Geometry and observables in (2+1)-gravity

September 14 2009

2nd School and Workshop on Quantum Gravity and Quantum Geometry Corfu, September 13-20 2009

> Catherine Meusburger Department Mathematik Universität Hamburg Germany

(2+1)-gravity as toy model for quantum gravity

(2+1)-gravity as toy model for quantum gravity

conceptual questions of quantum gravity in simplified theory

(2+1)-gravity as toy model for quantum gravity

- conceptual questions of quantum gravity in simplified theory
- Lorentzian case especially important: time, causality,...

(2+1)-gravity as toy model for quantum gravity

- conceptual questions of quantum gravity in simplified theory
- Lorentzian case especially important: time, causality,...
- requires understanding of geometrical features

(2+1)-gravity as toy model for quantum gravity

- conceptual questions of quantum gravity in simplified theory
- Lorentzian case especially important: time, causality,...
- requires understanding of geometrical features

(2+1)-gravity as toy model for quantum gravity

- conceptual questions of quantum gravity in simplified theory
- Lorentzian case especially important: time, causality,...
- requires understanding of geometrical features

difficulties

 relation between variables in quantisation (holonomies, Wilson loops) and spacetime geometry (time,lengths,angles,..)

(2+1)-gravity as toy model for quantum gravity

- conceptual questions of quantum gravity in simplified theory
- Lorentzian case especially important: time, causality,...
- requires understanding of geometrical features

- relation between variables in quantisation (holonomies, Wilson loops) and spacetime geometry (time,lengths,angles,..)
- getting physics from the theory

(2+1)-gravity as toy model for quantum gravity

- conceptual questions of quantum gravity in simplified theory
- Lorentzian case especially important: time, causality,...
- requires understanding of geometrical features

- relation between variables in quantisation (holonomies, Wilson loops) and spacetime geometry (time,lengths,angles,..)
- getting physics from the theory
- what can observer in empty spacetime measure?

(2+1)-gravity as toy model for quantum gravity

- conceptual questions of quantum gravity in simplified theory
- Lorentzian case especially important: time, causality,...
- requires understanding of geometrical features

- relation between variables in quantisation (holonomies, Wilson loops) and spacetime geometry (time,lengths,angles,..)
- getting physics from the theory
- what can observer in empty spacetime measure?
- how can observer distinguish different spacetimes ?

(2+1)-gravity as toy model for quantum gravity

- conceptual questions of quantum gravity in simplified theory
- Lorentzian case especially important: time, causality,...
- requires understanding of geometrical features

difficulties

- relation between variables in quantisation (holonomies, Wilson loops) and spacetime geometry (time,lengths,angles,..)
- getting physics from the theory
- what can observer in empty spacetime measure?
- how can observer distinguish different spacetimes ?

aim:

(2+1)-gravity as toy model for quantum gravity

- conceptual questions of quantum gravity in simplified theory
- Lorentzian case especially important: time, causality,...
- requires understanding of geometrical features

difficulties

- relation between variables in quantisation (holonomies, Wilson loops) and spacetime geometry (time,lengths,angles,..)
- getting physics from the theory
- what can observer in empty spacetime measure?
- how can observer distinguish different spacetimes ?

aim:

clarify relation spacetime geometry - observables

(2+1)-gravity as toy model for quantum gravity

- conceptual questions of quantum gravity in simplified theory
- Lorentzian case especially important: time, causality,...
- requires understanding of geometrical features

difficulties

- relation between variables in quantisation (holonomies, Wilson loops) and spacetime geometry (time,lengths,angles,..)
- getting physics from the theory
- what can observer in empty spacetime measure?
- how can observer distinguish different spacetimes ?

aim:

- clarify relation spacetime geometry observables
- apply this to get interesting physics from the theory

1. Classification: vacuum spacetimes in Lorentzian (2+1)-gravity with $\Lambda=0$

- 1. Classification: vacuum spacetimes in Lorentzian (2+1)-gravity with $\Lambda=0$
- 2. The phase space

- 1. Classification: vacuum spacetimes in Lorentzian (2+1)-gravity with Λ =0
- 2. The phase space
- 3. Geometry of (2+1)-spacetimes

- 1. Classification: vacuum spacetimes in Lorentzian (2+1)-gravity with Λ =0
- 2. The phase space
- 3. Geometry of (2+1)-spacetimes

review

C.M.

- 1. Classification: vacuum spacetimes in Lorentzian (2+1)-gravity with Λ =0
- 2. The phase space
- 3. Geometry of (2+1)-spacetimes
- 4. Geometry change and Wilson loops

- 1. Classification: vacuum spacetimes in Lorentzian (2+1)-gravity with Λ =0
- 2. The phase space
- 3. Geometry of (2+1)-spacetimes
- 4.Geometry change and Wilson loops
- 5. Physics: measurements by observers

1. Classification: vacuum spacetimes in Lorentzian (2+1)-gravity with Λ =0

- 2. The phase space
- 3. Geometry of (2+1)-spacetimes
- 4.Geometry change and Wilson loops
- 5. Physics: measurements by observers
- 6. Outlook and conclusions

1. Classification: vacuum spacetimes in Lorentzian (2+1)-gravity with Λ =0

review

- 2. The phase space
- 3. Geometry of (2+1)-spacetimes
- 4.Geometry change and Wilson loops
- 5. Physics: measurements by observers
- 6. Outlook and conclusions

References:

- C. Meusburger, Commun. Math. Phys. 273, 705-754
- C. Meusburger, Commun. Math. Phys. 266 735-775
- C. Meusburger, Class. Quantum Grav. 26 055006

- - - - _____

1. Classification of vacuum spacetimes

[Mess, Barbot, Benedetti, Bonsante, Schlenker,...]

Setting

Setting • Lorentzian (2+1)-gravity, Λ =0

- **Setting** Lorentzian (2+1)-gravity, Λ=0
 - vacuum spacetimes: no matter

- **Setting** Lorentzian (2+1)-gravity, Λ=0
 - vacuum spacetimes: no matter
 - globally hyperbolic

- **Setting** Lorentzian (2+1)-gravity, Λ=0
 - vacuum spacetimes: no matter
 - globally hyperbolic
 - (almost) no closed, timelike curves

- **Setting** Lorentzian (2+1)-gravity, Λ=0
 - vacuum spacetimes: no matter
 - globally hyperbolic
 - (almost) no closed, timelike curves
 - future(**p**) \cap past(**q**) = compact \forall **p**,**q** \in M

- Setting
- Lorentzian (2+1)-gravity, Λ=0
 - vacuum spacetimes: no matter
 - globally hyperbolic
 - (almost) no closed, timelike curves
 - future(**p**) \cap past(**q**) = compact \forall **p**,**q** \in M

- **Setting**
- Lorentzian (2+1)-gravity, Λ=0
 - vacuum spacetimes: no matter
 - globally hyperbolic
 - (almost) no closed, timelike curves
 - future(**p**) \cap past(**q**) = compact \forall **p**,**q** \in M
 - $\Rightarrow M \approx \mathbb{R} \times S$

- Setting
- Lorentzian (2+1)-gravity, Λ=0
 - vacuum spacetimes: no matter
 - globally hyperbolic
 - (almost) no closed, timelike curves
 - future(**p**) \cap past(**q**) = compact \forall **p**,**q** \in M
 - \bullet maximally globally hyperbolic $\ \Rightarrow\ M\approx \mathbb{R}\times S$

q

p

- Lorentzian (2+1)-gravity, Λ=0
 - vacuum spacetimes: no matter
 - globally hyperbolic
 - (almost) no closed, timelike curves
 - future(**p**) \cap past(**q**) = compact \forall **p**,**q** \in M
 - maximally globally hyperbolic $\Rightarrow M \approx \mathbb{R} \times S$
 - complete Cauchy surface S

- **Setting** Lorentzian (2+1)-gravity, Λ=0
 - vacuum spacetimes: no matter
 - globally hyperbolic
 - (almost) no closed, timelike curves
 - future(**p**) \cap past(**q**) = compact \forall **p**,**q** \in M
 - maximally globally hyperbolic $\Rightarrow M \approx \mathbb{R} \times S$
 - complete Cauchy surface S

Description as quotient of universal cover

- **Setting** Lorentzian (2+1)-gravity, Λ=0
 - vacuum spacetimes: no matter
 - globally hyperbolic
 - (almost) no closed, timelike curves
 - future(**p**) \cap past(**q**) = compact \forall **p**,**q** \in M
 - maximally globally hyperbolic $\Rightarrow M \approx \mathbb{R} \times S$
 - complete Cauchy surface S

Description as quotient of universal cover

• region $D \subset \mathbb{M}^3$ (domain)

- **Setting** Lorentzian (2+1)-gravity, Λ =0
 - vacuum spacetimes: no matter
 - globally hyperbolic
 - (almost) no closed, timelike curves
 - future(**p**) \cap past(**q**) = compact \forall **p**,**q** \in M
 - maximally globally hyperbolic $\Rightarrow M \approx \mathbb{R} \times S$
 - complete Cauchy surface S

- region $D \subset \mathbb{M}^3$ (domain)
- group homomorphism $h: \pi_1(S) \to P_3$

- **Setting** Lorentzian (2+1)-gravity, Λ=0
 - vacuum spacetimes: no matter
 - globally hyperbolic
 - (almost) no closed, timelike curves
 - future(**p**) \cap past(**q**) = compact \forall **p**,**q** \in M
 - maximally globally hyperbolic $\Rightarrow M \approx \mathbb{R} \times S$
 - complete Cauchy surface S

- region $D \subset \mathbb{M}^3$ (domain)
- group homomorphism $h: \pi_1(S) \to P_3$
- holonomies: $\{h(\lambda)\}_{\lambda\in\pi_1(S)} \Leftrightarrow$ discrete subgroup $H \subset P_3$

