Geometry and observables in (2+1)-gravity

September 142009

2nd School and Workshop on
Quantum Gravity and Quantum Geometry
Corfu, September 13-20 2009

Catherine Meusburger
Department Mathematik
Universität Hamburg
Germany

Motivation

(2+1)-gravity as toy model for quantum gravity

Motivation

(2+1)-gravity as toy model for quantum gravity

- conceptual questions of quantum gravity in simplified theory

Motivation

$(2+1)$-gravity as toy model for quantum gravity

- conceptual questions of quantum gravity in simplified theory
- Lorentzian case especially important: time, causality,...

Motivation

(2+1)-gravity as toy model for quantum gravity

- conceptual questions of quantum gravity in simplified theory
- Lorentzian case especially important: time, causality,...
- requires understanding of geometrical features

Motivation

(2+1)-gravity as toy model for quantum gravity

- conceptual questions of quantum gravity in simplified theory
- Lorentzian case especially important: time, causality,...
- requires understanding of geometrical features

difficulties

Motivation

(2+1)-gravity as toy model for quantum gravity

- conceptual questions of quantum gravity in simplified theory
- Lorentzian case especially important: time, causality,...
- requires understanding of geometrical features

difficulties

- relation between variables in quantisation (holonomies, Wilson loops) and spacetime geometry (time,lengths,angles,..)

Motivation

(2+1)-gravity as toy model for quantum gravity

- conceptual questions of quantum gravity in simplified theory
- Lorentzian case especially important: time, causality,...
- requires understanding of geometrical features

difficulties

- relation between variables in quantisation (holonomies, Wilson loops) and spacetime geometry (time,lengths,angles,..)
- getting physics from the theory

Motivation

(2+1)-gravity as toy model for quantum gravity

- conceptual questions of quantum gravity in simplified theory
- Lorentzian case especially important: time, causality,...
- requires understanding of geometrical features

difficulties

- relation between variables in quantisation (holonomies, Wilson loops) and spacetime geometry (time,lengths,angles,..)
- getting physics from the theory
- what can observer in empty spacetime measure?

Motivation

(2+1)-gravity as toy model for quantum gravity

- conceptual questions of quantum gravity in simplified theory
- Lorentzian case especially important: time, causality,...
- requires understanding of geometrical features

difficulties

- relation between variables in quantisation (holonomies, Wilson loops) and spacetime geometry (time,lengths,angles,..)
- getting physics from the theory
- what can observer in empty spacetime measure?
- how can observer distinguish different spacetimes?

Motivation

(2+1)-gravity as toy model for quantum gravity

- conceptual questions of quantum gravity in simplified theory
- Lorentzian case especially important: time, causality,...
- requires understanding of geometrical features

difficulties

- relation between variables in quantisation (holonomies, Wilson loops) and spacetime geometry (time,lengths,angles,..)
- getting physics from the theory
- what can observer in empty spacetime measure?
- how can observer distinguish different spacetimes?

Motivation

(2+1)-gravity as toy model for quantum gravity

- conceptual questions of quantum gravity in simplified theory
- Lorentzian case especially important: time, causality,...
- requires understanding of geometrical features

difficulties

- relation between variables in quantisation (holonomies, Wilson loops) and spacetime geometry (time,lengths,angles,..)
- getting physics from the theory
- what can observer in empty spacetime measure?
- how can observer distinguish different spacetimes?
aim:
- clarify relation spacetime geometry - observables

Motivation

(2+1)-gravity as toy model for quantum gravity

- conceptual questions of quantum gravity in simplified theory
- Lorentzian case especially important: time, causality,...
- requires understanding of geometrical features

difficulties

- relation between variables in quantisation (holonomies, Wilson loops) and spacetime geometry (time,lengths,angles,..)
- getting physics from the theory
- what can observer in empty spacetime measure?
- how can observer distinguish different spacetimes?
aim:
- clarify relation spacetime geometry - observables
- apply this to get interesting physics from the theory

Contents:

Contents:

Contents:

1. Classification: vacuum spacetimes in Lorentzian $(2+1)$-gravity with $\Lambda=0$

Contents:

1. Classification: vacuum spacetimes in Lorentzian $(2+1)$-gravity with $\Lambda=0$
2. The phase space

Contents:

1. Classification: vacuum spacetimes in Lorentzian $(2+1)$-gravity with $\Lambda=0$
2. The phase space
3. Geometry of $(2+1)$-spacetimes

Contents:

1. Classification: vacuum spacetimes in Lorentzian $(2+1)$-gravity with $\Lambda=0$
2. The phase space
3. Geometry of $(2+1)$-spacetimes

Contents:

1. Classification: vacuum spacetimes in Lorentzian $(2+1)$-gravity with $\Lambda=0$
2. The phase space
3. Geometry of $(2+1)$-spacetimes
4.Geometry change and Wilson loops

Contents:

1. Classification: vacuum spacetimes in Lorentzian $(2+1)$-gravity with $\Lambda=0$
2. The phase space
3. Geometry of $(2+1)$-spacetimes
4.Geometry change and Wilson loops
4. Physics: measurements by observers

Contents:

1. Classification: vacuum spacetimes in Lorentzian $(2+1)$-gravity with $\Lambda=0$
2. The phase space
3. Geometry of $(2+1)$-spacetimes
4.Geometry change and Wilson loops
4. Physics: measurements by observers
5. Outlook and conclusions

Contents:

1. Classification: vacuum spacetimes in Lorentzian
$(2+1)$-gravity with $\Lambda=0$
2. The phase space
3. Geometry of $(2+1)$-spacetimes
4.Geometry change and Wilson loops
4. Physics: measurements by observers
5. Outlook and conclusions

References:

- C. Meusburger, Commun. Math. Phys. 273, 705-754
- C. Meusburger, Commun. Math. Phys. 266 735-775
- C. Meusburger, Class. Quantum Grav. 26055006

1. Classification of vacuum spacetimes

[Mess, Barbot ,Benedetti, Bonsante, Schlenker,...]

1. Classification of vacuum spacetimes

[Mess, Barbot ,Benedetti, Bonsante, Schlenker,...]

Setting

1. Classification of vacuum spacetimes

 [Mess, Barbot ,Benedetti, Bonsante, Schlenker,...]
Setting •Lorentzian (2+1)-gravity, $\Lambda=0$

1. Classification of vacuum spacetimes

[Mess, Barbot ,Benedetti, Bonsante, Schlenker,...]
Setting •Lorentzian (2+1)-gravity, $\Lambda=0$

- vacuum spacetimes: no matter

1. Classification of vacuum spacetimes

[Mess, Barbot ,Benedetti, Bonsante, Schlenker,...]
Setting •Lorentzian (2+1)-gravity, $\Lambda=0$

- vacuum spacetimes: no matter
- globally hyperbolic

1. Classification of vacuum spacetimes

[Mess, Barbot ,Benedetti, Bonsante, Schlenker,...]
Setting •Lorentzian (2+1)-gravity, $\Lambda=0$

- vacuum spacetimes: no matter
- globally hyperbolic
- (almost) no closed, timelike curves

1. Classification of vacuum spacetimes

[Mess, Barbot ,Benedetti, Bonsante, Schlenker,...]
Setting •Lorentzian (2+1)-gravity, $\Lambda=0$

- vacuum spacetimes: no matter
- globally hyperbolic
- (almost) no closed, timelike curves
- future $(\mathbf{p}) \cap \operatorname{past}(\mathbf{q})=$ compact $\forall \mathbf{p}, \mathbf{q} \in \mathrm{M}$

1. Classification of vacuum spacetimes

[Mess, Barbot ,Benedetti, Bonsante, Schlenker,...]

