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• conceptual questions of quantum gravity in simplified theory
• Lorentzian case especially important: time, causality,...

• requires understanding of geometrical features

difficulties
• relation between variables in quantisation (holonomies, 
Wilson loops) and spacetime geometry (time,lengths,angles,..)
• getting physics from the theory

• what can observer in empty spacetime measure?

• how can observer distinguish different spacetimes ?

aim:
• clarify relation spacetime geometry - observables
• apply this to get interesting physics from the theory
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Geometry change via earthquake [Mess], 
[Thurston]ingredients • cocompact Fuchsian group Γ 
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➮ transformations on phase space Hom0(π1(M), P3)/P3

2 fundamental ways of changing spacetime geometry
• grafting: conf. static spacetime ➮ evolving spacetime

 cutting cct surfaces and inserting strip
~ translation associated with geodesic

• earthquake: conf. static spacetime ➮ conf.static spacetime
 cutting cct surfaces and rotating edges of cut
~ rotation associated with geodesic

[Goldman,C.M.]

The phase space transformations associated with grafting 
and earthquake along a closed geodesic λ on a cct-surface
are generated via the Poisson bracket by its two Wilson loop 
observables: the mass mλ generates grafting, the spin sλ  

generates earthquakes

[Goldman,
 C.M.]
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Measurements associated with returning lightrays

• allow observer to reconstruct full geometry of 
spacetime in finite eigentime

• are physically meaningful, similar to gravitational lensing

• relate spacetime geometry as perceived by observer to 
variables used in quantisation (holonomies)

• involve Wilson loop observables:                            
mass and spin arise canonically in measurements of 
special (comoving) observers

• provide a framework for investigation of conceptual 
questions of (quantum) gravity:

• measurements vs observables (partial observables)

• role of time and observers in (quantum) gravity

[C.M.]
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5. Outlook and conclusions
vacuum spacetimes in Lorentzian (2+1)-gravity with Λ=0
• rich and subtle geometry

• physical degrees of freedom:holonomies (up to conjugation)

• 2 fundamental geometry transformations (grafting and 
earthquake) generated via { , } by 2 Wilson loop 
observables (mass and spin)

relation geometry - observables

as function of holonomies 

• realistic measurements by observers associated with
returning lightrays: return time, directions, frequency shift

• Wilson loops (mass and spin) arise naturally
in these measurements

open questions  application to quantum theory !

• description via universal cover: quotient of domain  D ⊂ M3
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• in  3d: Ricci tensor determines curvature

• no local gravitational degrees of freedom
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Setting • Lorentzian (2+1)-gravity, Λ=0
• vacuum spacetimes: no matter
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