- **Setting** Lorentzian (2+1)-gravity, Λ=0
 - vacuum spacetimes: no matter
 - globally hyperbolic
 - (almost) no closed, timelike curves
 - future(**p**) \cap past(**q**) = compact \forall **p**,**q** \in M
 - maximally globally hyperbolic $\Rightarrow M \approx \mathbb{R} \times S$
 - complete Cauchy surface S

- region $D \subset \mathbb{M}^3$ (domain)
- group homomorphism $h: \pi_1(S) \to P_3$
- holonomies: $\{h(\lambda)\}_{\lambda\in\pi_1(S)} \, \, \ \, \text{discrete subgroup} \, \, H \subset P_3$
- group action of $\pi_1(S)$ on $D \subset \mathbb{M}^3 \, \mathfrak{S}$ free, prop. discontinuous

- **Setting** Lorentzian (2+1)-gravity, Λ=0
 - vacuum spacetimes: no matter
 - globally hyperbolic
 - (almost) no closed, timelike curves
 - future(**p**) \cap past(**q**) = compact \forall **p**,**q** \in M
 - maximally globally hyperbolic $\Rightarrow M \approx \mathbb{R} \times S$
 - complete Cauchy surface S

- region $D \subset \mathbb{M}^3$ (domain)
- group homomorphism $h: \pi_1(S) \to P_3$
- holonomies: $\{h(\lambda)\}_{\lambda\in\pi_1(S)} \, \, \heartsuit \, \text{discrete subgroup} \, \, H \subset P_3$
- group action of $\pi_1(S)$ on $D \subset \mathbb{M}^3 \, \mathfrak{S}$ free, prop. discontinuous
- spacetime as quotient M = D/H

- **Setting** Lorentzian (2+1)-gravity, Λ=0
 - vacuum spacetimes: no matter
 - globally hyperbolic
 - (almost) no closed, timelike curves
 - future(**p**) \cap past(**q**) = compact \forall **p**,**q** \in M
 - maximally globally hyperbolic $\Rightarrow M \approx \mathbb{R} \times S$
 - complete Cauchy surface S

- region $D \subset \mathbb{M}^3$ (domain)
- group homomorphism $h: \pi_1(S) \to P_3$
- holonomies: $\{h(\lambda)\}_{\lambda\in\pi_1(S)} \, \, \ \,$ discrete subgroup $H \subset P_3$
- group action of $\pi_1(S)$ on $D \subset \mathbb{M}^3 \, \mathfrak{S}$ free, prop. discontinuous
- spacetime as quotient $M = D/H \, rac{r}$ metric from metric on \mathbb{M}^3

Classification: topology [Mess, Barbot]

Classification: topology [Mess, Barbot] case 1: regions in Minkowski space $\pi_1(S) = \{0\}$ Classification: topology [Mess, Barbot] domains case 1: regions in Minkowski space $\pi_1(S) = \{0\}$

Classification: topology [Mess, Barbot] case 1: regions in Minkowski space $\pi_1(S) = \{0\}$

domains

Classification: topology [Mess, Barbot] domains case 1: regions in Minkowski space $\pi_1(S) = \{0\}$ Classification: topology [Mess, Barbot] domains case 1: regions in Minkowski space $\pi_1(S) = \{0\}$ Classification: topology [Mess, Barbot] domains case 1: regions in Minkowski space $\pi_1(S) = \{0\}$ case 2: cylinder universe $\pi_1(S) = \mathbb{Z}$

case 3: torus universe $\pi_1(S) = \mathbb{Z} \oplus \mathbb{Z}$

 $\pi_1(S) \cong$ Fuchsian group $\subset SO^+(2,1)$

a) compact genus g≥2 surface $\pi_1(S) = \{a_1, b_1, ..., a_g, b_g \mid b_g a_g^{-1} b_g^{-1} a_g \cdots b_1 a_1^{-1} b_1^{-1} a_1 = 1\}$

domains **Classification: topology** [Mess, Barbot] case 1: regions in Minkowski space $\pi_1(S) = \{0\}$ case 2: cylinder universe $\pi_1(S) = \mathbb{Z}$ case 3: torus universe $\pi_1(S) = \mathbb{Z} \oplus \mathbb{Z}$ case 4: Riemann surface $\pi_1(S) \cong$ Fuchsian group $\subset SO^+(2,1)$ a) compact genus g≥2 surface $\pi_1(S) = \{a_1, b_1, \dots, a_g, b_g \mid b_g a_g^{-1} b_g^{-1} a_g \cdots b_1 a_1^{-1} b_1^{-1} a_1 = 1\}$ conformally static

phase space [Mess]

• group homomorphism $h : \pi_1(S) \to P_3$ (holonomies) determines spacetime completely

- group homomorphism $h : \pi_1(S) \to P_3$ (holonomies) determines spacetime completely
- spacetimes isometric iff holonomies related by conjugation with constant element $h_0 \in P_3$

- group homomorphism $h : \pi_1(S) \to P_3$ (holonomies) determines spacetime completely
- spacetimes isometric iff holonomies related by conjugation with constant element $h_0 \in P_3$
- every group homomorphism $h: \pi_1(S) \to P_3$ whose Lorentzian component is Fuchsian of genus g gives rise to a spacetime

- group homomorphism $h : \pi_1(S) \to P_3$ (holonomies) determines spacetime completely
- spacetimes isometric iff holonomies related by conjugation with constant element $h_0 \in P_3$
- every group homomorphism $h: \pi_1(S) \to P_3$ whose Lorentzian component is Fuchsian of genus g gives rise to a spacetime

```
\triangleright phase space \mathcal{P} = \operatorname{Hom}_0(\pi_1(S), P_3)/P_3 = T^*\tau_g
```

phase space [Mess]

- group homomorphism $h : \pi_1(S) \to P_3$ (holonomies) determines spacetime completely
- spacetimes isometric iff holonomies related by conjugation with constant element $h_0 \in P_3$
- every group homomorphism $h: \pi_1(S) \to P_3$ whose Lorentzian component is Fuchsian of genus g gives rise to a spacetime

$$\triangleright$$
 phase space $\mathcal{P} = \operatorname{Hom}_0(\pi_1(S), P_3)/P_3 = T^*\tau_g$

Dirac observables conjugation inv. functions of holonomies

phase space [Mess]

- group homomorphism $h : \pi_1(S) \to P_3$ (holonomies) determines spacetime completely
- spacetimes isometric iff holonomies related by conjugation with constant element $h_0 \in P_3$
- every group homomorphism $h: \pi_1(S) \to P_3$ whose Lorentzian component is Fuchsian of genus g gives rise to a spacetime

 \triangleright phase space $\mathcal{P} = \operatorname{Hom}_0(\pi_1(S), P_3)/P_3 = T^*\tau_g$

Dirac observables conjugation inv. functions of holonomies

 \Rightarrow complete set of diffeomorphism invariant observables: Wilson loops : 2 fundamental Wilson loops for $\lambda \in \pi_1(M)$

phase space [Mess]

- group homomorphism $h : \pi_1(S) \to P_3$ (holonomies) determines spacetime completely
- spacetimes isometric iff holonomies related by conjugation with constant element $h_0 \in P_3$
- every group homomorphism $h: \pi_1(S) \to P_3$ whose Lorentzian component is Fuchsian of genus g gives rise to a spacetime
- \triangleright phase space $\mathcal{P} = \operatorname{Hom}_0(\pi_1(S), P_3)/P_3 = T^*\tau_g$

Dirac observables conjugation inv. functions of holonomies

⇒ complete set of diffeomorphism invariant observables: Wilson loops : 2 fundamental Wilson loops for $\lambda \in \pi_1(M)$ $h(\lambda) = (\exp(n_{\lambda}^a J_a), \mathbf{a}_{\lambda})$

phase space [Mess]

- group homomorphism $h : \pi_1(S) \to P_3$ (holonomies) determines spacetime completely
- spacetimes isometric iff holonomies related by conjugation with constant element $h_0 \in P_3$
- every group homomorphism $h: \pi_1(S) \to P_3$ whose Lorentzian component is Fuchsian of genus g gives rise to a spacetime
- \triangleright phase space $\mathcal{P} = \operatorname{Hom}_0(\pi_1(S), P_3)/P_3 = T^*\tau_g$

Dirac observables conjugation inv. functions of holonomies

⇒ complete set of diffeomorphism invariant observables: Wilson loops : 2 fundamental Wilson loops for $\lambda \in \pi_1(M)$ $h(\lambda) = (\exp(n_{\lambda}^a J_a), \mathbf{a}_{\lambda})$ mass $m : \lambda \mapsto m_{\lambda} = |\mathbf{n}_{\lambda}|$
2. The phase space for genus g≥2 [Mess]

phase space [Mess]

- group homomorphism $h : \pi_1(S) \to P_3$ (holonomies) determines spacetime completely
- spacetimes isometric iff holonomies related by conjugation with constant element $h_0 \in P_3$
- every group homomorphism $h: \pi_1(S) \to P_3$ whose Lorentzian component is Fuchsian of genus g gives rise to a spacetime
- \triangleright phase space $\mathcal{P} = \operatorname{Hom}_0(\pi_1(S), P_3)/P_3 = T^*\tau_g$

Dirac observables conjugation inv. functions of holonomies

 $\Rightarrow \text{ complete set of diffeomorphism invariant observables:} \\ \text{Wilson loops} : 2 \text{ fundamental Wilson loops for } \lambda \in \pi_1(M) \\ h(\lambda) = (\exp(n_{\lambda}^a J_a), \mathbf{a}_{\lambda}) \\ \text{mass } m : \lambda \mapsto m_{\lambda} = |\mathbf{n}_{\lambda}| \qquad \text{spin } s : \lambda \mapsto s_{\lambda} = \hat{\mathbf{n}}_{\lambda} \cdot \mathbf{a}_{\lambda} \end{cases}$

Conformally static spacetimes of genus g≥2

Conformally static spacetimes of genus g≥2 domain

- Conformally static spacetimes of genus g≥2
- domain
- interior of future lightcone based at $\mathbf{p} \in \mathbb{M}^3$