Setting

- Lorentzian (2+1)-gravity, $\wedge=0$
- vacuum spacetimes: no matter
- globally hyperbolic
- (almost) no closed, timelike curves
- future(p) $\cap \operatorname{past}(\mathbf{q})=$ compact $\forall \mathbf{p}, \mathbf{q} \in \mathrm{M}$

1. Classification of vacuum spacetimes

[Mess, Barbot ,Benedetti, Bonsante, Schlenker,...]

Setting

- Lorentzian (2+1)-gravity, $\wedge=0$
- vacuum spacetimes: no matter
- globally hyperbolic
- (almost) no closed, timelike curves
- future $(\mathbf{p}) \cap \operatorname{past}(\mathbf{q})=$ compact $\forall \mathbf{p}, \mathbf{q} \in \mathrm{M}$

$$
\Rightarrow M \approx \mathbb{R} \times S
$$

1. Classification of vacuum spacetimes

[Mess, Barbot ,Benedetti, Bonsante, Schlenker,...]

Setting

- Lorentzian (2+1)-gravity, $\wedge=0$
- vacuum spacetimes: no matter
- globally hyperbolic
- (almost) no closed, timelike curves
- future $(\mathbf{p}) \cap \operatorname{past}(\mathbf{q})=$ compact $\forall \mathbf{p}, \mathbf{q} \in \mathrm{M}$
- maximally globally hyperbolic $\Rightarrow M \approx \mathbb{R} \times S$

1. Classification of vacuum spacetimes

[Mess, Barbot ,Benedetti, Bonsante, Schlenker,...]

Setting

- Lorentzian (2+1)-gravity, $\wedge=0$
- vacuum spacetimes: no matter
- globally hyperbolic
- (almost) no closed, timelike curves
- future $(\mathbf{p}) \cap \operatorname{past}(\mathbf{q})=$ compact $\forall \mathbf{p}, \mathbf{q} \in \mathrm{M}$
- maximally globally hyperbolic $\Rightarrow M \approx \mathbb{R} \times S$
- complete Cauchy surface S

1. Classification of vacuum spacetimes

 [Mess, Barbot ,Benedetti, Bonsante, Schlenker,...]Setting

- Lorentzian (2+1)-gravity, $\wedge=0$
- vacuum spacetimes: no matter
- globally hyperbolic
- (almost) no closed, timelike curves
- future $(\mathbf{p}) \cap \operatorname{past}(\mathbf{q})=\operatorname{compact} \forall \mathbf{p}, \mathbf{q} \in \mathrm{M}$
- maximally globally hyperbolic $\Rightarrow M \approx \mathbb{R} \times S$
- complete Cauchy surface S

Description as quotient of universal cover

1. Classification of vacuum spacetimes

 [Mess, Barbot ,Benedetti, Bonsante, Schlenker,...]Setting

- Lorentzian (2+1)-gravity, $\wedge=0$
- vacuum spacetimes: no matter
- globally hyperbolic
- (almost) no closed, timelike curves
- future $(\mathbf{p}) \cap \operatorname{past}(\mathbf{q})=\operatorname{compact} \forall \mathbf{p}, \mathbf{q} \in \mathrm{M}$
- maximally globally hyperbolic $\Rightarrow M \approx \mathbb{R} \times S$
- complete Cauchy surface S

Description as quotient of universal cover

- region $D \subset \mathbb{M}^{3}$ (domain)

1. Classification of vacuum spacetimes

 [Mess, Barbot ,Benedetti, Bonsante, Schlenker,...]
Setting

- Lorentzian (2+1)-gravity, $\wedge=0$
- vacuum spacetimes: no matter
- globally hyperbolic
- (almost) no closed, timelike curves
- future $(\mathbf{p}) \cap \operatorname{past}(\mathbf{q})=$ compact $\forall \mathbf{p}, \mathbf{q} \in \mathrm{M}$
- maximally globally hyperbolic $\Rightarrow M \approx \mathbb{R} \times S$
- complete Cauchy surface S

Description as quotient of universal cover

- region $D \subset \mathbb{M}^{3}$ (domain)
- group homomorphism $h: \pi_{1}(S) \rightarrow P_{3}$

Setting

- Lorentzian (2+1)-gravity, $\wedge=0$
- vacuum spacetimes: no matter
- globally hyperbolic
- (almost) no closed, timelike curves
- future $(\mathbf{p}) \cap \operatorname{past}(\mathbf{q})=$ compact $\forall \mathbf{p}, \mathbf{q} \in \mathrm{M}$
- maximally globally hyperbolic $\Rightarrow M \approx \mathbb{R} \times S$
- complete Cauchy surface S

Description as quotient of universal cover

- region $D \subset \mathbb{M}^{3}$ (domain)
- group homomorphism $h: \pi_{1}(S) \rightarrow P_{3}$
- holonomies: $\{h(\lambda)\}_{\lambda \in \pi_{1}(S)} \triangleright$ discrete subgroup $H \subset P_{3}$

1. Classification of vacuum spacetimes

 [Mess, Barbot ,Benedetti, Bonsante, Schlenker,...]
Setting

- Lorentzian (2+1)-gravity, $\wedge=0$
- vacuum spacetimes: no matter
- globally hyperbolic
- (almost) no closed, timelike curves
- future $(\mathbf{p}) \cap \operatorname{past}(\mathbf{q})=$ compact $\forall \mathbf{p}, \mathbf{q} \in \mathrm{M}$
- maximally globally hyperbolic $\Rightarrow M \approx \mathbb{R} \times S$
- complete Cauchy surface S

Description as quotient of universal cover

- region $D \subset \mathbb{M}^{3}$ (domain)
- group homomorphism $h: \pi_{1}(S) \rightarrow P_{3}$
- holonomies: $\{h(\lambda)\}_{\lambda \in \pi_{1}(S)} \triangleright$ discrete subgroup $H \subset P_{3}$
- group action of $\pi_{1}(S)$ on $D \subset \mathbb{M}^{3} \checkmark$ free, prop. discontinuous

1. Classification of vacuum spacetimes

 [Mess, Barbot ,Benedetti, Bonsante, Schlenker,...]
Setting

- Lorentzian (2+1)-gravity, $\wedge=0$
- vacuum spacetimes: no matter
- globally hyperbolic
- (almost) no closed, timelike curves
- future $(\mathbf{p}) \cap \operatorname{past}(\mathbf{q})=$ compact $\forall \mathbf{p}, \mathbf{q} \in \mathrm{M}$
- maximally globally hyperbolic $\Rightarrow M \approx \mathbb{R} \times S$
- complete Cauchy surface S

