{d}=(4-\alpha) x_{q} \\
& x_{\ell}=-3 x_{q} \\
& x_{\nu}=(\alpha-6) x_{q} \\
& \\
& z_{u}=(3-\alpha) x_{q} \\
& z_{d}=(\alpha-3) x_{q} \\
& z_{e}=(\alpha-3) x_{q} \\
& z_{\nu}=(3-\alpha) x_{q} \\
& z_{\phi}=2(6-\alpha) x_{q} \\
& z_{\Delta}=6 x_{q} \\
& z_{\delta}=-3 x_{q}
\end{aligned}
$$

Type-III/II

$$
\begin{aligned}
& x_{u}=\frac{11}{5} x_{q} \\
& x_{d}=-\frac{1}{5} x_{q} \\
& x_{\ell}=-\frac{3}{5} x_{q} \\
& x_{T}=\frac{3}{5} x_{q}
\end{aligned}
$$

No B-L!

$$
\begin{aligned}
& \text { Type-I/II } \\
& x_{u}=(\alpha-2) x_{q} \\
& x_{d}=(4-\alpha) x_{q} \\
& x_{\ell}=-3 x_{q} \\
& x_{\nu}=(\alpha-6) x_{q} \\
& \\
& z_{u}=(3-\alpha) x_{q} \\
& z_{d}=(\alpha-3) x_{q} \\
& z_{e}=(\alpha-3) x_{q} \\
& z_{\nu}=(3-\alpha) x_{q} \\
& z_{\phi}=2(6-\alpha) x_{q} \\
& z_{\Delta}=6 x_{q} \\
& z_{\delta}=-3 x_{q}
\end{aligned}
$$

Type-III/II

$$
\begin{aligned}
& x_{u}=\frac{1}{5}(2+3 \alpha) x_{q} \\
& x_{d}=\frac{1}{5}(8-3 \alpha) x_{q} \\
& x_{\ell}=\frac{1}{5}(9-4 \alpha) x_{q} \\
& x_{T}=\frac{1}{5}(6-\alpha) x_{q}
\end{aligned}
$$

$$
\begin{aligned}
& z_{u}=\frac{3}{5}(1-\alpha) x_{q} \\
& z_{d}=\frac{3}{5}(\alpha-1) x_{q}
\end{aligned}
$$

$$
z_{e}=\frac{1}{5}(9+\alpha) x_{q}
$$

$$
z_{T}=\frac{3}{5}(1-\alpha) x_{q}
$$

$$
z_{\phi}=\frac{2}{5}(\alpha-6) x_{q}
$$

$$
z_{\Delta}=\frac{2}{5}(4 \alpha-9) x_{q}
$$

$$
z_{\delta}=\frac{1}{5}(9-4 \alpha) x_{q}
$$

$$
\alpha \equiv-x_{e} / x_{q}
$$

$$
\begin{aligned}
& \text { Type-I/II } \\
& x_{u}=(\alpha-2) x_{q} \\
& x_{d}=(4-\alpha) x_{q} \\
& x_{\ell}=-3 x_{q} \\
& x_{\nu}=(\alpha-6) x_{q} \\
& \\
& z_{u}=(3-\alpha) x_{q} \\
& z_{d}=(\alpha-3) x_{q} \\
& z_{e}=(\alpha-3) x_{q} \\
& z_{\nu}=(3-\alpha) x_{q} \\
& z_{\phi}=2(6-\alpha) x_{q} \\
& z_{\Delta}=6 x_{q} \\
& z_{\delta}=-3 x_{q}
\end{aligned}
$$

Type-III/II

$x_{u}=\frac{1}{5}(2+3 \alpha) x_{q}$
$x_{d}=\frac{1}{5}(8-3 \alpha) x_{q}$
$x_{\ell}=\frac{1}{5}(9-4 \alpha) x_{q}$
$x_{T}=\frac{1}{5}(6-\alpha) x_{q}$
$z_{u}=\frac{3}{5}(1-\alpha) x_{q}$
$z_{d}=\frac{3}{5}(\alpha-1) x_{q}$
$z_{e}=\frac{1}{5}(9+\alpha) x_{q}$
$z_{T}=\frac{3}{5}(1-\alpha) x_{q}$
$z_{\phi}=\frac{2}{5}(\alpha-6) x_{q}$
$z_{\Delta}=\frac{2}{5}(4 \alpha-9) x_{q}$
$z_{\delta}=\frac{1}{5}(9-4 \alpha) x_{q}$