Conformally static spacetimes of genus g≥2

domain

- interior of future lightcone based at $\mathbf{p} \in \mathbb{M}^3$
- initial singularity: boundary of lightcone

Conformally static spacetimes of genus g≥2

domain

- interior of future lightcone based at $p\in \mathbb{M}^3$
- initial singularity: boundary of lightcone
- cosmological time: $T(\mathbf{q}) = \sup\{l(c) \mid c(0) \in \partial D, c(1) = p, c \text{ timelike}\} = d(\mathbf{p}, \mathbf{q})$

Conformally static spacetimes of genus g≥2

domain

- interior of future lightcone based at $p\in \mathbb{M}^3$
- initial singularity: boundary of lightcone
- cosmological time: $T(\mathbf{q}) = \sup\{l(c) \mid c(0) \in \partial D, c(1) = p, c \text{ timelike}\} = d(\mathbf{p}, \mathbf{q})$
- •foliation of domain by surfaces of constant cosmological time: hyperboloids $T \cdot \mathbb{H}^2$

3. Geometry of (2+1)-spacetimes [Mess, Barbot ,Benedetti, Bonsante, Schlenker,...]

domain

- interior of future lightcone based at $\mathbf{p} \in \mathbb{M}^3$ $T \cdot \mathbb{H}^2$
- initial singularity: boundary of lightcone
- cosmological time: $T(\mathbf{q}) = \sup\{l(c) \mid c(0) \in \partial D, c(1) = p, c \text{ timelike}\} = d(\mathbf{p}, \mathbf{q})$
- •foliation of domain by surfaces of constant cosmological time: hyperboloids $T \cdot \mathbb{H}^2$

 \mathbf{p}

3. Geometry of (2+1)-spacetimes [Mess, Barbot ,Benedetti, Bonsante, Schlenker,...]

domain

- interior of future lightcone based at $\mathbf{p} \in \mathbb{M}^3$ $T \cdot \mathbb{H}^2$
- initial singularity: boundary of lightcone
- cosmological time: $T(\mathbf{q}) = \sup\{l(c) \mid c(0) \in \partial D, c(1) = p, c \text{ timelike}\} = d(\mathbf{p}, \mathbf{q})$
- •foliation of domain by surfaces of constant cosmological time: hyperboloids $T \cdot \mathbb{H}^2$

 \mathbf{p}

group homomorphism (holonomies) $h(\lambda) = (1, \mathbf{p})(v_{\lambda}, 0)(1, -\mathbf{p})$

3. Geometry of (2+1)-spacetimes [Mess, Barbot ,Benedetti, Bonsante, Schlenker,...]

domain

- interior of future lightcone based at $\mathbf{p} \in \mathbb{M}^3$ $T \cdot \mathbb{H}^2$
- initial singularity: boundary of lightcone
- cosmological time: $T(\mathbf{q}) = \sup\{l(c) \mid c(0) \in \partial D, c(1) = p, c \text{ timelike}\} = d(\mathbf{p}, \mathbf{q})$
- •foliation of domain by surfaces of constant cosmological time: hyperboloids $T \cdot \mathbb{H}^2$

р

group homomorphism (holonomies) $h(\lambda) = (1, \mathbf{p})(v_{\lambda}, 0)(1, -\mathbf{p})$

translation component: conjugation with constant vector p

3. Geometry of (2+1)-spacetimes [Mess, Barbot ,Benedetti, Bonsante, Schlenker,...]

domain

- interior of future lightcone based at $\mathbf{p} \in \mathbb{M}^3$ $T \cdot \mathbb{H}^2$
- initial singularity: boundary of lightcone
- cosmological time: $T(\mathbf{q}) = \sup\{l(c) \mid c(0) \in \partial D, c(1) = p, c \text{ timelike}\} = d(\mathbf{p}, \mathbf{q})$
- •foliation of domain by surfaces of constant cosmological time: hyperboloids $T\cdot \mathbb{H}^2$

р

group homomorphism (holonomies) $h(\lambda) = (1, \mathbf{p})(v_{\lambda}, 0)(1, -\mathbf{p})$

- translation component: conjugation with constant vector p
- $\Rightarrow \text{Lorentzian part} = \text{cocompact Fuchsian group of genus g}$ $\Gamma = \langle v_{a_1}, v_{b_1}, ... v_{a_g}, v_{b_g} \mid [v_{b_g}, v_{a_g}^{-1}] \cdots [v_{b_1}, v_{a_1}^{-1}] = 1 \rangle \subset PSL(2, \mathbb{R}) \cong SO_0^+(2, 1)$

3. Geometry of (2+1)-spacetimes [Mess, Barbot ,Benedetti, Bonsante, Schlenker,...]

domain

- interior of future lightcone based at $\mathbf{p} \in \mathbb{M}^3$ $T \cdot \mathbb{H}^2$
- initial singularity: boundary of lightcone
- cosmological time: $T(\mathbf{q}) = \sup\{l(c) \mid c(0) \in \partial D, c(1) = p, c \text{ timelike}\} = d(\mathbf{p}, \mathbf{q})$
- •foliation of domain by surfaces of constant cosmological time: hyperboloids $T\cdot \mathbb{H}^2$

р

group homomorphism (holonomies) $h(\lambda) = (1, \mathbf{p})(v_{\lambda}, 0)(1, -\mathbf{p})$

- translation component: conjugation with constant vector p
- ⇒ Lorentzian part = cocompact Fuchsian group of genus g $\Gamma = \langle v_{a_1}, v_{b_1}, ... v_{a_g}, v_{b_g} | [v_{b_g}, v_{a_g}^{-1}] \cdots [v_{b_1}, v_{a_1}^{-1}] = 1 \rangle \subset PSL(2, \mathbb{R}) \cong SO_0^+(2, 1)$ ⇒ action of $\pi_1(S)$ on $D \subset \mathbb{M}^3$ preserves cct-surfaces

- on each cct-surface = canonical action of Γ on \mathbb{H}^2

- on each cct-surface = canonical action of Γ on \mathbb{H}^2
- free, properly discontinuous

- on each cct-surface = canonical action of Γ on \mathbb{H}^2
- free, properly discontinuous
- tesselation of \mathbb{H}^2 by geodesic arc 4g-gons

- on each cct-surface = canonical action of Γ on \mathbb{H}^2
- free, properly discontinuous tesselation of \mathbb{H}^2 by geodesic arc 4g-gons

- on each cct-surface = canonical action of Γ on \mathbb{H}^2
- free, properly discontinuous tesselation of \mathbb{H}^2 by geodesic arc 4g-gons

- on each cct-surface = canonical action of Γ on \mathbb{H}^2
- free, properly discontinuous
- tesselation of \mathbb{H}^2 by geodesic arc 4g-gons

- on each cct-surface = canonical action of Γ on \mathbb{H}^2
- free, properly discontinuous
- tesselation of \mathbb{H}^2 by geodesic arc 4g-gons

• by identifying on each cct-surface points related by Γ

- on each cct-surface = canonical action of Γ on \mathbb{H}^2
- free, properly discontinuous
- tesselation of \mathbb{H}^2 by geodesic arc 4g-gons

- by identifying on each cct-surface points related by Γ
- quotient of cct-surface: Riemann surface

- on each cct-surface = canonical action of Γ on \mathbb{H}^2
- free, properly discontinuous
- tesselation of \mathbb{H}^2 by geodesic arc 4g-gons

- by identifying on each cct-surface points related by Γ
- quotient of cct-surface: Riemann surface

- on each cct-surface = canonical action of Γ on \mathbb{H}^2
- free, properly discontinuous
- tesselation of \mathbb{H}^2 by geodesic arc 4g-gons

- by identifying on each cct-surface points related by Γ
- quotient of cct-surface: Riemann surface
- quotient spacetime conformally static

- on each cct-surface = canonical action of Γ on \mathbb{H}^2
- free, properly discontinuous
- tesselation of \mathbb{H}^2 by geodesic arc 4g-gons

- \bullet by identifying on each cct-surface points related by Γ
- quotient of cct-surface: Riemann surface
- quotient spacetime conformally static

$$M = \bigcup_{T \in \mathbb{R}^+} T \cdot \Sigma_g$$

- on each cct-surface = canonical action of Γ on \mathbb{H}^2
- free, properly discontinuous
- tesselation of \mathbb{H}^2 by geodesic arc 4g-gons

- by identifying on each cct-surface points related by Γ
- quotient of cct-surface: Riemann surface
- quotient spacetime conformally static

$$M = \bigcup_{T \in \mathbb{R}^+} T \cdot \Sigma_g \qquad \qquad g_M = -dT^2 + T^2 g_{\Sigma_g}$$

Evolving spacetimes via grafting [Mess], Ingredients [Thurston]

ingredients

cocompact Fuchsian group Γ

ingredients

- cocompact Fuchsian group Γ
- measured geodesic lamination on Riemann surface $\Sigma_g = \mathbb{H}^2 / \Gamma$

ingredients

- cocompact Fuchsian group Γ
- measured geodesic lamination on Riemann surface $\Sigma_g = \mathbb{H}^2 / \Gamma$ (simplest case:

multicurve = non-intersecting closed, weighted geodesics on Σ_g)

ingredients

- cocompact Fuchsian group Γ
- measured geodesic lamination on Riemann surface $\Sigma_g = \mathbb{H}^2 / \Gamma$ (simplest case:
- multicurve = non-intersecting closed, weighted geodesics on Σ_g)

grafting on a Riemann surface

ingredients

- cocompact Fuchsian group Γ
- measured geodesic lamination on Riemann surface $\Sigma_g = \mathbb{H}^2 / \Gamma$ (simplest case:
- multicurve = non-intersecting closed, weighted geodesics on Σ_g)

grafting on a Riemann surface

gluing in strips along geodesics in multicurve, width=weight

ingredients

- cocompact Fuchsian group Γ
- measured geodesic lamination on Riemann surface $\Sigma_g = \mathbb{H}^2 / \Gamma$ (simplest case:
- multicurve = non-intersecting closed, weighted geodesics on Σ_g)

grafting on a Riemann surface

gluing in strips along geodesics in multicurve, width=weight

ingredients

- cocompact Fuchsian group Γ
- measured geodesic lamination on Riemann surface $\Sigma_g = \mathbb{H}^2 / \Gamma$ (simplest case:
- multicurve = non-intersecting closed, weighted geodesics on Σ_g)

grafting on a Riemann surface

gluing in strips along geodesics in multicurve, width=weight

grafting (2+1)-spacetimes

W.

