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(2+1)-gravity as toy model for quantum gravity

e conceptual questions of quantum gravity in simplified theory
* Lorentzian case especially important: time, causality,...

e requires understanding of geometrical features

difficulties
 relation between variables in quantisation (holonomies,

Wilson loops) and spacetime geometry (time,lengths,angles,..)
e getting physics from the theory

 what can observer in empty spacetime measure?
 how can observer distinguish different spacetimes ?
aim:

e clarify relation spacetime geometry - observables

e apply this to get interesting physics from the theory
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Setting ¢ Lorentzian (2+1)-gravity, A=0
* vacuum spacetimes: no matter
e globally hyperbolic
- (almost) no closed, timelike curves
- future(p) n past(q) = compact v p,g e M

o ° maximally globally hyperbolic = M ~R x S
e complete Cauchy surface S

Description as quotient of universal cover

* region D c M? (domain)

e group homomorphism h : 71 (S) — P

* holonomies: {h(\)}\er, (s) @ discrete subgroup H C Ps

e group action of m1(S) on D C M” > free, prop. discontinuous
e spacetime as quotient M = D/H > metric from metric on M?
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Wilson loops : 2 fundamental Wilson loops for A € 71 (M)

h(A) = (exp(nyJa), ax)
mass m: \+— my = [n,| spin s: A+ sy =1y -a)
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ingredients
* cocompact Fuchsian group I
* measured geodesic lamination on Riemann surface =, = H*/T

(simplest case:
multicurve = non-intersecting closed,weighted geodesics on 24)

grafting on a Riemann surface @

[Thurston]

gluing In strips along geodesics
iIn multicurve, width=weight

grafting (2+1)-spacetimes

e grafting simultaneously on each
cct-surface of static spacetime

* width of the strips constant (given by weights)
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grafted domain
 future of graph (infinite spacelike tree)

e deformed Iinitial singularity

e foliation by deformed hyperboloids:
cct-surfaces with respect to deformed singularity

group homomorphism & : 71(S) — Ps % o

9,

* non-trivial translational component

static h(A) = (v, 0)
grafted h(\) = (v,t(N))

e preserves deformed cct-surfaces

quotient spacetime

e quotient: deformed domain / deformed group action
* geometry of cct-surfaces changes with cosmological time




Evolution with the cosmological time

Static spacetime Grafted spacetime
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domain
 domain and cct-surfaces preserved under earthquake
e resulting spacetime = conformally static

e points moved inside each cct-surface

group homomorphism h : 7;(S) — P;
e translational component remains trivial
e Lorentzian component changes
h(\) = (v, 0)
h'(X\) = H (exp(2mw;n;Jy),0) - (v,0)
g:N[a,vq]#0

e change of Fuchsian group
['= h(m(S5)) —T" = k' (m(S5))

q
gi:nfﬂHQ

quotient spacetime
e conformally static spacetime for different Fuchsian group
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4.Geometry change and Wilson loops [goldman
M.]

2 fundamental ways of changing spacetime geometry
e grafting: conf. static spacetime > evolving spacetime
cutting cct surfaces and inserting strip
~ translation associated with geodesic

e earthquake: conf. static spacetime > conf.static spacetime

cutting cct surfaces and rotating edges of cut
~ rotation associated with geodesic

> transformations on phase space Homg(m (M), P3)/Ps
[Goldman,C.M.]

The phase space transformations associated with grafting
and earthquake along a closed geodesic A on a cct-surface
are generated via the Poisson bracket by its two Wilson loop
observables: the mass my generates grafting, the spin s)
generates earthquakes
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eigentime elapsed between emission and return of lightray

= via condition (A(\)g(t + At) — g(t))* =0 X € m (M) B(\)g(t + At)

e directions yielding returning lightrays,
angles between them

2> projection of returning lightray on orthogonal
complement of observer’s velocity vector

e frequency shifts between emitted and returning lightrays
> via relativistic Doppler effect

explicit expressions as functions of
emission time ¢ observer x € H*, x, € D holonomies i ()
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frequency shift
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e are physically meaningful, similar to gravitational lensing

e allow observer to reconstruct full geometry of
spacetime in finite eigentime

* relate spacetime geometry as perceived by observer to
variables used in quantisation (holonomies)

* involve Wilson loop observables:
mass and spin arise canonically in measurements of
special (comoving) observers

e provide a framework for investigation of conceptual
questions of (quantum) gravity:

e measurements vs observables (partial observables)

 role of time and observers in (quantum) gravity
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e physical degrees of freedom:holonomies (up to conjugation)
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e 2 fundamental geometry transformations (grafting and
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* Wilson loops (mass and spin) arise naturally
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open questions application to quantum theory !
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1. Classification of vacuum spacetimes
[Mess, Barbot ,Benedetti, Bonsante, Schlenker,... ]

gravity in (2+1)-dimensions
vacuum Einstein equations Ric,, — 39, R + Agu, =0

e In 3d: Riccl tensor determines curvature

e solutions of vacuum Einstein equations locally isometric to
AdS3(A < 0),dS3(A > 0),M°(A =0) Lorentzian
H?(A < 0),5°(A > 0),E’(A=0) Euclidean
* no local gravitational degrees of freedom
* global degrees of freedom due to non-trivial topology

e finite dimensional phase space
classification of spacetimes up to diffeomorphisms

Setting e Lorentzian (2+1)-gravity, A=0
* yacuum spacetimes: no matter