$$
\begin{aligned}
& \text { Type-I/II with } \\
& \mathrm{N}_{\mathrm{R}}=2, \mathrm{~N}_{\mathrm{s}}=1 \\
& x_{u}=(\alpha-2) x_{q} \\
& x_{d}=(4-\alpha) x_{q} \\
& x_{\ell}=-3 x_{q} \\
& x_{\nu}=4(\alpha-6) x_{q} \\
& x_{S}=5(6-\alpha) x_{q} \\
& z_{u}=(3-\alpha) x_{q} \\
& z_{d}=(\alpha-3) x_{q} \\
& z_{e}=(\alpha-3) x_{q} \\
& z_{\nu}=(21-4 \alpha) x_{q} \\
& z_{\phi}=8(6-\alpha) x_{q} \\
& z_{\Delta}=6 x_{q} \\
& z_{\delta}=-3 x_{q} \\
& z_{S}=10(\alpha-6) x_{q}
\end{aligned}
$$

> Theories with extra $U(1)$ gauge symmetries are phenomenological richer
> Spontaneous breaking of the symmetry leads to new massive neutral gauge bosons X or Z^{\prime}
> Kinematically accessible and could be detectable at LHC
$>p p \rightarrow X \rightarrow b \bar{b}$ and $p p \rightarrow X \rightarrow t \bar{t}$ could be used to discriminate between different models
$>$ branching ratios of quark to $\mu^{+} \mu^{-}$production (reducing the theoretical uncertainties)

$$
\begin{aligned}
R_{b \mu} & =\frac{\sigma(p p \rightarrow X \rightarrow b \bar{b})}{\sigma\left(p p \rightarrow X \rightarrow \mu^{+} \mu^{-}\right)} \simeq 3 K_{q} \frac{x_{q}^{2}+x_{d}^{2}}{x_{\ell}^{2}+x_{e}^{2}} \\
R_{t \mu} & =\frac{\sigma(p p \rightarrow X \rightarrow t \bar{t})}{\sigma\left(p p \rightarrow X \rightarrow \mu^{+} \mu^{-}\right)} \simeq 3 K_{q} \frac{x_{q}^{2}+x_{u}^{2}}{x_{\ell}^{2}+x_{e}^{2}}
\end{aligned}
$$

$>K_{q} \sim \mathcal{O}(1)$ is a constant which depends on QCD and electroweak correction factors.

Phenomenological Constraints (cont.)

Analysis of the $R_{t \mu}-R_{b \mu}$ parameter space would allow to distinguish the models (with different charges assignments)

Type-I seesaw cases

$$
\begin{aligned}
R_{b \mu} & \simeq \frac{3\left(17-8 \alpha+\alpha^{2}\right)}{9+\alpha^{2}} \\
R_{t \mu} & \simeq \frac{5-4 \alpha+\alpha^{2}}{9+\alpha^{2}}
\end{aligned}
$$

Type-III seesaw case

$$
\begin{aligned}
R_{b \mu} & \simeq \frac{3\left(89-48 \alpha+9 \alpha^{2}\right)}{81-72 \alpha+41 \alpha^{2}} \\
R_{t \mu} & \simeq \frac{29+12 \alpha+9 \alpha^{2}}{81-72 \alpha+41 \alpha^{2}}
\end{aligned}
$$

Phenomenological Constraints (cont.)

> Branching ratios of the X decays into quarks and muons as a function of the charge ratio α

Phenomenological Constraints (cont.)

$>R_{t \mu}-R_{b \mu}$ plane for type-I and type-III seesaw realizations

Phenomenological Constraints (cont.)

