Nearly-Kähler dimensional reduction of the heterotic string

Athanasios Chatzistavrakidis

National Technical University and NCSR Demokritos, Athens

joint work with George Zoupanos: arXiv:0905.2398

Corfu, September 2009

- 2 SU(3)-structure and nearly-Kähler manifolds
- 3 Dimensional Reduction
- 4 Case by case analysis

Motivation

Heterotic string theory: promising candidate for realistic low-energy phenomenology.

It includes chiral fermions, its gauge group is large enough to accommodate the gauge group of the standard model.

 \rightarrow search for vacua of the form $M_4 \times B$.

Determine four-dimensional theory by dimensionally reducing over *B*, find contact with low-energy phenomenology.

- Requirement of N = 1 susy in four dimensions → Calabi-Yau threefolds (SU(3)-holonomy)
 - complicated geometry
 - moduli stabilization problem
- Flux compactifications → backgrounds other than CY (SU(3)-structure)
 - cases with simple geometry
 - fluxes can generate potentials which stabilize the moduli
- manifolds with SU(3)-structure
 - in type IIA compactifications (Lüst-Tsimpis '04, House-Palti '05, Kashani-Poor '07, Koerber-Lüst-Tsimpis + Caviezel et.al. '08 Cassani-Kashani-Poor '09...)
 - in heterotic string compactifications (Gurrieri-Lukas-Micu '07, Benmachiche-Louis-Martinez-Pedrera '08...)

- Simple examples of manifolds admitting an *SU*(3)-structure: non-symmetric coset spaces
- Supersymmetric compactifications of the heterotic string theory of the form $AdS_4 \times (S/R)$ exist when H-flux and fermion condensates are present (Manousselis-Prezas-Zoupanos '05).
- Perform reduction employing the Coset Space Dimensional Reduction scheme which provides
 - Gauge-Higgs-Yukawa unification
 - Interesting GUT models with chiral fermions in 4-dims

- $\mathcal{N}=1$ softly broken susy Lagrangians
- Consistency

A manifold admits a G-structure when the structure group of its frame bundle can be reduced to G.

 \rightsquigarrow all tensors/spinors can be globally decomposed into reps of G.

The G-structure is classified by the intrinsic torsion \hookrightarrow measures the failure of tensors/spinors to be covariantly constant w.r.t. the Levi-Civita connection.

In six-dimensions: SU(3)-structure \hookrightarrow amounts to the reduction of SO(6) to SU(3). Define:

- nowhere-vanishing, globally-defined spinor η, the singlet of the decomposition 4 = 3 + 1,
- structure forms: 2-form J and 3-form Ω ,

all covariantly constant w.r.t. a connection with torsion. J and $\boldsymbol{\Omega}$ satisfy:

$$dJ = \frac{3}{4}i(\mathcal{W}_1\Omega^* - \mathcal{W}_1^*\Omega) + \mathcal{W}_4 \wedge J + \mathcal{W}_3,$$

$$d\Omega = \mathcal{W}_1J \wedge J + \mathcal{W}_2 \wedge J + \mathcal{W}_5^* \wedge \Omega.$$

 \rightsquigarrow five intrinsic torsion classes \mathcal{W}_i

Torsion classes provide classification of manifolds, e.g.

<ロ> (日) (日) (日) (日) (日)

æ

- Complex: $\mathcal{W}_1 = \mathcal{W}_2 = 0$
- Half-flat: $ImW_1 = ImW_2 = W_4 = W_5 = 0$
- Kähler: $\mathcal{W}_{1-4}=0$
- Calabi-Yau: all torsion classes vanish
- nearly-Kähler: $\mathcal{W}_{2-5}=0$

6-dim homogeneous nearly-Kähler manifolds:

- G₂/SU(3)
- $Sp_4/(SU(2) \times U(1))_{non-max}$
- *SU*(3)/*U*(1) × *U*(1)
- *SU*(2) × *SU*(2)

Note that:

- The first three manifolds are also the only non-symmetric coset spaces *S*/*R* in 6 dims with rankR=rankS.
- They admit 1,2 and 3 different radii respectively (the nearly-Kähler limit corresponds to equal radii).
- They admit S-invariant 2-forms ω_i and 3-forms ρ_1, ρ_2 .