ingredients

- cocompact Fuchsian group Γ
- measured geodesic lamination on Riemann surface $\Sigma_g = \mathbb{H}^2 / \Gamma$ (simplest case:
- multicurve = non-intersecting closed, weighted geodesics on Σ_g)

grafting on a Riemann surface

gluing in strips along geodesics in multicurve, width=weight

grafting (2+1)-spacetimes

 grafting simultaneously on each cct-surface of static spacetime

Evolving spacetimes via grafting [Mess], [Thurston]

ingredients

- cocompact Fuchsian group Γ
- measured geodesic lamination on Riemann surface $\Sigma_g = \mathbb{H}^2 / \Gamma$ (simplest case:
- multicurve = non-intersecting closed, weighted geodesics on Σ_g)

grafting on a Riemann surface

gluing in strips along geodesics in multicurve, width=weight

grafting (2+1)-spacetimes

- grafting simultaneously on each cct-surface of static spacetime
- width of the strips constant (given by weights)

Grafting in the domain

[Mess,Thurston, Benedetti, Bonsante,...]

1.lift geodesic g_{Σ} on $\Sigma = \mathbb{H}^2/\Gamma$ to multicurve $\{h(\lambda)g \mid g \text{ lift of } g_{\Sigma}, \lambda \in \pi_1(S)\}$

- 1.lift geodesic g_{Σ} on $\Sigma = \mathbb{H}^2/\Gamma$ to multicurve $\{h(\lambda)g \mid g \text{ lift of } g_{\Sigma}, \lambda \in \pi_1(S)\}$
- 2. select basepoint **q** outside of lifted geodesics

- 1.lift geodesic g_{Σ} on $\Sigma = \mathbb{H}^2/\Gamma$ to multicurve $\{h(\lambda)g \mid g \text{ lift of } g_{\Sigma}, \lambda \in \pi_1(S)\}$
- 2. select basepoint **q** outside of lifted geodesics
- 3. cut lightcone along planes defined by geodesics in multicurve

- 1.lift geodesic g_{Σ} on $\Sigma = \mathbb{H}^2/\Gamma$ to multicurve $\{h(\lambda)g \mid g \text{ lift of } g_{\Sigma}, \lambda \in \pi_1(S)\}$
- 2. select basepoint **q** outside of lifted geodesics
- 3. cut lightcone along planes defined by geodesics in multicurve

- 1.lift geodesic g_{Σ} on $\Sigma = \mathbb{H}^2/\Gamma$ to multicurve $\{h(\lambda)g \mid g \text{ lift of } g_{\Sigma}, \lambda \in \pi_1(S)\}$
- 2. select basepoint **q** outside of lifted geodesics
- 3. cut lightcone along planes defined by geodesics in multicurve
- 4.translate pieces away from basepoint in the direction of the planes' normal vectors by a distance given by weights

- 1.lift geodesic g_{Σ} on $\Sigma = \mathbb{H}^2/\Gamma$ to multicurve $\{h(\lambda)g \mid g \text{ lift of } g_{\Sigma}, \lambda \in \pi_1(S)\}$
- 2. select basepoint \mathbf{q} outside of lifted geodesics
- 3. cut lightcone along planes defined by geodesics in multicurve
- 4.translate pieces away from basepoint in the direction of the planes' normal vectors by a distance given by weights

[Mess,Thurston, Benedetti, Bonsante,...]

- 1.lift geodesic g_{Σ} on $\Sigma = \mathbb{H}^2/\Gamma$ to multicurve $\{h(\lambda)g \mid g \text{ lift of } g_{\Sigma}, \lambda \in \pi_1(S)\}$
- 2. select basepoint \mathbf{q} outside of lifted geodesics
- 3. cut lightcone along planes defined by geodesics in multicurve
- 4.translate pieces away from basepoint in the direction of the planes' normal vectors by a distance given by weights

5. join pieces by straight lines

[Mess,Thurston, Benedetti, Bonsante,...]

- 1.lift geodesic g_{Σ} on $\Sigma = \mathbb{H}^2/\Gamma$ to multicurve $\{h(\lambda)g \mid g \text{ lift of } g_{\Sigma}, \lambda \in \pi_1(S)\}$
- 2. select basepoint **q** outside of lifted geodesics
- 3. cut lightcone along planes defined by geodesics in multicurve
- 4.translate pieces away from basepoint in the direction of the planes' normal vectors by a distance given by weights

5. join pieces by straight lines

• future of graph (infinite spacelike tree)

- future of graph (infinite spacelike tree)
- deformed initial singularity

- future of graph (infinite spacelike tree)
- deformed initial singularity
- foliation by deformed hyperboloids: cct-surfaces with respect to deformed singularity

- future of graph (infinite spacelike tree)
- deformed initial singularity
- foliation by deformed hyperboloids:
 cct-surfaces with respect to deformed singularity

- future of graph (infinite spacelike tree)
- deformed initial singularity
- foliation by deformed hyperboloids:
 cct-surfaces with respect to deformed singularity

group homomorphism $h: \pi_1(S) \to P_3$

- future of graph (infinite spacelike tree)
- deformed initial singularity
- foliation by deformed hyperboloids:
 cct-surfaces with respect to deformed singularity

group homomorphism $h: \pi_1(S) \to P_3$

non-trivial translational component

- future of graph (infinite spacelike tree)
- deformed initial singularity
- foliation by deformed hyperboloids:
 cct-surfaces with respect to deformed singularity

group homomorphism $h: \pi_1(S) \to P_3$

non-trivial translational component

static $h(\lambda) = (v, 0)$ grafted $h(\lambda) = (v, t(\lambda))$

- future of graph (infinite spacelike tree)
- deformed initial singularity
- foliation by deformed hyperboloids:
 cct-surfaces with respect to deformed singularity

group homomorphism $h: \pi_1(S) \to P_3$

non-trivial translational component

static $h(\lambda) = (v, 0)$ grafted $h(\lambda) = (v, t(\lambda))$

- future of graph (infinite spacelike tree)
- deformed initial singularity
- foliation by deformed hyperboloids:
 cct-surfaces with respect to deformed singularity

group homomorphism $h: \pi_1(S) \to P_3$

non-trivial translational component

static $h(\lambda) = (v, 0)$ grafted $h(\lambda) = (v, t(\lambda))$

- future of graph (infinite spacelike tree)
- deformed initial singularity
- foliation by deformed hyperboloids:
 cct-surfaces with respect to deformed singularity

group homomorphism $h: \pi_1(S) \to P_3$

non-trivial translational component

static $h(\lambda) = (v, 0)$ grafted $h(\lambda) = (v, t(\lambda))$

preserves deformed cct-surfaces

- future of graph (infinite spacelike tree)
- deformed initial singularity
- foliation by deformed hyperboloids:
 cct-surfaces with respect to deformed singularity

group homomorphism $h: \pi_1(S) \to P_3$

non-trivial translational component

static $h(\lambda) = (v, 0)$ grafted $h(\lambda) = (v, t(\lambda))$

preserves deformed cct-surfaces

quotient spacetime

- future of graph (infinite spacelike tree)
- deformed initial singularity
- foliation by deformed hyperboloids:
 cct-surfaces with respect to deformed singularity

group homomorphism $h: \pi_1(S) \to P_3$

non-trivial translational component

static $h(\lambda) = (v, 0)$ grafted $h(\lambda) = (v, t(\lambda))$

preserves deformed cct-surfaces

quotient spacetime

quotient: deformed domain / deformed group action

- future of graph (infinite spacelike tree)
- deformed initial singularity
- foliation by deformed hyperboloids:
 cct-surfaces with respect to deformed singularity

group homomorphism $h: \pi_1(S) \to P_3$

non-trivial translational component

static $h(\lambda) = (v, 0)$ grafted $h(\lambda) = (v, t(\lambda))$

preserves deformed cct-surfaces

quotient spacetime

- quotient: deformed domain / deformed group action
- geometry of cct-surfaces changes with cosmological time

Evolution with the cosmological time

[Mess], [Thurston]

Geometry change via earthquake [Main state of the state

[Mess], [Thurston]

Geometry change via earthquake [Mess], ingredients • cocompact Fuchsian group Γ [Thurston]

ingredients • cocompact Fuchsian group Γ [Thurston]

• measured geodesic lamination on Riemann surface $\Sigma_g = \mathbb{H}^2 / \Gamma$

Geometry change via earthquake [Mess], **ingredients** • cocompact Fuchsian group Γ [Thurston] • measured geodesic lamination on Riemann surface $\Sigma_g = \mathbb{H}^2/\Gamma$ (simplest case: multicurve on Σ_g)

ingredients • cocompact Fuchsian group Γ [Thurston]

• measured geodesic lamination on Riemann surface $\Sigma_g = \mathbb{H}^2/\Gamma$ (simplest case: multicurve on Σ_g)

earthquake on a Riemann surface

ingredients • cocompact Fuchsian group Γ

• measured geodesic lamination on Riemann surface $\Sigma_g = \mathbb{H}^2/\Gamma$ (simplest case: multicurve on Σ_g)

[Thurston]

earthquake on a Riemann surface cutting surface along geodesics rotating edges by angle=weight

ingredients • cocompact Fuchsian group Γ

• measured geodesic lamination on Riemann surface $\Sigma_g = \mathbb{H}^2/\Gamma$ (simplest case: multicurve on Σ_g)

earthquake on a Riemann surface cutting surface along geodesics rotating edges by angle=weight