Description as quotient of universal cover

- region $D \subset \mathbb{M}^{3}$ (domain)
- group homomorphism $h: \pi_{1}(S) \rightarrow P_{3}$
- holonomies: $\{h(\lambda)\}_{\lambda \in \pi_{1}(S)} \triangleright$ discrete subgroup $H \subset P_{3}$
- group action of $\pi_{1}(S)$ on $D \subset \mathbb{M}^{3} \checkmark$ free, prop. discontinuous
- spacetime as quotient $M=D / H$

1. Classification of vacuum spacetimes

 [Mess, Barbot ,Benedetti, Bonsante, Schlenker,...]
Setting

- Lorentzian (2+1)-gravity, $\wedge=0$
- vacuum spacetimes: no matter
- globally hyperbolic
- (almost) no closed, timelike curves
- future $(\mathbf{p}) \cap \operatorname{past}(\mathbf{q})=$ compact $\forall \mathbf{p}, \mathbf{q} \in \mathrm{M}$
- maximally globally hyperbolic $\Rightarrow M \approx \mathbb{R} \times S$
- complete Cauchy surface S

Description as quotient of universal cover

- region $D \subset \mathbb{M}^{3}$ (domain)
- group homomorphism $h: \pi_{1}(S) \rightarrow P_{3}$
- holonomies: $\{h(\lambda)\}_{\lambda \in \pi_{1}(S)} \triangleright$ discrete subgroup $H \subset P_{3}$
- group action of $\pi_{1}(S)$ on $D \subset \mathbb{M}^{3} \checkmark$ free, prop. discontinuous
- spacetime as quotient $M=D / H \curvearrowleft$ metric from metric on \mathbb{M}^{3}

Classification: topology [Mess, Barbot]

Classification: topology [Mess, Barbot]

 case 1: regions in Minkowski space$$
\pi_{1}(S)=\{0\}
$$

Classification: topology [Mess, Barbot]

 case 1: regions in Minkowski space$$
\pi_{1}(S)=\{0\}
$$

Classification: topology [Mess, Barbot]

domains case 1: regions in Minkowski space

$$
\pi_{1}(S)=\{0\}
$$

Classification: topology [Mess, Barbot]

domains case 1: regions in Minkowski space

$$
\pi_{1}(S)=\{0\}
$$

Classification: topology [Mess, Barbot]

domains case 1: regions in Minkowski space

$$
\pi_{1}(S)=\{0\}
$$

Classification: topology [Mess, Barbot]

domains case 1: regions in Minkowski space

$$
\pi_{1}(S)=\{0\}
$$

case 2: cylinder universe

$$
\pi_{1}(S)=\mathbb{Z}
$$

Classification: topology [Mess, Barbot] case 1: regions in Minkowski space

$$
\pi_{1}(S)=\{0\}
$$

case 2: cylinder universe

$$
\pi_{1}(S)=\mathbb{Z}
$$

Classification: topology [Mess, Barbot] case 1: regions in Minkowski space

$$
\pi_{1}(S)=\{0\}
$$

case 2: cylinder universe

$$
\pi_{1}(S)=\mathbb{Z}
$$

domains

Classification: topology [Mess, Barbot] case 1: regions in Minkowski space

$$
\pi_{1}(S)=\{0\}
$$

case 2: cylinder universe

$$
\pi_{1}(S)=\mathbb{Z}
$$

domains

Classification: topology [Mess, Barbot] case 1: regions in Minkowski space

$$
\pi_{1}(S)=\{0\}
$$

case 2: cylinder universe

$$
\pi_{1}(S)=\mathbb{Z}
$$

case 3: torus universe

$$
\pi_{1}(S)=\mathbb{Z} \oplus \mathbb{Z}
$$

Classification: topology [Mess, Barbot] case 1: regions in Minkowski space

$$
\pi_{1}(S)=\{0\}
$$

case 2: cylinder universe

$$
\pi_{1}(S)=\mathbb{Z}
$$

case 3: torus universe

$$
\pi_{1}(S)=\mathbb{Z} \oplus \mathbb{Z}
$$

domains

Classification: topology [Mess, Barbot] case 1: regions in Minkowski space

$$
\pi_{1}(S)=\{0\}
$$

case 2: cylinder universe

$$
\pi_{1}(S)=\mathbb{Z}
$$

case 3: torus universe

$$
\pi_{1}(S)=\mathbb{Z} \oplus \mathbb{Z}
$$

domains

Classification: topology [Mess, Barbot] case 1: regions in Minkowski space

$$
\pi_{1}(S)=\{0\}
$$

case 2: cylinder universe

$$
\pi_{1}(S)=\mathbb{Z}
$$

case 3: torus universe

$$
\pi_{1}(S)=\mathbb{Z} \oplus \mathbb{Z}
$$

domains
case 4: Riemann surface $\pi_{1}(S) \cong$ Fuchsian group $\subset S O^{+}(2,1)$

Classification: topology [Mess, Barbot] case 1: regions in Minkowski space

$$
\pi_{1}(S)=\{0\}
$$

case 2: cylinder universe

$$
\pi_{1}(S)=\mathbb{Z}
$$

case 3: torus universe

$$
\pi_{1}(S)=\mathbb{Z} \oplus \mathbb{Z}
$$

domains

case 4: Riemann surface $\pi_{1}(S) \cong$ Fuchsian group $\subset S O^{+}(2,1)$
a) compact genus $\mathbf{g} \geq 2$ surface

$$
\pi_{1}(S)=\left\{a_{1}, b_{1}, \ldots, a_{g}, b_{g} \mid b_{g} a_{g}^{-1} b_{g}^{-1} a_{g} \cdots b_{1} a_{1}^{-1} b_{1}^{-1} a_{1}=1\right\}
$$

Classification: topology [Mess, Barbot] case 1: regions in Minkowski space

$$
\pi_{1}(S)=\{0\}
$$

case 2: cylinder universe

$$
\pi_{1}(S)=\mathbb{Z}
$$

case 3: torus universe

$$
\pi_{1}(S)=\mathbb{Z} \oplus \mathbb{Z}
$$

domains

Classification: topology [Mess, Barbot] case 1: regions in Minkowski space

$$
\pi_{1}(S)=\{0\}
$$

case 2: cylinder universe

$$
\pi_{1}(S)=\mathbb{Z}
$$

case 3: torus universe

$$
\pi_{1}(S)=\mathbb{Z} \oplus \mathbb{Z}
$$

case 4: Riemann surface $\pi_{1}(S) \cong$ Fuchsian group $\subset S O^{+}(2,1)$
a) compact genus $\mathrm{g} \geq 2$ surface

future of a graph (spacelike tree) conformally static evolving

Classification: topology [Mess, Barbot] case 1: regions in Minkowski space

$$
\pi_{1}(S)=\{0\}
$$

case 2: cylinder universe

$$
\pi_{1}(S)=\mathbb{Z}
$$

case 3: torus universe

$$
\pi_{1}(S)=\mathbb{Z} \oplus \mathbb{Z}
$$

case 4: Riemann surface $\pi_{1}(S) \cong$ Fuchsian group $\subset S O^{+}(2,1)$
a) compact genus $\mathrm{g} \geq 2$ surface

future of a graph (spacelike tree) conformally static evolving
b) noncompact, with cusps