- 4 回 2 - 4 □ 2 - 4 □

• Structure forms: $J = R_i^2 \omega_i$, $\Omega \propto (\rho_2 + i \rho_1)$

 \rightsquigarrow use the S-invariant forms to expand fields

Spectrum and Lagrangian

Heterotic Supergravity-Yang-Mills spectrum =

 $\mathcal{N}=1$ sugra multiplet + $\mathcal{N}=1$ vector supermultiplet:

 $e_{M}^{N}, \psi_{M}, B_{MN}, \lambda, \phi \text{ and } A_{M}, \chi$

Gauge group $E_8 \times E_8$.

Reduction of the bosonic part \hookrightarrow obtain Kähler potential K and superpotential W \hookrightarrow sufficient to find sugra description in 4 dims

Bosonic Lagrangian:

$$\hat{e}^{-1}\mathcal{L}_B = -\frac{1}{2\hat{\kappa}^2} \left(\hat{R} \hat{*} \mathbf{1} + \frac{1}{2} d\hat{\phi} \wedge \hat{*} d\hat{\phi} + \frac{1}{2} e^{-\hat{\phi}} \hat{H} \wedge \hat{*} \hat{H} + \frac{\alpha'}{2} e^{-\frac{1}{2}\hat{\phi}} \operatorname{Tr} \hat{F} \wedge \hat{*} \hat{F} \right).$$

Metric & dilaton

Metric ansatz:

 $d\hat{s}^2 = e^{2lpha \varphi(x)}\eta_{mn}e^m e^n + e^{2\beta \varphi(x)}\gamma_{ab}(x)e^a e^b.$

Note:

- the metric is S-invariant
- in general there exist Kaluza-Klein gauge fields valued in S × N(R)/R (maximal isometry group) → 4-dim theory inconsistent with the original (Coquereaux-Jadczyk '86). Consistency guaranteed when KK fields valued in N(R)/R. In our cases this group is trivial ~→ KK gauge fields vanish, only scalar fluctuations (A.C.-Manousselis-Prezas-Zoupanos '07)
- γ_{ab} is unimodular and generically contains extra scalars parametrizing the internal metric

Using this ansatz we obtain:

$$\mathcal{L} = -rac{1}{2\kappa^2}(R*\mathbf{1} + P_{ab}\wedge *P_{ab} + rac{1}{2}darphi\wedge *darphi) - V,$$

 $\rightsquigarrow P_{ab}$ provide kinetic terms for the additional metric moduli. The potential is:

$$V = \frac{1}{8\kappa^2} e^{2(\alpha-\beta)\varphi} (\gamma_{ab}\gamma^{cd}\gamma^{ef}f^a_{ce}f^b_{df} + 2\gamma^{ab}f^c_{da}f^d_{cb} + 4\gamma^{ab}f^{iac}_{bac}f^{ic}_{b})$$

- i: R-index
- a: coset index

Higher-dimensional dilaton: $\hat{\phi}(x, y) = \phi(x)$

Gauge fields

CSDR principle (Forgacs-Manton '79): $\mathcal{L}_{X'}\hat{A} = DW_l$, where $W_l \rightarrow$ gauge transformation parameter, $X' \rightarrow$ Killing vectors. (see Dolan's talk for a similar approach)