[Thurston]

ingredients • cocompact Fuchsian group Γ

• measured geodesic lamination on Riemann surface $\Sigma_g = \mathbb{H}^2/\Gamma$ (simplest case: multicurve on Σ_g)

earthquake on a Riemann surface
cutting surface along geodesics
rotating edges by angle=weight
earthquake on (2+1)-spacetimes

[Thurston]

ingredients • cocompact Fuchsian group Γ

• measured geodesic lamination on Riemann surface $\Sigma_g = \mathbb{H}^2/\Gamma$ (simplest case: multicurve on Σ_g)

earthquake on a Riemann surface cutting surface along geodesics rotating edges by angle=weight

[Thurston]

earthquake on (2+1)-spacetimes

earthquake simultaneously on each cct-surface of static spacetime (angles=constant)
ingredients • cocompact Fuchsian group Γ

• measured geodesic lamination on Riemann surface $\Sigma_g = \mathbb{H}^2/\Gamma$ (simplest case: multicurve on Σ_g)

earthquake on a Riemann surface cutting surface along geodesics rotating edges by angle=weight

[Thurston]

earthquake on (2+1)-spacetimes
earthquake simultaneously on each
cct-surface of static spacetime (angles=constant)

ingredients • cocompact Fuchsian group Γ

• measured geodesic lamination on Riemann surface $\Sigma_g = \mathbb{H}^2/\Gamma$ (simplest case: multicurve on Σ_g)

earthquake on a Riemann surface cutting surface along geodesics rotating edges by angle=weight

[Thurston]

earthquake on (2+1)-spacetimes
earthquake simultaneously on each
cct-surface of static spacetime (angles=constant)

construction in domain

1.lift geodesic g_{Σ} on $\Sigma = \mathbb{H}^2 / \Gamma$ to multicurve

ingredients • cocompact Fuchsian group Γ

• measured geodesic lamination on Riemann surface $\Sigma_g = \mathbb{H}^2/\Gamma$ (simplest case: multicurve on Σ_g)

earthquake on a Riemann surface cutting surface along geodesics rotating edges by angle=weight

[Thurston]

earthquake on (2+1)-spacetimes earthquake simultaneously on each cct-surface of static spacetime (angles=constant)

- 1.lift geodesic g_{Σ} on $\Sigma = \mathbb{H}^2 / \Gamma$ to multicurve
- 2. select basepoint **q** outside of lifted geodesics

ingredients • cocompact Fuchsian group Γ

• measured geodesic lamination on Riemann surface $\Sigma_g = \mathbb{H}^2/\Gamma$ (simplest case: multicurve on Σ_g)

earthquake on a Riemann surface cutting surface along geodesics rotating edges by angle=weight

[Thurston]

earthquake on (2+1)-spacetimes earthquake simultaneously on each cct-surface of static spacetime (angles=constant)

- 1.lift geodesic g_{Σ} on $\Sigma = \mathbb{H}^2 / \Gamma$ to multicurve
- 2. select basepoint **q** outside of lifted geodesics
- 3. cut lightcone along planes defined by geodesics in multicurve

ingredients • cocompact Fuchsian group Γ

• measured geodesic lamination on Riemann surface $\Sigma_g = \mathbb{H}^2/\Gamma$ (simplest case: multicurve on Σ_g)

earthquake on a Riemann surface cutting surface along geodesics rotating edges by angle=weight

[Thurston]

earthquake on (2+1)-spacetimes earthquake simultaneously on each cct-surface of static spacetime (angles=constant)

- 1.lift geodesic g_{Σ} on $\Sigma = \mathbb{H}^2 / \Gamma$ to multicurve
- 2. select basepoint **q** outside of lifted geodesics
- 3. cut lightcone along planes defined by geodesics in multicurve

ingredients • cocompact Fuchsian group Γ

• measured geodesic lamination on Riemann surface $\Sigma_g = \mathbb{H}^2/\Gamma$ (simplest case: multicurve on Σ_g)

earthquake on a Riemann surface cutting surface along geodesics rotating edges by angle=weight

[Thurston]

earthquake on (2+1)-spacetimes earthquake simultaneously on each cct-surface of static spacetime (angles=constant)

- 1.lift geodesic g_{Σ} on $\Sigma = \mathbb{H}^2/\Gamma$ to multicurve
- 2. select basepoint **q** outside of lifted geodesics
- 3. cut lightcone along planes defined by geodesics in multicurve
- 4.apply Lorentz boost which preserves these planes to pieces that do not contain the basepoint

ingredients • cocompact Fuchsian group Γ

• measured geodesic lamination on Riemann surface $\Sigma_g = \mathbb{H}^2/\Gamma$ (simplest case: multicurve on Σ_g)

earthquake on a Riemann surface cutting surface along geodesics rotating edges by angle=weight

earthquake on (2+1)-spacetimes
earthquake simultaneously on each
cct-surface of static spacetime (angles=constant)

construction in domain

- 1.lift geodesic g_{Σ} on $\Sigma = \mathbb{H}^2 / \Gamma$ to multicurve
- 2. select basepoint **q** outside of lifted geodesics
- 3. cut lightcone along planes defined by geodesics in multicurve
- 4.apply Lorentz boost which preserves these planes to pieces that do not contain the basepoint

[Thurston]

v'q

domain and cct-surfaces preserved under earthquake

- domain and cct-surfaces preserved under earthquake
- resulting spacetime = conformally static

- domain and cct-surfaces preserved under earthquake
- resulting spacetime = conformally static
- points moved inside each cct-surface

- domain and cct-surfaces preserved under earthquake
- resulting spacetime = conformally static
- points moved inside each cct-surface

- domain and cct-surfaces preserved under earthquake
- resulting spacetime = conformally static
- points moved inside each cct-surface

group homomorphism $h: \pi_1(S) \to P_3$

translational component remains trivial

- domain and cct-surfaces preserved under earthquake
- resulting spacetime = conformally static
- points moved inside each cct-surface

- translational component remains trivial
- Lorentzian component changes

- domain and cct-surfaces preserved under earthquake
- resulting spacetime = conformally static
- points moved inside each cct-surface

- translational component remains trivial
- Lorentzian component changes

- domain and cct-surfaces preserved under earthquake
- resulting spacetime = conformally static
- points moved inside each cct-surface

- translational component remains trivial
- Lorentzian component changes

$$h(\lambda) = (v, 0)$$

$$h'(\lambda) = \prod_{\substack{g_i \cap [\mathbf{q}, v\mathbf{q}] \neq 0}} (\exp(2\pi w_i n_i^a J_a), 0) \cdot (v, 0)$$

- domain and cct-surfaces preserved under earthquake
- resulting spacetime = conformally static
- points moved inside each cct-surface

group homomorphism $h: \pi_1(S) \to P_3$

- translational component remains trivial
- Lorentzian component changes

$$h(\lambda) = (v, 0)$$

$$h'(\lambda) = \prod_{g_i \cap [\mathbf{q}, v\mathbf{q}] \neq 0} (\exp(2\pi w_i n_i^a J_a), 0) \cdot (v, 0)$$

• change of Fuchsian group $\Gamma = h(\pi_1(S)) \mapsto \Gamma' = h'(\pi_1(S))$

- domain and cct-surfaces preserved under earthquake
- resulting spacetime = conformally static
- points moved inside each cct-surface

group homomorphism $h: \pi_1(S) \to P_3$

- translational component remains trivial
- Lorentzian component changes

$$h(\lambda) = (v, 0)$$

$$h'(\lambda) = \prod_{g_i \cap [\mathbf{q}, v\mathbf{q}] \neq 0} (\exp(2\pi w_i n_i^a J_a), 0) \cdot (v, 0)$$

• change of Fuchsian group $\Gamma = h(\pi_1(S)) \mapsto \Gamma' = h'(\pi_1(S))$

quotient spacetime

- domain and cct-surfaces preserved under earthquake
- resulting spacetime = conformally static
- points moved inside each cct-surface

group homomorphism $h: \pi_1(S) \to P_3$

- translational component remains trivial
- Lorentzian component changes

$$h(\lambda) = (v, 0)$$

$$h'(\lambda) = \prod_{g_i \cap [\mathbf{q}, v\mathbf{q}] \neq 0} (\exp(2\pi w_i n_i^a J_a), 0) \cdot (v, 0)$$

• change of Fuchsian group $\Gamma = h(\pi_1(S)) \mapsto \Gamma' = h'(\pi_1(S))$

$g_i = \mathbf{n}_i^{\perp} \cap \mathbb{H}^2$

quotient spacetime

conformally static spacetime for different Fuchsian group

2 fundamental ways of changing spacetime geometry

- 2 fundamental ways of changing spacetime geometry
- grafting: conf. static spacetime > evolving spacetime

2 fundamental ways of changing spacetime geometry

grafting: conf. static spacetime
 evolving spacetime
 cutting cct surfaces and inserting strip

2 fundamental ways of changing spacetime geometry

 grafting: conf. static spacetime
 evolving spacetime cutting cct surfaces and inserting strip
 ~ translation associated with geodesic

2 fundamental ways of changing spacetime geometry

- grafting: conf. static spacetime > evolving spacetime cutting cct surfaces and inserting strip
 translation associated with geodesic
- earthquake: conf. static spacetime
 conf.static spacetime

2 fundamental ways of changing spacetime geometry

 grafting: conf. static spacetime
 evolving spacetime cutting cct surfaces and inserting strip
 ~ translation associated with geodesic

earthquake: conf. static spacetime
 conf.static spacetime
 cutting cct surfaces and rotating edges of cut

2 fundamental ways of changing spacetime geometry

 grafting: conf. static spacetime
 evolving spacetime cutting cct surfaces and inserting strip
 ~ translation associated with geodesic

 earthquake: conf. static spacetime
 conf.static spacetime cutting cct surfaces and rotating edges of cut ~ rotation associated with geodesic

2 fundamental ways of changing spacetime geometry

 grafting: conf. static spacetime
 evolving spacetime cutting cct surfaces and inserting strip
 ~ translation associated with geodesic

earthquake: conf. static spacetime
 conf.static spacetime
 cutting cct surfaces and rotating edges of cut
 ~ rotation associated with geodesic

rightarrow transformations on phase space $\operatorname{Hom}_0(\pi_1(M), P_3)/P_3$

2 fundamental ways of changing spacetime geometry

 grafting: conf. static spacetime
 evolving spacetime cutting cct surfaces and inserting strip
 ~ translation associated with geodesic

earthquake: conf. static spacetime
 conf.static spacetime
 cutting cct surfaces and rotating edges of cut
 ~ rotation associated with geodesic

rightarrow transformations on phase space $\operatorname{Hom}_0(\pi_1(M), P_3)/P_3$

[Goldman,C.M.]