Classification: topology [Mess, Barbot] case 1: regions in Minkowski space

$$
\pi_{1}(S)=\{0\}
$$

case 2: cylinder universe

$$
\pi_{1}(S)=\mathbb{Z}
$$

case 3: torus universe

$$
\pi_{1}(S)=\mathbb{Z} \oplus \mathbb{Z}
$$

case 4: Riemann surface $\pi_{1}(S) \cong$ Fuchsian group $\subset S O^{+}(2,1)$
a) compact genus $\mathrm{g} \geq 2$ surface

future of a graph (spacelike tree) conformally static evolving
b) noncompact, with cusps

conformally static

Classification: topology [Mess, Barbot] case 1: regions in Minkowski space

$$
\pi_{1}(S)=\{0\}
$$

case 2: cylinder universe

$$
\pi_{1}(S)=\mathbb{Z}
$$

case 3: torus universe

$$
\pi_{1}(S)=\mathbb{Z} \oplus \mathbb{Z}
$$

case 4: Riemann surface $\pi_{1}(S) \cong$ Fuchsian group $\subset S O^{+}(2,1)$
a) compact genus $\mathrm{g} \geq 2$ surface

future of a graph (spacelike tree) conformally static evolving
b) noncompact, with cusps

complicated

2. The phase space for genus $\mathrm{g} \geq 2$ [Mess]

2. The phase space for genus $\mathrm{g} \geq 2$ [Mess]

phase space [Mess]
2. The phase space for genus $\mathrm{g} \geq 2$ [Mess] phase space [Mess]

- group homomorphism $h: \pi_{1}(S) \rightarrow P_{3}$ (holonomies) determines spacetime completely

2. The phase space for genus $\mathrm{g} \geq 2$ [Mess]

phase space [Mess]

- group homomorphism $h: \pi_{1}(S) \rightarrow P_{3}$ (holonomies) determines spacetime completely
- spacetimes isometric iff holonomies related by conjugation with constant element $h_{0} \in P_{3}$

2. The phase space for genus $\mathrm{g} \geq 2$ [Mess]

 phase space [Mess]- group homomorphism $h: \pi_{1}(S) \rightarrow P_{3}$ (holonomies) determines spacetime completely
- spacetimes isometric iff holonomies related by conjugation with constant element $h_{0} \in P_{3}$
- every group homomorphism $h: \pi_{1}(S) \rightarrow P_{3}$ whose Lorentzian component is Fuchsian of genus g gives rise to a spacetime

2. The phase space for genus $\mathrm{g} \geq 2$ [Mess]

 phase space [Mess]- group homomorphism $h: \pi_{1}(S) \rightarrow P_{3}$ (holonomies) determines spacetime completely
- spacetimes isometric iff holonomies related by conjugation with constant element $h_{0} \in P_{3}$
- every group homomorphism $h: \pi_{1}(S) \rightarrow P_{3}$ whose Lorentzian component is Fuchsian of genus g gives rise to a spacetime
\Rightarrow phase space $\mathcal{P}=\operatorname{Hom}_{0}\left(\pi_{1}(S), P_{3}\right) / P_{3}=T^{*} \tau_{g}$

2. The phase space for genus $\mathrm{g} \geq 2$ [Mess]

 phase space [Mess]- group homomorphism $h: \pi_{1}(S) \rightarrow P_{3}$ (holonomies) determines spacetime completely
- spacetimes isometric iff holonomies related by conjugation with constant element $h_{0} \in P_{3}$
- every group homomorphism $h: \pi_{1}(S) \rightarrow P_{3}$ whose Lorentzian component is Fuchsian of genus g gives rise to a spacetime
\Rightarrow phase space $\mathcal{P}=\operatorname{Hom}_{0}\left(\pi_{1}(S), P_{3}\right) / P_{3}=T^{*} \tau_{g}$
Dirac observables conjugation inv. functions of holonomies

2. The phase space for genus $\mathrm{g} \geq 2$ [Mess]

 phase space [Mess]- group homomorphism $h: \pi_{1}(S) \rightarrow P_{3}$ (holonomies) determines spacetime completely
- spacetimes isometric iff holonomies related by conjugation with constant element $h_{0} \in P_{3}$
- every group homomorphism $h: \pi_{1}(S) \rightarrow P_{3}$ whose Lorentzian component is Fuchsian of genus g gives rise to a spacetime
\Rightarrow phase space $\mathcal{P}=\operatorname{Hom}_{0}\left(\pi_{1}(S), P_{3}\right) / P_{3}=T^{*} \tau_{g}$
Dirac observables conjugation inv. functions of holonomies
$\stackrel{\infty}{ }$ complete set of diffeomorphism invariant observables:
Wilson loops : 2 fundamental Wilson loops for $\lambda \in \pi_{1}(M)$

2. The phase space for genus $\mathrm{g} \geq 2$ [Mess]

 phase space [Mess]- group homomorphism $h: \pi_{1}(S) \rightarrow P_{3}$ (holonomies) determines spacetime completely
- spacetimes isometric iff holonomies related by conjugation with constant element $h_{0} \in P_{3}$
- every group homomorphism $h: \pi_{1}(S) \rightarrow P_{3}$ whose Lorentzian component is Fuchsian of genus g gives rise to a spacetime
\Rightarrow phase space $\mathcal{P}=\operatorname{Hom}_{0}\left(\pi_{1}(S), P_{3}\right) / P_{3}=T^{*} \tau_{g}$
Dirac observables conjugation inv. functions of holonomies
\downarrow complete set of diffeomorphism invariant observables:
Wilson loops : 2 fundamental Wilson loops for $\lambda \in \pi_{1}(M)$ $h(\lambda)=\left(\exp \left(n_{\lambda}^{a} J_{a}\right), \mathbf{a}_{\lambda}\right)$

2. The phase space for genus $g \geq 2$ [Mess]

 phase space [Mess]- group homomorphism $h: \pi_{1}(S) \rightarrow P_{3}$ (holonomies) determines spacetime completely
- spacetimes isometric iff holonomies related by conjugation with constant element $h_{0} \in P_{3}$
- every group homomorphism $h: \pi_{1}(S) \rightarrow P_{3}$ whose Lorentzian component is Fuchsian of genus g gives rise to a spacetime
\Rightarrow phase space $\mathcal{P}=\operatorname{Hom}_{0}\left(\pi_{1}(S), P_{3}\right) / P_{3}=T^{*} \tau_{g}$
Dirac observables conjugation inv. functions of holonomies
$\stackrel{\square}{ }$ complete set of diffeomorphism invariant observables:
Wilson loops : 2 fundamental Wilson loops for $\lambda \in \pi_{1}(M)$ $h(\lambda)=\left(\exp \left(n_{\lambda}^{a} J_{a}\right), \mathbf{a}_{\lambda}\right)$
mass $m: \lambda \mapsto m_{\lambda}=\left|\mathbf{n}_{\lambda}\right|$

