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Motivation

Motivation

Heterotic string theory: promising candidate for realistic
low-energy phenomenology.

It includes chiral fermions, its gauge group is large enough to
accommodate the gauge group of the standard model.

— search for vacua of the form M, x B.

Determine four-dimensional theory by dimensionally reducing over
B, find contact with low-energy phenomenology.



Motivation

@ Requirement of N' =1 susy in four dimensions ~» Calabi-Yau
threefolds (SU(3)-holonomy)
e complicated geometry
e moduli stabilization problem
@ Flux compactifications ~» backgrounds other than CY
(SU(3)-structure)
e cases with simple geometry
e fluxes can generate potentials which stabilize the moduli

e manifolds with SU(3)-structure

e in type IIA compactifications (Liist-Tsimpis '04, House-Palti '05,
Kashani-Poor '07, Koerber-Liist-Tsimpis + Caviezel et.al. '08
Cassani-Kashani-Poor '09... )

@ in heterotic string compactifications (Gurrieri-Lukas-Micu '07,

Benmachiche-Louis-Martinez-Pedrera '08...)



Motivation

@ Simple examples of manifolds admitting an SU(3)-structure:
non-symmetric coset spaces

@ Supersymmetric compactifications of the heterotic string
theory of the form AdSs x (§/R) exist when H-flux and
fermion condensates are present (Manousselis-Prezas-Zoupanos '05).

@ Perform reduction employing the Coset Space Dimensional
Reduction scheme which provides

Gauge-Higgs-Yukawa unification

Interesting GUT models with chiral fermions in 4-dims

N =1 softly broken susy Lagrangians
Consistency



SU(3)-structure and nearly-Kahler manifolds

A manifold admits a G-structure when the structure group of its
frame bundle can be reduced to G.

~- all tensors/spinors can be globally decomposed into reps of G.
The G-structure is classified by the intrinsic torsion < measures

the failure of tensors/spinors to be covariantly constant w.r.t. the
Levi-Civita connection.



SU(3)-structure and nearly-Kahler manifolds

In six-dimensions: SU(3)-structure — amounts to the reduction of
S0(6) to SU(3).
Define:

@ nowhere-vanishing, globally-defined spinor 7, the singlet of the
decomposition 4 =3 + 1,

@ structure forms: 2-form J and 3-form Q,

all covariantly constant w.r.t. a connection with torsion.
J and Q satisfy:

dJ) = %/(Wlﬂ*—WikQ)+W4/\J+W3,

dQ = WlJ/\J—i-WQ/\J—i-W;/\Q.

~> five intrinsic torsion classes W;



SU(3)-structure and nearly-Kahler manifolds

Torsion classes provide classification of manifolds, e.g.
Complex: Wi=W»=0

Half-flat: ImWi=ImW,r=W,s=Ws=0

Kahler: Wi_4=0

Calabi-Yau: all torsion classes vanish
nearly-Kahler: W,_5=0



SU(3)-structure and nearly-Kahler manifolds

6-dim homogeneous nearly-Kahler manifolds:
e Gp/SU(3)
® 5pa/(SU(2) x U(1))non—max
e SU(3)/U(1) x U(1)
e SU(2) x SU(2)
Note that:

@ The first three manifolds are also the only non-symmetric
coset spaces S/R in 6 dims with rankR=rankS.

@ They admit 1,2 and 3 different radii respectively (the
nearly-Kahler limit corresponds to equal radii).

@ They admit S-invariant 2-forms w; and 3-forms p1, p2.
e Structure forms: J = R?w;, Q o (p2 + ip1)

~» use the S-invariant forms to expand fields



Dimensional Reduction

Spectrum and Lagrangian

Heterotic Supergravity-Yang-Mills spectrum =

N =1 sugra multiplet + A = 1 vector supermultiplet:
e/\I\/I]7 UM/ BMN7 /\7 (D and AMﬂ X

Gauge group Eg x Eg.

Reduction of the bosonic part — obtain Kahler potential K and
superpotential W < sufficient to find sugra description in 4 dims

Bosonic Lagrangian:

1 1 2 A R
e Lg=— 7 2(R*1+ dc)/\*d(»—&—z “PHARH+ Ee 2 TrEns F)



Dimensional Reduction

Metric & dilaton

Metric ansatz:
ds? = e2?(X)p eMel + 29900 (x)eeP.