The phase space transformations associated with grafting and earthquake along a closed geodesic λ on a cct-surface are generated via the Poisson bracket by its two Wilson loop observables: the mass m_{λ} generates grafting, the spin s_{λ} generates earthquakes

Qu: How to get physics from the theory ?

Qu: How to get physics from the theory ? use universal cover (domains)

Qu: How to get physics from the theory ? use universal cover (domains)

observer

Qu: How to get physics from the theory ? use universal cover (domains)

- **observer** worldline of observer in free fall:
- timelike, future oriented geodesic in quotient spacetime

Qu: How to get physics from the theory ? use universal cover (domains)

- **observer** worldline of observer in free fall:
- timelike, future oriented geodesic in quotient spacetime
- $\pi_1(M)$ -equiv. class of timelike, future oriented geod's in domain

 $\lambda_1 \in \pi_1(M) \quad \lambda_2 \in \pi_1(M)$

g

 $h(\lambda_1)g$

 $h(\lambda_2)g$

Qu: How to get physics from the theory ? use universal cover (domains)

observer worldline of observer in free fall:

- timelike, future oriented geodesic in quotient spacetime
- $\pi_1(M)$ -equiv. class of timelike, future oriented geod's in domain
$h(\lambda_2)g$

 $h(\lambda_1)g$

g

Qu: How to get physics from the theory ? use universal cover (domains)

observer worldline of observer in free fall:

- timelike, future oriented geodesic in quotient spacetime
- $\pi_1(M)$ -equiv. class of timelike, future oriented geod's in domain

Darametrisation
$$h(\lambda)g = (v_{\lambda}, \mathbf{a}_{\lambda})g, \ \lambda \in \pi_1(M)$$

 $g(t) = t \cdot \mathbf{x} + \mathbf{x}_0 \quad \mathbf{x}^2 = -1, \mathbf{x}_0 \in D$

 $\lambda_1 \in \pi_1(M) \quad \lambda_2 \in \pi_1(M)$

g

 $h(\lambda_1)g$

 $h(\lambda_2)g$

Qu: How to get physics from the theory ? use universal cover (domains)

observer worldline of observer in free fall:

- timelike, future oriented geodesic in quotient spacetime
- $\pi_1(M)$ -equiv. class of timelike, future oriented geod's in domain parametrisation $h(\lambda)g = (v_\lambda, \mathbf{a}_\lambda)g, \ \lambda \in \pi_1(M)$

arametrisation
$$h(\lambda)g = (v_{\lambda}, \mathbf{a}_{\lambda})g, \ \lambda \in \pi_1(M)$$

 $g(t) = t \cdot \mathbf{x} + \mathbf{x}_0 \quad \mathbf{x}^2 = -1, \mathbf{x}_0 \in D$

lightray

Qu: How to get physics from the theory ? use universal cover (domains)

observer worldline of observer in free fall:

- timelike, future oriented geodesic in quotient spacetime
- $\pi_1(M)$ -equiv. class of timelike, future oriented geod's in domain **parametrisation** $h(\lambda)g = (v_\lambda, \mathbf{a}_\lambda)g, \ \lambda \in \pi_1(M)$

$$g(t) = t \cdot \mathbf{x} + \mathbf{x}_0 \quad \mathbf{x}^2 = -1, \mathbf{x}_0 \in D$$

 $h(\lambda_2)g$

 $h(\lambda_1)g$

g

lightray

• lightlike, future oriented geodesic in quotient spacetime

 $h(\lambda_2)g$

 $h(\lambda_1)g$

g

Qu: How to get physics from the theory ? use universal cover (domains)

observer worldline of observer in free fall:

- timelike, future oriented geodesic in quotient spacetime
- $\pi_1(M)$ -equiv. class of timelike, future oriented geod's in domain parametrisation $h(\lambda)g = (v_\lambda, \mathbf{a}_\lambda)g, \ \lambda \in \pi_1(M)$ $g(t) = t \cdot \mathbf{x} + \mathbf{x}_0 \quad \mathbf{x}^2 = -1, \mathbf{x}_0 \in D$

lightlike, future oriented geodesic in quotient spacetime
 π₁(M)-equivalence class of lightlike, future oriented geodesics in domain

 $h(\lambda_2)g$

 $h(\lambda_1)g$

g

Qu: How to get physics from the theory ? use universal cover (domains)

observer worldline of observer in free fall:

- timelike, future oriented geodesic in quotient spacetime
- $\pi_1(M)$ -equiv. class of timelike, future oriented geod's in domain parametrisation $h(\lambda)g = (v_\lambda, \mathbf{a}_\lambda)g, \ \lambda \in \pi_1(M)$ $g(t) = t \cdot \mathbf{x} + \mathbf{x}_0 \quad \mathbf{x}^2 = -1, \mathbf{x}_0 \in D$

lightray

lightlike, future oriented geodesic in quotient spacetime
 π₁(M)-equivalence class of lightlike, future oriented geodesics in domain

returning lightray

 $h(\lambda_2)g$

 $h(\lambda_1)g$

g

Qu: How to get physics from the theory ? use universal cover (domains)

observer worldline of observer in free fall:

- timelike, future oriented geodesic in quotient spacetime
- $\pi_1(M)$ -equiv. class of timelike, future oriented geod's in domain parametrisation $h(\lambda)g = (v_\lambda, \mathbf{a}_\lambda)g, \ \lambda \in \pi_1(M)$ $g(t) = t \cdot \mathbf{x} + \mathbf{x}_0 \quad \mathbf{x}^2 = -1, \mathbf{x}_0 \in D$

lightray

lightlike, future oriented geodesic in quotient spacetime
 π₁(M)-equivalence class of lightlike, future oriented geodesics in domain

returning lightray

lightray emitted by observer at time t that returns at time t+ Δt

 $\lambda_1 \in \pi_1(M)$ $\lambda_2 \in \pi_1(M)$

g

 $h(\lambda_1)g$

 $h(\lambda_2)g$

Qu: How to get physics from the theory ? use universal cover (domains)

observer worldline of observer in free fall:

- timelike, future oriented geodesic in quotient spacetime
- $\pi_1(M)$ -equiv. class of timelike, future oriented geod's in domain parametrisation $h(\lambda)g = (v_\lambda, \mathbf{a}_\lambda)g, \ \lambda \in \pi_1(M)$ $g(t) = t \cdot \mathbf{x} + \mathbf{x}_0 \quad \mathbf{x}^2 = -1, \mathbf{x}_0 \in D$

lightray

lightlike, future oriented geodesic in quotient spacetime
 π₁(M)-equivalence class of lightlike, future oriented geodesics in domain

returning lightray

lightray emitted by observer at time t that returns at time t+ Δt

• lightlike geodesic in D from g to image $h(\lambda)g, \ \lambda \in \pi_1(M)$

 $\lambda_1 \in \pi_1(M)$

g(t)

 $h(\lambda)g(0) -$

 $h(\lambda_1)g$

 $\lambda_2 \in \pi_1(M)$

g

 $h(\lambda_2)g$

Qu: How to get physics from the theory ? use universal cover (domains)

observer worldline of observer in free fall:

- timelike, future oriented geodesic in quotient spacetime
- $\pi_1(M)$ -equiv. class of timelike, future oriented geod's in domain parametrisation $h(\lambda)g = (v_\lambda, \mathbf{a}_\lambda)g, \ \lambda \in \pi_1(M)$ $g(t) = t \cdot \mathbf{x} + \mathbf{x}_0 \quad \mathbf{x}^2 = -1, \mathbf{x}_0 \in D$

lightray

• lightlike, future oriented geodesic in quotient spacetime • $\pi_1(M)$ -equivalence class of lightlike, future oriented geodesics in domain

returning lightray

lightray emitted by observer at time t that returns at time t+ Δt

• lightlike geodesic in D from g to image $h(\lambda)g, \ \lambda \in \pi_1(M)$

 $\lambda_1 \in \pi_1(M)$

g(t)

 $h(\lambda)g(0)$

 $\lambda_2 \in \pi_1(M)$

g

 $h(\lambda_2)g$

Qu: How to get physics from the theory ? use universal cover (domains)

observer worldline of observer in free fall:

- timelike, future oriented geodesic in quotient spacetime
- $\pi_1(M)$ -equiv. class of timelike, future oriented geod's in domain parametrisation $h(\lambda)g = (v_\lambda, \mathbf{a}_\lambda)g, \ \lambda \in \pi_1(M)$ $g(t) = t \cdot \mathbf{x} + \mathbf{x}_0 \quad \mathbf{x}^2 = -1, \mathbf{x}_0 \in D$

lightray

• lightlike, future oriented geodesic in quotient spacetime • $\pi_1(M)$ -equivalence class of lightlike, future oriented geodesics in domain

returning lightray

lightray emitted by observer at time t that returns at time t+ Δt

- lightlike geodesic in D from g to image $h(\lambda)g, \ \lambda \in \pi_1(M)$
- 1:1-correspondence with elements of $\pi_1(M)$

 $\lambda_1 \in \pi_1(M)$

g(t)

 $h(\lambda)g(0)$

g

 $h(\lambda_2)g$

Qu: How to get physics from the theory ? use universal cover (domains)

observer worldline of observer in free fall:

- timelike, future oriented geodesic in quotient spacetime
- $\pi_1(M)$ -equiv. class of timelike, future oriented geod's in domain parametrisation $h(\lambda)g = (v_\lambda, \mathbf{a}_\lambda)g, \ \lambda \in \pi_1(M)$ $g(t) = t \cdot \mathbf{x} + \mathbf{x}_0 \quad \mathbf{x}^2 = -1, \mathbf{x}_0 \in D$

lightray

• lightlike, future oriented geodesic in quotient spacetime • $\pi_1(M)$ -equivalence class of lightlike, future oriented geodesics in domain

returning lightray

lightray emitted by observer at time t that returns at time t+ Δt

- lightlike geodesic in D from g to image $h(\lambda)g, \ \lambda \in \pi_1(M)$
- 1:1-correspondence with elements of $\pi_1(M)$
- condition $(h(\lambda)g(t + \Delta t) g(t))^2 = 0 \ \lambda \in \pi_1(M)$

• return time:

eigentime elapsed between emission and return of lightray

• return time:

eigentime elapsed between emission and return of lightray \Rightarrow via condition $(h(\lambda)g(t + \Delta t) - g(t))^2 = 0 \ \lambda \in \pi_1(M)$

• return time:

eigentime elapsed between emission and return of lightray \Rightarrow via condition $(h(\lambda)g(t + \Delta t) - g(t))^2 = 0$ $\lambda \in \pi_1(M)$ $h(\lambda)g(t + \Delta t) = 0$

g(t)

 $-\hbar(\lambda)g(0) - g$

 directions yielding returning lightrays, angles between them

• return time:

eigentime elapsed between emission and return of lightray \Rightarrow via condition $(h(\lambda)g(t + \Delta t) - g(t))^2 = 0$ $\lambda \in \pi_1(M)$ $h(\lambda)g(t + \Delta t)$

g(t)

 $h(\lambda)g(0) - g$

- directions yielding returning lightrays, angles between them
 - projection of returning lightray on orthogonal complement of observer's velocity vector

• return time:

eigentime elapsed between emission and return of lightray \Rightarrow via condition $(h(\lambda)g(t + \Delta t) - g(t))^2 = 0$ $\lambda \in \pi_1(M)$

- directions yielding returning lightrays, angles between them
 - projection of returning lightray on orthogonal complement of observer's velocity vector

• return time:

eigentime elapsed between emission and return of lightray \Rightarrow via condition $(h(\lambda)g(t + \Delta t) - g(t))^2 = 0$ $\lambda \in \pi_1(M)$ $h(\lambda)g(t + \Delta t)$

- directions yielding returning lightrays, angles between them
 - projection of returning lightray on orthogonal complement of observer's velocity vector

frequency shifts between emitted and returning lightrays

• return time:

eigentime elapsed between emission and return of lightray \Rightarrow via condition $(h(\lambda)g(t + \Delta t) - g(t))^2 = 0$ $\lambda \in \pi_1(M)$ $h(\lambda)g(t + \Delta t)$

- directions yielding returning lightrays, angles between them
 - projection of returning lightray on orthogonal complement of observer's velocity vector

frequency shifts between emitted and returning lightrays
 via relativistic Doppler effect

• return time:

eigentime elapsed between emission and return of lightray \Rightarrow via condition $(h(\lambda)g(t + \Delta t) - g(t))^2 = 0$ $\lambda \in \pi_1(M)$

g(t)

 $h(\lambda_1)g$

 $h(\lambda)g(0)$

 $h(\lambda_2)q$

- directions yielding returning lightrays, angles between them
 - projection of returning lightray on orthogonal complement of observer's velocity vector

- frequency shifts between emitted and returning lightrays
 via relativistic Doppler effect
- explicit expressions as functions of emission time t observer $\mathbf{x} \in \mathbb{H}^2, \mathbf{x}_0 \in D$ holonomies $h(\lambda)$

Results

Results

parameters

parameters rapidity $\cosh \rho_{\lambda} = \mathbf{x} \cdot v_{\lambda} \mathbf{x}$

Results

parameters

rapidity $\cosh \rho_{\lambda} = \mathbf{x} \cdot v_{\lambda} \mathbf{x}$

3 parameters for relative initial position

 $h(\lambda)g(0) - g(0) = \sigma_{\lambda} \left(v_{\lambda} \mathbf{x} - \mathbf{x} \right) + \tau_{\lambda} v_{\lambda} \mathbf{x} + \nu_{\lambda} \mathbf{x} \wedge v_{\lambda} \mathbf{x}$

Results

parameters

rapidity $\cosh \rho_{\lambda} = \mathbf{x} \cdot v_{\lambda} \mathbf{x}$

3 parameters for relative initial position

 $h(\lambda)g(0) - g(0) = \sigma_{\lambda} \left(v_{\lambda} \mathbf{x} - \mathbf{x} \right) + \tau_{\lambda} v_{\lambda} \mathbf{x} + \nu_{\lambda} \mathbf{x} \wedge v_{\lambda} \mathbf{x}$

formulas

Resultsparametersrapidity $\cosh \rho_{\lambda} = \mathbf{x} \cdot v_{\lambda} \mathbf{x}$ 3 parameters for relative initial position $h(\lambda)g(0) - g(0) = \sigma_{\lambda} (v_{\lambda} \mathbf{x} - \mathbf{x}) + \tau_{\lambda} v_{\lambda} \mathbf{x} + \nu_{\lambda} \mathbf{x} \wedge v_{\lambda} \mathbf{x}$

formulas

return time

$$\Delta t(t, \mathbf{x}, \mathbf{x}_0, h(\lambda)) = (t + \sigma_\lambda)(\cosh \rho_\lambda - 1) - \tau_\lambda + \sinh \rho_\lambda \sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2}$$

parameters

rapidity $\cosh \rho_{\lambda} = \mathbf{x} \cdot v_{\lambda} \mathbf{x}$

3 parameters for relative initial position

$$h(\lambda)g(0) - g(0) = \sigma_{\lambda} \left(v_{\lambda} \mathbf{x} - \mathbf{x} \right) + \tau_{\lambda} v_{\lambda} \mathbf{x} + \nu_{\lambda} \mathbf{x} \wedge \sigma$$

Results

formulas

return time

$$\Delta t(t, \mathbf{x}, \mathbf{x}_0, h(\lambda)) = (t + \sigma_\lambda)(\cosh \rho_\lambda - 1) - \tau_\lambda + \sinh \rho_\lambda \sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2}$$

directions of emission $\hat{\mathbf{p}}_{\lambda}(t) = \widehat{\Pi}_{\mathbf{x}^{\perp}}(h(\lambda)g(t + \Delta t) - g(t)) = \cos\phi\,\widehat{\Pi}_{\mathbf{x}^{\perp}}(v_{\lambda}\mathbf{x}) + \sin\phi\,\frac{\mathbf{x} \wedge v_{\lambda}\mathbf{x}}{|\mathbf{x} \wedge v_{\lambda}\mathbf{x}|}$

$$\phi(t, \mathbf{x}, \mathbf{x}_0, h(\lambda)) = \arctan\left(\frac{\nu_\lambda}{\sinh \rho_\lambda \sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2} + (t + \sigma_\lambda) \cosh \rho_\lambda}\right)$$

parameters rapidity $\cosh \rho_{\lambda} = \mathbf{x} \cdot v_{\lambda} \mathbf{x}$

3 parameters for relative initial position

$$h(\lambda)g(0) - g(0) = \sigma_{\lambda} \left(v_{\lambda} \mathbf{x} - \mathbf{x} \right) + \tau_{\lambda} v_{\lambda} \mathbf{x} + \nu_{\lambda} \mathbf{x} \wedge v_{\lambda} \mathbf{x}$$

Results

formulas

return time

$$\Delta t(t, \mathbf{x}, \mathbf{x}_0, h(\lambda)) = (t + \sigma_\lambda)(\cosh \rho_\lambda - 1) - \tau_\lambda + \sinh \rho_\lambda \sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2}$$

directions of emission $\hat{\mathbf{p}}_{\lambda}(t) = \widehat{\Pi}_{\mathbf{x}^{\perp}}(h(\lambda)g(t + \Delta t) - g(t)) = \cos\phi\,\widehat{\Pi}_{\mathbf{x}^{\perp}}(v_{\lambda}\mathbf{x}) + \sin\phi\,\frac{\mathbf{x} \wedge v_{\lambda}\mathbf{x}}{|\mathbf{x} \wedge v_{\lambda}\mathbf{x}|}$

$$\phi(t, \mathbf{x}, \mathbf{x}_0, h(\lambda)) = \arctan\left(\frac{\nu_{\lambda}}{\sinh \rho_{\lambda}\sqrt{(t + \sigma_{\lambda})^2 + \nu_{\lambda}^2} + (t + \sigma_{\lambda})\cosh \rho_{\lambda}}\right)$$

angles between directions of emission

$$\cos \Phi_{\lambda_1,\lambda_2} = \hat{\mathbf{p}}_{\lambda_1}(t) \cdot \hat{\mathbf{p}}_{\lambda_1}(t)$$

parameters rapidity $\cosh \rho_{\lambda} = \mathbf{x} \cdot v_{\lambda} \mathbf{x}$

3 parameters for relative initial position

$$h(\lambda)g(0) - g(0) = \sigma_{\lambda} \left(v_{\lambda} \mathbf{x} - \mathbf{x} \right) + \tau_{\lambda} v_{\lambda} \mathbf{x} + \nu_{\lambda} \mathbf{x} \wedge v_{\lambda} \mathbf{x}$$