2. The phase space for genus $g \geq 2$ [Mess]

 phase space [Mess]- group homomorphism $h: \pi_{1}(S) \rightarrow P_{3}$ (holonomies) determines spacetime completely
- spacetimes isometric iff holonomies related by conjugation with constant element $h_{0} \in P_{3}$
- every group homomorphism $h: \pi_{1}(S) \rightarrow P_{3}$ whose Lorentzian component is Fuchsian of genus g gives rise to a spacetime
\Rightarrow phase space $\mathcal{P}=\operatorname{Hom}_{0}\left(\pi_{1}(S), P_{3}\right) / P_{3}=T^{*} \tau_{g}$
Dirac observables conjugation inv. functions of holonomies
$\stackrel{\square}{ }$ complete set of diffeomorphism invariant observables:
Wilson loops : 2 fundamental Wilson loops for $\lambda \in \pi_{1}(M)$ $h(\lambda)=\left(\exp \left(n_{\lambda}^{a} J_{a}\right), \mathbf{a}_{\lambda}\right)$
mass $m: \lambda \mapsto m_{\lambda}=\left|\mathbf{n}_{\lambda}\right|$
$\boldsymbol{s p i n} s: \lambda \mapsto s_{\lambda}=\hat{\mathbf{n}}_{\lambda} \cdot \mathbf{a}_{\lambda}$

3. Geometry of (2+1)-spacetimes
[Mess, Barbot ,Benedetti, Bonsante, Schlenker,...]
4. Geometry of (2+1)-spacetimes
[Mess, Barbot ,Benedetti, Bonsante, Schlenker,...]
Conformally static spacetimes of genus $\mathrm{g} \geq 2$
5. Geometry of (2+1)-spacetimes
[Mess, Barbot ,Benedetti, Bonsante, Schlenker,...]
Conformally static spacetimes of genus $\mathrm{g} \geq 2$
domain
6. Geometry of $(2+1)$-spacetimes
[Mess, Barbot ,Benedetti, Bonsante, Schlenker,...]

Conformally static spacetimes of genus $\mathrm{g} \geq 2$

domain

- interior of future lightcone based at $\mathbf{p} \in \mathbb{M}^{3}$

3. Geometry of $(2+1)$-spacetimes
[Mess, Barbot ,Benedetti, Bonsante, Schlenker,...]

Conformally static spacetimes of genus $\mathrm{g} \geq 2$

domain

- interior of future lightcone based at $\mathbf{p} \in \mathbb{M}^{3}$
- initial singularity: boundary of lightcone

3. Geometry of $(2+1)$-spacetimes
[Mess, Barbot ,Benedetti, Bonsante, Schlenker,...]

Conformally static spacetimes of genus $\mathrm{g} \geq 2$

domain

- interior of future lightcone based at $\mathbf{p} \in \mathbb{M}^{3}$
- initial singularity: boundary of lightcone
- cosmological time:
$T(\mathbf{q})=\sup \{l(c) \mid c(0) \in \partial D, c(1)=p, c$ timelike $\}=d(\mathbf{p}, \mathbf{q})$

3. Geometry of (2+1)-spacetimes
[Mess, Barbot ,Benedetti, Bonsante, Schlenker,...]

Conformally static spacetimes of genus $\mathrm{g} \geq 2$

domain

- interior of future lightcone based at $\mathbf{p} \in \mathbb{M}^{3}$
- initial singularity: boundary of lightcone
- cosmological time:
$T(\mathbf{q})=\sup \{l(c) \mid c(0) \in \partial D, c(1)=p, c$ timelike $\}=d(\mathbf{p}, \mathbf{q})$
- foliation of domain by surfaces of constant cosmological time: hyperboloids $T \cdot \mathbb{H}^{2}$

3. Geometry of $(2+1)$-spacetimes
[Mess, Barbot ,Benedetti, Bonsante, Schlenker,...]

Conformally static spacetimes of genus $\mathrm{g} \geq 2$

domain

- interior of future lightcone based at $\mathbf{p} \in \mathbb{M}^{3} \quad T \cdot \mathbb{H}^{2}$
- initial singularity: boundary of lightcone
p
- cosmological time:
$T(\mathbf{q})=\sup \{l(c) \mid c(0) \in \partial D, c(1)=p, c$ timelike $\}=d(\mathbf{p}, \mathbf{q})$
- foliation of domain by surfaces of constant cosmological time: hyperboloids $T \cdot \mathbb{H}^{2}$

3. Geometry of (2+1)-spacetimes
[Mess, Barbot ,Benedetti, Bonsante, Schlenker,...]
Conformally static spacetimes of genus $\mathrm{g} \geq 2$ domain

- interior of future lightcone based at $\mathbf{p} \in \mathbb{M}^{3} \quad T \cdot \mathbb{H}^{2}$
- initial singularity: boundary of lightcone

- cosmological time:
$T(\mathbf{q})=\sup \{l(c) \mid c(0) \in \partial D, c(1)=p, c$ timelike $\}=d(\mathbf{p}, \mathbf{q})$
- foliation of domain by surfaces of constant cosmological time: hyperboloids $T \cdot \mathbb{H}^{2}$
group homomorphism (holonomies) $h(\lambda)=(1, \mathbf{p})\left(v_{\lambda}, 0\right)(1,-\mathbf{p})$

3. Geometry of $(2+1)$-spacetimes
[Mess, Barbot ,Benedetti, Bonsante, Schlenker,...]

Conformally static spacetimes of genus $\mathrm{g} \geq 2$

 domain- interior of future lightcone based at $\mathbf{p} \in \mathbb{M}^{3} \quad T \cdot \mathbb{H}^{2}$
- initial singularity: boundary of lightcone
- cosmological time:
$T(\mathbf{q})=\sup \{l(c) \mid c(0) \in \partial D, c(1)=p, c$ timelike $\}=d(\mathbf{p}, \mathbf{q})$
- foliation of domain by surfaces of constant cosmological time: hyperboloids $T \cdot \mathbb{H}^{2}$
group homomorphism (holonomies) $h(\lambda)=(1, \mathbf{p})\left(v_{\lambda}, 0\right)(1,-\mathbf{p})$
\leadsto translation component: conjugation with constant vector \mathbf{p}

3. Geometry of $(2+1)$-spacetimes
[Mess, Barbot ,Benedetti, Bonsante, Schlenker,...]

Conformally static spacetimes of genus $\mathrm{g} \geq 2$

 domain- interior of future lightcone based at $\mathbf{p} \in \mathbb{M}^{3} \quad T \cdot \mathbb{H}^{2}$
- initial singularity: boundary of lightcone

- cosmological time:
$T(\mathbf{q})=\sup \{l(c) \mid c(0) \in \partial D, c(1)=p, c$ timelike $\}=d(\mathbf{p}, \mathbf{q})$
- foliation of domain by surfaces of constant cosmological time: hyperboloids $T \cdot \mathbb{H}^{2}$
group homomorphism (holonomies) $h(\lambda)=(1, \mathbf{p})\left(v_{\lambda}, 0\right)(1,-\mathbf{p})$
\leadsto translation component: conjugation with constant vector \mathbf{p}
\leadsto Lorentzian part = cocompact Fuchsian group of genus g

$$
\Gamma=\left\langle v_{a_{1}}, v_{b_{1}}, \ldots v_{a_{g}}, v_{b_{g}} \mid\left[v_{b_{g}}, v_{a_{g}}^{-1}\right] \cdots\left[v_{b_{1}}, v_{a_{1}}^{-1}\right]=1\right\rangle \subset \operatorname{PSL}(2, \mathbb{R}) \cong S O_{0}^{+}(2,1)
$$