Note:

@ the metric is S-invariant

@ in general there exist Kaluza-Klein gauge fields valued in
S x N(R)/R (maximal isometry group) — 4-dim theory
inconsistent with the original (Coquereaux-Jadczyk '86).
Consistency guaranteed when KK fields valued in N(R)/R. In
our cases this group is trivial ~» KK gauge fields vanish, only
scalar fluctuations (A.C.-Manousselis-Prezas-Zoupanos '07)

@ 7,5 is unimodular and generically contains extra scalars
parametrizing the internal metric



Dimensional Reduction

Using this ansatz we obtain:

1 1
L= —ﬁ(R*lJrPab/\*PabJrEdgoA*dcp)f v,

~> P,p provide kinetic terms for the additional metric moduli.
The potential is:

1 IV i
V= &76’2(& D (apy Iy F Lo + 297 F Gy + Ay Frac FiF)
i: R-index

a: coset index

Higher-dimensional dilaton: ¢(x, y) = ¢(x)
D



Dimensional Reduction

Gauge fields

CSDR principle (Forgacs-Manton '79): £y A = DW,,
where W, — gauge transformation parameter, X' — Killing vectors.
(see Dolan’s talk for a similar approach)

Ansatz for the gauge field: A/ = A/ + @L‘eA
Constraints: D¢; = Fl, = F/; = 0.
Then, in four dimensions:

/
. ¥ Y / ! |
ﬁgauge = —me 2P FY A xF “r’\/abD(/j)aA*D(sob _Vgauge:

where the initial gauge group G is broken to H = C;(R). In the
present framework H = Eg. The potential reads

/

v a

1
—5¢.,ac,. bd
gauge — 3 € 2<7'/ Y Fachd-

K2



Dimensional Reduction

Three-form

Multidimensional 3-form: H = dB — %'(dzy,w — Q).
where the abelian 2-form potential is expanded as:

B = B(x) + b/ (x)uwi(y):

wi(y): the S-invariant 2-forms of the internal space.
Then in four dimensions:

1

72¢ " do A xdf — OF' A F' + mdb' A xdb’
K

Ly=-—

+ (ylef’bdbi A Tr(¢a, * Dop)
0/2 JEPEN —
+ TTr(g/)a Dg/)b)/\ Tr(gba * Dng) —Vy,



Dimensional Reduction

The potential has the form

20/ . ‘
— D Tr(padbbde)

1 .
Vy = Qeo|: b’b/(nld,-j + I‘IQE,'J') 3

/ . ‘ 20/ ‘
+ S TH(fdcds) + - Tr{(adpoc)’
a’? d d
+ 16 Tr(fipdcda) Tr(f[ab@c](/)d)

— a?Tr(hatpte) Tr(Fhdeda) |,

@ 0 is the pseudoscalar obtained by duality transformation on
dB.

@ m, n1 and ny are fixed constants for each manifold.



Case by case analysis

Counting scalar moduli:
e G,/SU(3)

e one radius + one Gp-invariant 2-form _
e four moduli: ¢, 0, @, by + one 27 multiplet 3’ in Eg from the
internal components of the gauge field.

o 5p4/(5U(2) X U(l))non—max

e two radii + two Spy-invariant 2-forms o

e six moduli: @,0, ¢, x, b1, by + two multiplets 3', '
o SU(3)/U(1) x U(1)

o three radii + three SU(3)-invariant 3-forms

o eight moduli ¢,0, ¢, x,v, b1, by, by + three multiplets

1

of B A



Case by case analysis

Go/SU(3) case

The three contributions to the effective potential have been
determined in all cases in terms of the genuine Higgs fields, e.g.
for Go/SU(3):

gravity: Ve, = —g

)

(& - 580 (oo + he] +

m‘,_.
[N

8aAUGE: Vgauge = Sy
BB dijd ™ B Bm + 1 3, ﬁ’(G“)-ﬁjﬁk(G“)kﬁ/>,
H — flux: Vyp=Le ¢[R6 + f,a b(d B 3Bk — h.c.) +

202813/ % djj d'™" 31 Bm Bn + '2(,32)2 fa'2ﬂ2(d,-jk6iﬁjﬁk + h.c.)} .



Case by case analysis

4-dim sugra description

Determine the superpotential by the Gukov-Vafa-Witten formula:
W = %_[S/RQA (H+ idJ)

and the Kahler potential by special Kahler geometry:

K= Ks+ Kr,

where Ks = —In(S + S*) in terms of the superfield S = e? + if)
and K7 = —In(g [5,5J NI N J)

Note that there are no complex structure moduli.



Case by case analysis

Then:
o G»/SU(3)
o W = 3T1 - \/i()/d,'jkBiBjBk
o K=—In(S+ S*)(T1+ T} —2d/B;B')3
] 5p4/(5U(2) X U(l))non—max
o W=2T1+ T, — \@a’d,-jkB"Bfl_k
o K=—In(S+ S*)(T1+ T} —2a'B;B)*(T + Ty — 2a'T; )
e SU(3)/U(1) x U(1)
o W= Tl + T2 + T3 — \@(M/d,'jkA"Bjrk
o K=—In(S+ S*)(T1+ T{ —2a/AAN(Tr+ T5 — 2/ B:B) x
X(T3 + Tgv — 2(1’F,-F’)
with the superfields T1 = R2 + iby + /B'6; ... and A, B, T the
superfields of a, 3, 7.



Conclusions

Conclusions

@ The four-dimensional action resulting by dimensionally
reducing the heterotic supergravity-Yang-Mills theory over
nearly-Kahler manifolds has been derived.

@ A detailed case by case analysis has been performed for all the
homogeneous nearly-Kahler manifolds.

@ Due to their simple geometry, nearly-Kahler manifolds provide
interesting realizations of the general formalism of
SU(3)-structure compactifications.
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