Results

formulas

return time $\Delta t(t, \mathbf{x}, \mathbf{x}_0, \mathbf{x}_0)$

$$\Delta t(t, \mathbf{x}, \mathbf{x}_0, h(\lambda)) = (t + \sigma_\lambda)(\cosh \rho_\lambda - 1) - \tau_\lambda + \sinh \rho_\lambda \sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2}$$

directions of emission $\hat{\mathbf{p}}_{\lambda}(t) = \widehat{\Pi}_{\mathbf{x}^{\perp}}(h(\lambda)g(t + \Delta t) - g(t)) = \cos\phi \,\widehat{\Pi}_{\mathbf{x}^{\perp}}(v_{\lambda}\mathbf{x}) + \sin\phi \,\frac{\mathbf{x} \wedge v_{\lambda}\mathbf{x}}{|\mathbf{x} \wedge v_{\lambda}\mathbf{x}|}$

$$\phi(t, \mathbf{x}, \mathbf{x}_0, h(\lambda)) = \arctan\left(\frac{\nu_\lambda}{\sinh \rho_\lambda \sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2} + (t + \sigma_\lambda) \cosh \rho_\lambda}\right)$$

angles between directions of emission

$$\cos \Phi_{\lambda_1,\lambda_2} = \hat{\mathbf{p}}_{\lambda_1}(t) \cdot \hat{\mathbf{p}}_{\lambda_1}(t)$$

frequency shift

$$f_r/f_e(t, \mathbf{x}, \mathbf{x}_0, h(\lambda)) = \frac{\sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2}}{\cosh \rho_\lambda \sqrt{(t + \sigma_\lambda)^2 + \nu_\lambda^2} + \sinh \rho_\lambda (t + \sigma_\lambda)}$$

• are physically meaningful, similar to gravitational lensing

- are physically meaningful, similar to gravitational lensing
- allow observer to reconstruct full geometry of spacetime in finite eigentime

- are physically meaningful, similar to gravitational lensing
- allow observer to reconstruct full geometry of spacetime in finite eigentime
- relate spacetime geometry as perceived by observer to variables used in quantisation (holonomies)

- are physically meaningful, similar to gravitational lensing
- allow observer to reconstruct full geometry of spacetime in finite eigentime
- relate spacetime geometry as perceived by observer to variables used in quantisation (holonomies)
- involve Wilson loop observables: mass and spin arise canonically in measurements of special (comoving) observers

- are physically meaningful, similar to gravitational lensing
- allow observer to reconstruct full geometry of spacetime in finite eigentime
- relate spacetime geometry as perceived by observer to variables used in quantisation (holonomies)
- involve Wilson loop observables: mass and spin arise canonically in measurements of special (comoving) observers
- provide a framework for investigation of conceptual questions of (quantum) gravity:

- are physically meaningful, similar to gravitational lensing
- allow observer to reconstruct full geometry of spacetime in finite eigentime
- relate spacetime geometry as perceived by observer to variables used in quantisation (holonomies)
- involve Wilson loop observables: mass and spin arise canonically in measurements of special (comoving) observers
- provide a framework for investigation of conceptual questions of (quantum) gravity:
 - measurements vs observables (partial observables)

- are physically meaningful, similar to gravitational lensing
- allow observer to reconstruct full geometry of spacetime in finite eigentime
- relate spacetime geometry as perceived by observer to variables used in quantisation (holonomies)
- involve Wilson loop observables: mass and spin arise canonically in measurements of special (comoving) observers
- provide a framework for investigation of conceptual questions of (quantum) gravity:
 - measurements vs observables (partial observables)
 - role of time and observers in (quantum) gravity
vacuum spacetimes in Lorentzian (2+1)-gravity with Λ =0

vacuum spacetimes in Lorentzian (2+1)-gravity with Λ=0 rich and subtle geometry

vacuum spacetimes in Lorentzian (2+1)-gravity with Λ =0

- rich and subtle geometry
- description via universal cover: quotient of domain $D \subset \mathbb{M}^3$

vacuum spacetimes in Lorentzian (2+1)-gravity with $\Lambda=0$

- rich and subtle geometry
- description via universal cover: quotient of domain $D \subset \mathbb{M}^3$
- physical degrees of freedom:holonomies (up to conjugation)

vacuum spacetimes in Lorentzian (2+1)-gravity with Λ =0

- rich and subtle geometry
- description via universal cover: quotient of domain $D \subset \mathbb{M}^3$
- physical degrees of freedom:holonomies (up to conjugation)

relation geometry - observables

vacuum spacetimes in Lorentzian (2+1)-gravity with $\Lambda=0$

- rich and subtle geometry
- description via universal cover: quotient of domain $D \subset \mathbb{M}^3$
- physical degrees of freedom:holonomies (up to conjugation)

relation geometry - observables

 2 fundamental geometry transformations (grafting and earthquake) generated via { , } by 2 Wilson loop observables (mass and spin)

vacuum spacetimes in Lorentzian (2+1)-gravity with Λ=0 • rich and subtle geometry

- rich and subtle geometry
- description via universal cover: quotient of domain $D \subset \mathbb{M}^3$
- physical degrees of freedom:holonomies (up to conjugation)

relation geometry - observables

- 2 fundamental geometry transformations (grafting and earthquake) generated via { , } by 2 Wilson loop observables (mass and spin)
- realistic measurements by observers associated with returning lightrays: return time, directions, frequency shift as function of holonomies

vacuum spacetimes in Lorentzian (2+1)-gravity with $\Lambda=0$

- rich and subtle geometry
- description via universal cover: quotient of domain $D \subset \mathbb{M}^3$
- physical degrees of freedom:holonomies (up to conjugation)

relation geometry - observables

- 2 fundamental geometry transformations (grafting and earthquake) generated via { , } by 2 Wilson loop observables (mass and spin)
- realistic measurements by observers associated with returning lightrays: return time, directions, frequency shift as function of holonomies
- Wilson loops (mass and spin) arise naturally in these measurements

vacuum spacetimes in Lorentzian (2+1)-gravity with $\Lambda=0$

- rich and subtle geometry
- description via universal cover: quotient of domain $D \subset \mathbb{M}^3$
- physical degrees of freedom:holonomies (up to conjugation)

relation geometry - observables

- 2 fundamental geometry transformations (grafting and earthquake) generated via { , } by 2 Wilson loop observables (mass and spin)
- realistic measurements by observers associated with returning lightrays: return time, directions, frequency shift as function of holonomies
- Wilson loops (mass and spin) arise naturally in these measurements

open questions application to quantum theory !

1. Classification of vacuum spacetimes

[Mess, Barbot, Benedetti, Bonsante, Schlenker,...]

gravity in (2+1)-dimensions

1. Classification of vacuum spacetimes

[Mess, Barbot, Benedetti, Bonsante, Schlenker,...]

gravity in (2+1)-dimensions vacuum Einstein equations $\operatorname{Ric}_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R + \Lambda g_{\mu\nu} = 0$

• in 3d: Ricci tensor determines curvature

- in 3d: Ricci tensor determines curvature
- solutions of vacuum Einstein equations locally isometric to $AdS_3(\Lambda < 0), dS_3(\Lambda > 0), \mathbb{M}^3(\Lambda = 0)$ Lorentzian $\mathbb{H}^3(\Lambda < 0), S^3(\Lambda > 0), \mathbb{E}^3(\Lambda = 0)$ Euclidean

- in 3d: Ricci tensor determines curvature
- solutions of vacuum Einstein equations locally isometric to $AdS_3(\Lambda < 0), dS_3(\Lambda > 0), \mathbb{M}^3(\Lambda = 0)$ Lorentzian $\mathbb{H}^3(\Lambda < 0), S^3(\Lambda > 0), \mathbb{E}^3(\Lambda = 0)$ Euclidean
- no local gravitational degrees of freedom

- in 3d: Ricci tensor determines curvature
- solutions of vacuum Einstein equations locally isometric to $AdS_3(\Lambda < 0), dS_3(\Lambda > 0), \mathbb{M}^3(\Lambda = 0)$ Lorentzian $\mathbb{H}^3(\Lambda < 0), S^3(\Lambda > 0), \mathbb{E}^3(\Lambda = 0)$ Euclidean
- no local gravitational degrees of freedom
- global degrees of freedom due to non-trivial topology

- in 3d: Ricci tensor determines curvature
- solutions of vacuum Einstein equations locally isometric to $AdS_3(\Lambda < 0), dS_3(\Lambda > 0), \mathbb{M}^3(\Lambda = 0)$ Lorentzian $\mathbb{H}^3(\Lambda < 0), S^3(\Lambda > 0), \mathbb{E}^3(\Lambda = 0)$ Euclidean
- no local gravitational degrees of freedom
- global degrees of freedom due to non-trivial topology
- finite dimensional phase space

gravity in (2+1)-dimensions vacuum Einstein equations $\operatorname{Ric}_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R + \Lambda g_{\mu\nu} = 0$

- in 3d: Ricci tensor determines curvature
- solutions of vacuum Einstein equations locally isometric to $AdS_3(\Lambda < 0), dS_3(\Lambda > 0), \mathbb{M}^3(\Lambda = 0)$ Lorentzian $\mathbb{H}^3(\Lambda < 0), S^3(\Lambda > 0), \mathbb{E}^3(\Lambda = 0)$ Euclidean
- no local gravitational degrees of freedom
- global degrees of freedom due to non-trivial topology
- finite dimensional phase space

classification of spacetimes up to diffeomorphisms

gravity in (2+1)-dimensions vacuum Einstein equations $\operatorname{Ric}_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R + \Lambda g_{\mu\nu} = 0$

- in 3d: Ricci tensor determines curvature
- solutions of vacuum Einstein equations locally isometric to $AdS_3(\Lambda < 0), dS_3(\Lambda > 0), \mathbb{M}^3(\Lambda = 0)$ Lorentzian $\mathbb{H}^3(\Lambda < 0), S^3(\Lambda > 0), \mathbb{E}^3(\Lambda = 0)$ Euclidean
- no local gravitational degrees of freedom
- global degrees of freedom due to non-trivial topology
- finite dimensional phase space

classification of spacetimes up to diffeomorphisms

- **Setting** Lorentzian (2+1)-gravity, Λ =0
 - vacuum spacetimes: no matter