3. Geometry of (2+1)-spacetimes
[Mess, Barbot ,Benedetti, Bonsante, Schlenker,...]

Conformally static spacetimes of genus $\mathrm{g} \geq 2$

 domain- interior of future lightcone based at $\mathbf{p} \in \mathbb{M}^{3} \quad T \cdot \mathbb{H}^{2}$
- initial singularity: boundary of lightcone
H^{2}
- cosmological time:
$T(\mathbf{q})=\sup \{l(c) \mid c(0) \in \partial D, c(1)=p, c$ timelike $\}=d(\mathbf{p}, \mathbf{q})$
- foliation of domain by surfaces of constant cosmological time: hyperboloids $T \cdot \mathbb{H}^{2}$
group homomorphism (holonomies) $h(\lambda)=(1, \mathbf{p})\left(v_{\lambda}, 0\right)(1,-\mathbf{p})$
\leadsto translation component: conjugation with constant vector \mathbf{p}
\leadsto Lorentzian part = cocompact Fuchsian group of genus g

$$
\Gamma=\left\langle v_{a_{1}}, v_{b_{1}}, \ldots v_{a_{g}}, v_{b_{g}} \mid\left[v_{b_{g}}, v_{a_{g}}^{-1}\right] \cdots\left[v_{b_{1}}, v_{a_{1}}^{-1}\right]=1\right\rangle \subset \operatorname{PSL}(2, \mathbb{R}) \cong S O_{0}^{+}(2,1)
$$

Δ action of $\pi_{1}(S)$ on $D \subset \mathbb{M}^{3}$ preserves cct-surfaces

- on each cct-surface = canonical action of Γ on \mathbb{H}^{2}
- on each cct-surface $=$ canonical action of Γ on \mathbb{H}^{2}
- free, properly discontinuous
- on each cct-surface $=$ canonical action of Γ on \mathbb{H}^{2}
- free, properly discontinuous
- tesselation of \mathbb{H}^{2} by geodesic arc 4 g -gons
- on each cct-surface $=$ canonical action of Γ on \mathbb{H}^{2}
- free, properly discontinuous
- tesselation of \mathbb{H}^{2} by geodesic arc 4 g -gons

- on each cct-surface $=$ canonical action of Γ on \mathbb{H}^{2}
- free, properly discontinuous
- tesselation of \mathbb{H}^{2} by geodesic arc 4 g -gons

- on each cct-surface $=$ canonical action of Γ on \mathbb{H}^{2}
- free, properly discontinuous
- tesselation of \mathbb{H}^{2} by geodesic arc 4 g -gons

quotient spacetime

- on each cct-surface $=$ canonical action of Γ on \mathbb{H}^{2}
- free, properly discontinuous
- tesselation of \mathbb{H}^{2} by geodesic arc 4 g -gons

quotient spacetime

- by identifying on each cct-surface points related by 「
- on each cct-surface $=$ canonical action of Γ on \mathbb{H}^{2}
- free, properly discontinuous
- tesselation of \mathbb{H}^{2} by geodesic arc 4 g -gons

quotient spacetime

- by identifying on each cct-surface points related by Γ
- quotient of cct-surface: Riemann surface
- on each cct-surface $=$ canonical action of Γ on \mathbb{H}^{2}
- free, properly discontinuous
- tesselation of \mathbb{H}^{2} by geodesic arc 4 g -gons

quotient spacetime

- by identifying on each cct-surface points related by Γ
- quotient of cct-surface: Riemann surface
- on each cct-surface $=$ canonical action of Γ on \mathbb{H}^{2}
- free, properly discontinuous
- tesselation of \mathbb{H}^{2} by geodesic arc 4 g -gons

quotient spacetime

- by identifying on each cct-surface points related by Γ
- quotient of cct-surface: Riemann surface
- quotient spacetime conformally static
- on each cct-surface $=$ canonical action of Γ on \mathbb{H}^{2}
- free, properly discontinuous
- tesselation of \mathbb{H}^{2} by geodesic arc 4 g -gons

quotient spacetime

- by identifying on each cct-surface points related by Γ
- quotient of cct-surface: Riemann surface
- quotient spacetime conformally static

$$
M=\bigcup_{T \in \mathbb{R}^{+}} T \cdot \Sigma_{g}
$$

- on each cct-surface $=$ canonical action of Γ on \mathbb{H}^{2}
- free, properly discontinuous
- tesselation of \mathbb{H}^{2} by geodesic arc 4 g -gons

quotient spacetime

- by identifying on each cct-surface points related by Γ
- quotient of cct-surface: Riemann surface
- quotient spacetime conformally static

$$
M=\bigcup_{T \in \mathbb{R}^{+}} T \cdot \Sigma_{g} \quad \quad g_{M}=-d T^{2}+T^{2} g_{\Sigma_{g}}
$$

Evolving spacetimes via grafting [Mess], [Thurston]

Evolving spacetimes via grafting [Mess], [Thurston] ingredients
 - cocompact Fuchsian group 「

Evolving spacetimes via grafting [Mess], ingredients

- cocompact Fuchsian group Г
- measured geodesic lamination on Riemann surface $\Sigma_{g}=\mathbb{H}^{2} / \Gamma$ (simplest case:
multicurve $=$ non-intersecting closed,weighted geodesics on Σ_{g})
- cocompact Fuchsian group 「
- measured geodesic lamination on Riemann surface $\Sigma_{g}=\mathbb{H}^{2} / \Gamma$ (simplest case:
multicurve $=$ non-intersecting closed, weighted geodesics on Σ_{g})

grafting on a Riemann surface

```
Evolving spacetimes via grafting [Mess], ingredients
- cocompact Fuchsian group Г
- measured geodesic lamination on Riemann surface \(\Sigma_{g}=\mathbb{H}^{2} / \Gamma\) (simplest case:
multicurve \(=\) non-intersecting closed,weighted geodesics on \(\Sigma_{g}\) )
```


grafting on a Riemann surface

gluing in strips along geodesics in multicurve, width=weight

Evolving spacetimes via grafting

- cocompact Fuchsian group 「
- measured geodesic lamination on Riemann surface $\Sigma_{g}=\mathbb{H}^{2} / \Gamma$ (simplest case:
multicurve $=$ non-intersecting closed, weighted geodesics on Σ_{g})

grafting on a Riemann surface

gluing in strips along geodesics
 in multicurve, width=weight

Evolving spacetimes via grafting

 ingredients- cocompact Fuchsian group 「
- measured geodesic lamination on Riemann surface $\Sigma_{g}=\mathbb{H}^{2} / \Gamma$ (simplest case:
multicurve $=$ non-intersecting closed, weighted geodesics on Σ_{g})

grafting on a Riemann surface

 gluing in strips along geodesics in multicurve, width=weight
grafting (2+1)-spacetimes

Evolving spacetimes via grafting

- cocompact Fuchsian group 「
- measured geodesic lamination on Riemann surface $\Sigma_{g}=\mathbb{H}^{2} / \Gamma$ (simplest case:
multicurve $=$ non-intersecting closed, weighted geodesics on Σ_{g})

grafting on a Riemann surface

 gluing in strips along geodesics in multicurve, width=weight

grafting (2+1)-spacetimes

- grafting simultaneously on each cct-surface of static spacetime

Evolving spacetimes via grafting

- cocompact Fuchsian group 「
- measured geodesic lamination on Riemann surface $\Sigma_{g}=\mathbb{H}^{2} / \Gamma$ (simplest case:
multicurve $=$ non-intersecting closed, weighted geodesics on Σ_{g})

grafting on a Riemann surface

 gluing in strips along geodesics in multicurve, width=weight
grafting (2+1)-spacetimes

- grafting simultaneously on each cct-surface of static spacetime
- width of the strips constant (given by weights)

Grafting in the domain

[Mess, Thurston, Benedetti, Bonsante,...]