> EW precision data also severely constrains any mixing with Z boson to the sub-percent level
$>Z-X$ mixing $\propto g_{Z} g_{X} \sum_{i} y_{i} x_{i} v_{i}^{2}$ with $\sum_{i} v_{i}^{2}=v^{2}$ [review see: Langacker 2008]
$>$ Vanishing $Z-X$ mixing implies $\left(r_{u}=v_{u} / v\right)$

Type-I/II seesaw
$\alpha=6-\frac{3}{r_{u}^{2}}$

$$
\alpha=\frac{21-18 r_{u}^{2}}{4-3 r_{u}^{2}}
$$

> Heavy leptonic fields effects at LHC

Type-III seesaw

$$
\alpha=\frac{12 r_{u}^{2}-9}{1+2 r_{u}^{2}}
$$

[Kersten,Smirnov; Abada et al. Del Águila, Aguilar-Saavedra]

■ TeV-scale seesaw mechanism could appear if some flavour symmetries: light neutrino masses and sizeable Yukawa's
■ More phenomelogy $p p \rightarrow X \rightarrow N N$, Multi-lepton Signals

Phenomenological Constraints (cont.)

$>U(1)_{X}$ charge ratio α as a function of the Higgs VEV ratio $r_{u}=v_{u} / v$ for vanishing $Z-X$ mixing
These different models are clearly distinguishable

SUSY Type-III Seesaw with an Extra

[Mohapatra]
MSSM: sources of rapid proton decay

$$
\begin{gathered}
W=W_{M S S M}+\frac{\lambda_{L}}{M_{p l}} Q Q Q L+\frac{\lambda_{R}}{M_{p l}} U^{c} U^{c} D^{c} E^{c}+\left(R_{\text {terms }}\right) \\
\lambda_{L} \sim \lambda_{R} \sim 10^{-7} \quad \lambda^{\prime} \lambda^{\prime \prime}<10^{-24}
\end{gathered}
$$

Type-III

$$
\begin{aligned}
& x_{U^{c}}=-\frac{1}{5}(2+3 \alpha) x_{q} \\
& x_{D^{c}}=-\frac{1}{5}(8-3 \alpha) x_{q} \\
& x_{E^{c}}=\alpha x_{q} \\
& x_{L}=\frac{1}{5}(9-4 \alpha) x_{q} \\
& x_{T^{c}}=-\frac{1}{5}(6-\alpha) x_{q} \\
& x_{H_{u}}=-x_{H_{d}}=\frac{3}{5}(\alpha-1) x_{q} \\
& x_{S}=-x_{\bar{S}}=-2 x_{T^{c}}
\end{aligned}
$$

Baryon and Lepton
 Violating Operators

$x_{Q Q Q L}=-4 x_{T^{c}}$
$x_{U^{c} U^{c} D^{c} E^{c}}=2 x_{T^{c}}$
$x_{Q L D^{c}}=-x_{T^{c}}$
$x_{\text {LLE }}=-3 x_{T^{c}}$
$x_{U^{c} D^{c} D^{c}}=3 x_{T^{c}}$
$x_{L H_{u}}=-x_{T c}$

Lepton Sector

$$
\begin{aligned}
& W_{e}=\frac{h_{e}}{M_{p l}} L H_{d} E^{c} \bar{S} \\
& \langle\bar{S}\rangle \sim 3 \times 10^{15} \mathrm{GeV} \\
& \frac{\lambda_{L}}{M_{p l}^{2}} Q Q Q L \bar{S}^{2} \rightarrow \lambda_{L} \sim 10^{-2} \\
& \frac{\lambda_{R}}{M_{p l}} U^{c} U^{c} D^{c} E^{c} \bar{S} \rightarrow \lambda_{R} \sim 10^{-4}
\end{aligned}
$$

Conclusions

> Implementation of seesaw mechanisms to give mass to neutrinos in the presence of an anomaly-free $U(1)_{X}$ gauge symmetry by expanding the lepton sector
> Both type-I and type-III seesaw mechanisms cannot be simultaneously implemented with an anomaly-free local $U(1)_{X}$, unless the symmetry is a replica of the well-known hypercharge or extra matter is added
> Combined type-I/II or type-III/II seesaw models it is always possible to find non-trivial anomaly-free X charge assignments
> The phenomenological consequences on X neutral gauge boson and, its decays into third-generation quarks and its mixing with the ordinary Z boson, tightly constrain the seesaw models presented - hopefully detectable at LHC
> SUSY type-III can ameliorate the proton decay problem due to Baryon and Lepton violating terms (in particular the Planck scale induced higher dimensional operators)