Ansatz for the gauge field: $\hat{A}' = A' + \phi'_A e^A$ Constraints: $D\phi'_i = F'_{ai} = F'_{ij} = 0$. Then, in four dimensions:

$$\mathcal{L}_{gauge} = -\frac{\alpha'}{4\kappa^2} e^{-\frac{1}{2}\phi} \bigg[\mathsf{F}^{I} \wedge *\mathsf{F}^{I} + \gamma^{ab} D\phi_{a}^{I} \wedge *D\phi_{b}^{I} \bigg] - V_{gauge},$$

where the initial gauge group G is broken to $H = C_G(R)$. In the present framework $H = E_6$. The potential reads

$$V_{gauge} = rac{lpha'}{8\kappa^2} e^{-rac{1}{2}\phi} \gamma^{ac} \gamma^{bd} F_{ab} F_{cd}.$$

イロン イヨン イヨン イヨン

Three-form

Multidimensional 3-form: $\hat{H} = d\hat{B} - \frac{\alpha'}{2}(\hat{\omega}_{YM} - \hat{\omega}_L)$. where the abelian 2-form potential is expanded as:

 $\hat{B} = B(x) + b^i(x)\omega_i(y).$

 $\omega_i(y)$: the S-invariant 2-forms of the internal space. Then in four dimensions:

$$\mathcal{L}_{H} = -\frac{1}{4\kappa^{2}} e^{-\phi} \bigg[\qquad d\theta \wedge *d\theta - \theta F^{I} \wedge F^{I} + mdb^{i} \wedge *db^{i} \\ + \alpha^{\prime} \epsilon_{i}^{ab} db^{i} \wedge Tr(\phi_{a} * D\phi_{b}) \\ + \frac{\alpha^{\prime 2}}{4} Tr(\phi_{a} \overleftrightarrow{D} \phi_{b}) \wedge Tr(\phi_{a} * \overleftarrow{D} \phi_{b}) \bigg] - V_{H},$$

◆□ > ◆□ > ◆目 > ◆目 > ● □ ● ● ●

The potential has the form

$$V_{H} = \frac{1}{4\kappa^{2}} e^{-\phi} \left[b^{i} b^{j} (n_{1}\delta_{ij} + n_{2}\epsilon_{ij}) - \frac{2\alpha'}{3} \epsilon_{i}^{abc} b^{i} Tr(\phi_{a}\phi_{b}\phi_{c}) \right. \\ \left. + \frac{\alpha'}{2} \epsilon_{i}^{abc} b^{i} Tr(f_{ab}^{d}\phi_{c}\phi_{d}) + \frac{2\alpha'^{2}}{3} Tr(\phi_{a}\phi_{b}\phi_{c})^{2} \right. \\ \left. + \frac{\alpha'^{2}}{16} Tr(f_{ab}^{d}\phi_{c}\phi_{d}) Tr(f_{[ab}^{d}\phi_{c]}\phi_{d}) \right. \\ \left. - \alpha'^{2} Tr(\phi_{a}\phi_{b}\phi_{c}) Tr(f_{ab}^{d}\phi_{c}\phi_{d}) \right],$$

• θ is the pseudoscalar obtained by duality transformation on dB.

イロト イヨト イヨト イヨト

æ

• m, n_1 and n_2 are fixed constants for each manifold.

Counting scalar moduli:

- G₂/SU(3)
 - one radius + one G_2 -invariant 2-form
 - four moduli: $\phi, \theta, \varphi, b_1$ + one **27** multiplet β^i in E_6 from the internal components of the gauge field.
- $Sp_4/(SU(2) \times U(1))_{non-max}$
 - two radii + two Sp₄-invariant 2-forms
 - six moduli: $\phi, \theta, \varphi, \chi, b_1, b_2 + \text{two multiplets } \beta^i, \gamma^i$.
- *SU*(3)/*U*(1) × *U*(1)
 - three radii + three SU(3)-invariant 3-forms
 - eight moduli $\phi, \theta, \varphi, \chi, \psi, b_1, b_2, b_3 + \text{three multiplets} \alpha^i, \beta^i, \gamma^i.$