Grafting in the domain construction

Grafting in the domain construction

[Mess,Thurston,

 Benedetti, Bonsante,...]1. lift geodesic g_{Σ} on $\Sigma=\mathbb{H}^{2} / \Gamma$ to multicurve
$\left\{h(\lambda) g \mid g\right.$ lift of $\left.g_{\Sigma}, \lambda \in \pi_{1}(S)\right\}$

Grafting in the domain construction

[Mess,Thurston, Benedetti, Bonsante,...]

1. lift geodesic g_{Σ} on $\Sigma=\mathbb{H}^{2} / \Gamma$ to multicurve
$\left\{h(\lambda) g \mid g\right.$ lift of $\left.g_{\Sigma}, \lambda \in \pi_{1}(S)\right\}$
2. select basepoint \mathbf{q} outside of lifted geodesics

Grafting in the domain construction

[Mess,Thurston, Benedetti, Bonsante,...]

1. lift geodesic g_{Σ} on $\Sigma=\mathbb{H}^{2} / \Gamma$ to multicurve

$$
\left\{h(\lambda) g \mid g \text { lift of } g_{\Sigma}, \lambda \in \pi_{1}(S)\right\}
$$

2. select basepoint \mathbf{q} outside of lifted geodesics
3. cut lightcone along planes defined by geodesics in multicurve

Grafting in the domain construction

[Mess,Thurston, Benedetti, Bonsante,...]

1. lift geodesic g_{Σ} on $\Sigma=\mathbb{H}^{2} / \Gamma$ to multicurve

$$
\left\{h(\lambda) g \mid g \text { lift of } g_{\Sigma}, \lambda \in \pi_{1}(S)\right\}
$$

2. select basepoint \mathbf{q} outside of lifted geodesics
3. cut lightcone along planes defined by geodesics in multicurve

Grafting in the domain

construction

[Mess,Thurston, Benedetti, Bonsante,...]

1. lift geodesic g_{Σ} on $\Sigma=\mathbb{H}^{2} / \Gamma$ to multicurve

$$
\left\{h(\lambda) g \mid g \text { lift of } g_{\Sigma}, \lambda \in \pi_{1}(S)\right\}
$$

2. select basepoint \mathbf{q} outside of lifted geodesics
3. cut lightcone along planes defined by geodesics in multicurve 4.translate pieces away from basepoint in the direction of the planes' normal vectors by a distance given by weights

Grafting in the domain

construction

[Mess,Thurston, Benedetti, Bonsante,...]

1. lift geodesic g_{Σ} on $\Sigma=\mathbb{H}^{2} / \Gamma$ to multicurve

$$
\left\{h(\lambda) g \mid g \text { lift of } g_{\Sigma}, \lambda \in \pi_{1}(S)\right\}
$$

2. select basepoint \mathbf{q} outside of lifted geodesics
3. cut lightcone along planes defined by geodesics in multicurve
4.translate pieces away from basepoint in the direction of the planes' normal vectors by a distance given by weights

Grafting in the domain

construction

[Mess,Thurston, Benedetti, Bonsante,...]

1. lift geodesic g_{Σ} on $\Sigma=\mathbb{H}^{2} / \Gamma$ to multicurve

$$
\left\{h(\lambda) g \mid g \text { lift of } g_{\Sigma}, \lambda \in \pi_{1}(S)\right\}
$$

2. select basepoint \mathbf{q} outside of lifted geodesics
3. cut lightcone along planes defined by geodesics in multicurve 4.translate pieces away from basepoint in the direction of the planes' normal vectors by a distance given by weights
4. join pieces by straight lines

Grafting in the domain

construction

[Mess,Thurston,
Benedetti, Bonsante,...]

1. lift geodesic g_{Σ} on $\Sigma=\mathbb{H}^{2} / \Gamma$ to multicurve

$$
\left\{h(\lambda) g \mid g \text { lift of } g_{\Sigma}, \lambda \in \pi_{1}(S)\right\}
$$

2. select basepoint \mathbf{q} outside of lifted geodesics
3. cut lightcone along planes defined by geodesics in multicurve 4.translate pieces away from basepoint in the direction of the planes' normal vectors by a distance given by weights
4. join pieces by straight lines

grafted domain

grafted domain

- future of graph (infinite spacelike tree)

grafted domain

- future of graph (infinite spacelike tree)
- deformed initial singularity

grafted domain

- future of graph (infinite spacelike tree)
- deformed initial singularity
- foliation by deformed hyperboloids:
cct-surfaces with respect to deformed singularity

grafted domain

- future of graph (infinite spacelike tree)
- deformed initial singularity
- foliation by deformed hyperboloids: cct-surfaces with respect to deformed singularity

grafted domain

- future of graph (infinite spacelike tree)
- deformed initial singularity
- foliation by deformed hyperboloids: cct-surfaces with respect to deformed singularity
group homomorphism $h: \pi_{1}(S) \rightarrow P_{3}$

grafted domain

- future of graph (infinite spacelike tree)
- deformed initial singularity
- foliation by deformed hyperboloids: cct-surfaces with respect to deformed singularity
group homomorphism $h: \pi_{1}(S) \rightarrow P_{3}$
- non-trivial translational component

grafted domain

- future of graph (infinite spacelike tree)
- deformed initial singularity
- foliation by deformed hyperboloids: cct-surfaces with respect to deformed singularity

group homomorphism $h: \pi_{1}(S) \rightarrow P_{3}$

- non-trivial translational component

$$
\begin{aligned}
& \text { static } h(\lambda)=(v, 0) \\
& \text { grafted } h(\lambda)=(v, t(\lambda))
\end{aligned}
$$

grafted domain

- future of graph (infinite spacelike tree)
- deformed initial singularity
- foliation by deformed hyperboloids: cct-surfaces with respect to deformed singularity
group homomorphism $h: \pi_{1}(S) \rightarrow P_{3}$
- non-trivial translational component

$$
\begin{aligned}
\text { static } & h(\lambda)
\end{aligned}=(v, 0), \text { (} \quad \text { grafted } h(\lambda)=(v, t(\lambda))
$$

grafted domain

- future of graph (infinite spacelike tree)
- deformed initial singularity
- foliation by deformed hyperboloids: cct-surfaces with respect to deformed singularity
group homomorphism $h: \pi_{1}(S) \rightarrow P_{3}$
- non-trivial translational component

$$
\begin{aligned}
& \text { static } h(\lambda)=(v, 0) \\
& \text { grafted } h(\lambda)=(v, t(\lambda))
\end{aligned}
$$

grafted domain

- future of graph (infinite spacelike tree)
- deformed initial singularity
- foliation by deformed hyperboloids: cct-surfaces with respect to deformed singularity
group homomorphism $h: \pi_{1}(S) \rightarrow P_{3}$
- non-trivial translational component
static $h(\lambda)=(v, 0)$
grafted $h(\lambda)=(v, t(\lambda))$
- preserves deformed cct-surfaces

grafted domain

- future of graph (infinite spacelike tree)
- deformed initial singularity
- foliation by deformed hyperboloids: cct-surfaces with respect to deformed singularity
group homomorphism $h: \pi_{1}(S) \rightarrow P_{3}$
- non-trivial translational component

$$
\begin{aligned}
\text { static } & h(\lambda)
\end{aligned}=(v, 0), \text { grafted } h(\lambda)=(v, t(\lambda))
$$