$G_2/SU(3)$ case

The three contributions to the effective potential have been determined in all cases in terms of the genuine Higgs fields, e.g. for $G_2/SU(3)$:

$$\begin{aligned} \underline{gravity}: \ V_{grav} &= -\frac{15}{\kappa^2} \frac{1}{R_1^2}, \\ \underline{gauge}: \ V_{gauge} &= \frac{\alpha'}{8\kappa^2} e^{-\frac{1}{2}\phi} \left(\frac{8}{R_1^4} - \frac{40}{3R_1^2} \beta^2 - \left[\frac{4}{R_1} d_{ijk} \beta^i \beta^j \beta^k + h.c \right] + \\ \beta^i \beta^j d_{ijk} d^{klm} \beta_l \beta_m + \frac{11}{4} \sum_{\alpha} \beta^i (G^{\alpha})_i^j \beta_j \beta^k (G^{\alpha})_k^l \beta_l \right), \\ \underline{H - flux}: \ V_H &= \frac{1}{\kappa^2} e^{-\phi} \left[\frac{b^2}{R_1^6} + \frac{\sqrt{2}}{R_1^3} i \alpha' b (d_{ijk} \beta^i \beta^j \beta^k - h.c.) + \\ 2\alpha'^2 \beta^i \beta^j \beta^k d_{ijk} d^{lmn} \beta_l \beta_m \beta_n + \frac{3}{R_1^2} \alpha'^2 (\beta^2)^2 - \frac{\sqrt{6}}{R_1} \alpha'^2 \beta^2 (d_{ijk} \beta^i \beta^j \beta^k + h.c.) \right]. \end{aligned}$$

▲ロ ▶ ▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ■ ● ● ● ●

4-dim sugra description

Determine the superpotential by the Gukov-Vafa-Witten formula: $W = \frac{1}{4} \int_{S/R} \Omega \wedge (\hat{H} + idJ)$

and the Kähler potential by special Kähler geometry: $K = K_S + K_T$, where $K_S = -ln(S + S^*)$ in terms of the superfield $S = e^{\phi} + i\theta$ and $K_T = -ln(\frac{1}{6}\int_{S/R} J \wedge J \wedge J)$

ヘロト 人間 とくほとくほとう

Note that there are no complex structure moduli.

Then:

• $G_2/SU(3)$ • $W = 3T_1 - \sqrt{2\alpha'} d_{ijk} B^i B^j B^k$ • $K = -ln(S + S^*)(T_1 + T_1^* - 2\alpha' B_i B^i)^3$ • $Sp_4/(SU(2) \times U(1))_{non-max}$ • $W = 2T_1 + T_2 - \sqrt{2\alpha'} d_{ijk} B^i B^j \Gamma^k$ • $K = -ln(S + S^*)(T_1 + T_1^* - 2\alpha' B_i B^i)^2(T_2 + T_2^* - 2\alpha' \Gamma_i \Gamma^i)$ • $SU(3)/U(1) \times U(1)$ • $W = T_1 + T_2 + T_3 - \sqrt{2\alpha'} d_{ijk} A^i B^j \Gamma^k$ • $K = -ln(S + S^*)(T_1 + T_1^* - 2\alpha' A_i A^i)(T_2 + T_2^* - 2\alpha' B_i B^i) \times (T_3 + T_3^* - 2\alpha' \Gamma_i \Gamma^i)$

with the superfields $T_1 = R_1^2 + ib_1 + \alpha'\beta^i\beta_i \dots$ and A, B, Γ the superfields of α, β, γ .

Conclusions

- The four-dimensional action resulting by dimensionally reducing the heterotic supergravity-Yang-Mills theory over nearly-Kähler manifolds has been derived.
- A detailed case by case analysis has been performed for all the homogeneous nearly-Kähler manifolds.
- Due to their simple geometry, nearly-Kähler manifolds provide interesting realizations of the general formalism of SU(3)-structure compactifications.