- preserves deformed cct-surfaces

$$
t(\lambda)=\sum_{g_{i} \cap[\mathbf{q}, v \mathbf{q}] \neq \emptyset} w_{i} \cdot \mathbf{n}_{i}
$$

grafted domain

- future of graph (infinite spacelike tree)
- deformed initial singularity
- foliation by deformed hyperboloids: cct-surfaces with respect to deformed singularity
group homomorphism $h: \pi_{1}(S) \rightarrow P_{3}$
- non-trivial translational component
static $h(\lambda)=(v, 0)$ grafted $h(\lambda)=(v, t(\lambda))$
- preserves deformed cct-surfaces

$$
\begin{aligned}
& g_{i}=\mathbf{n}_{i}^{\perp} \cap \mathbb{H}^{2} \\
& t(\lambda)=\sum_{g_{i} \cap[\mathbf{q}, v \mathbf{q}] \neq \emptyset} w_{i} \cdot \mathbf{n}_{i}
\end{aligned}
$$

quotient spacetime

- quotient: deformed domain / deformed group action

grafted domain

- future of graph (infinite spacelike tree)
- deformed initial singularity
- foliation by deformed hyperboloids: cct-surfaces with respect to deformed singularity
group homomorphism $h: \pi_{1}(S) \rightarrow P_{3}$
- non-trivial translational component

$$
\begin{aligned}
\text { static } & h(\lambda)
\end{aligned}=(v, 0), \text { grafted } h(\lambda)=(v, t(\lambda))
$$

- preserves deformed cct-surfaces

$$
\begin{aligned}
& g_{i}=\mathbf{n}_{i}^{\perp} \cap \mathbb{H}^{2} \\
& t(\lambda)=\sum_{g_{i} \cap[\mathbf{q}, v \mathbf{q}] \neq \emptyset} w_{i} \cdot \mathbf{n}_{i}
\end{aligned}
$$

quotient spacetime

- quotient: deformed domain / deformed group action
- geometry of cct-surfaces changes with cosmological time

Evolution with the cosmological time

Static spacetime

Grafted spacetime

Geometry change via earthquake ingredients
 [Mess],
 [Thurston]

Geometry change via earthquake ingredients • cocompact Fuchsian group Γ
 [Mess],

- measured geodesic lamination on Riemann surface $\Sigma_{g}=\mathbb{H}^{2} / \Gamma$ (simplest case: multicurve on Σ_{g})

- measured geodesic lamination on Riemann surface $\Sigma_{g}=\mathbb{H}^{2} / \Gamma$ (simplest case: multicurve on Σ_{g})
earthquake on a Riemann surface

Geometry change via earthquake
 ingredients • cocompact Fuchsian group 「
 [Mess],

- measured geodesic lamination on Riemann surface $\Sigma_{g}=\mathbb{H}^{2} / \Gamma$ (simplest case: multicurve on Σ_{g})
earthquake on a Riemann surface cutting surface along geodesics rotating edges by angle=weight

Geometry change via earthquake

 ingredients • cocompact Fuchsian group Γ- measured geodesic lamination on Riemann surface $\Sigma_{g}=\mathbb{H}^{2} / \Gamma$ (simplest case: multicurve on Σ_{g})
earthquake on a Riemann surface cutting surface along geodesics rotating edges by angle=weight

Geometry change via earthquake

 ingredients • cocompact Fuchsian group Γ- measured geodesic lamination on Riemann surface $\Sigma_{g}=\mathbb{H}^{2} / \Gamma$ (simplest case: multicurve on Σ_{g})
earthquake on a Riemann surface cutting surface along geodesics rotating edges by angle=weight
 earthquake on (2+1)-spacetimes

Geometry change via earthquake ingredients • cocompact Fuchsian group 「

- measured geodesic lamination on Riemann surface $\Sigma_{g}=\mathbb{H}^{2} / \Gamma$ (simplest case: multicurve on Σ_{g})
earthquake on a Riemann surface cutting surface along geodesics rotating edges by angle=weight
 earthquake on (2+1)-spacetimes earthquake simultaneously on each cct-surface of static spacetime (angles=constant)

Geometry change via earthquake ingredients • cocompact Fuchsian group 「

- measured geodesic lamination on Riemann surface $\Sigma_{g}=\mathbb{H}^{2} / \Gamma$ (simplest case: multicurve on Σ_{g})
earthquake on a Riemann surface cutting surface along geodesics rotating edges by angle=weight
 earthquake on (2+1)-spacetimes earthquake simultaneously on each cct-surface of static spacetime (angles=constant)
construction in domain

Geometry change via earthquake ingredients • cocompact Fuchsian group 「

- measured geodesic lamination on Riemann surface $\Sigma_{g}=\mathbb{H}^{2} / \Gamma$ (simplest case: multicurve on Σ_{g})
earthquake on a Riemann surface cutting surface along geodesics rotating edges by angle=weight
 earthquake on (2+1)-spacetimes earthquake simultaneously on each cct-surface of static spacetime (angles=constant)
construction in domain

1. lift geodesic g_{Σ} on $\Sigma=\mathbb{H}^{2} / \Gamma$ to multicurve

Geometry change via earthquake ingredients • cocompact Fuchsian group Γ

- measured geodesic lamination on Riemann surface $\Sigma_{g}=\mathbb{H}^{2} / \Gamma$ (simplest case: multicurve on Σ_{g})
earthquake on a Riemann surface cutting surface along geodesics rotating edges by angle=weight
 earthquake on (2+1)-spacetimes earthquake simultaneously on each cct-surface of static spacetime (angles=constant)
construction in domain
1.lift geodesic g_{Σ} on $\Sigma=\mathbb{H}^{2} / \Gamma$ to multicurve

2. select basepoint \mathbf{q} outside of lifted geodesics

Geometry change via earthquake ingredients • cocompact Fuchsian group Γ

- measured geodesic lamination on Riemann surface $\Sigma_{g}=\mathbb{H}^{2} / \Gamma$ (simplest case: multicurve on Σ_{g})
earthquake on a Riemann surface cutting surface along geodesics rotating edges by angle=weight
 earthquake on (2+1)-spacetimes earthquake simultaneously on each cct-surface of static spacetime (angles=constant)
construction in domain

1. lift geodesic g_{Σ} on $\Sigma=\mathbb{H}^{2} / \Gamma$ to multicurve
2. select basepoint \mathbf{q} outside of lifted geodesics
3. cut lightcone along planes defined by geodesics in multicurve

Geometry change via earthquake ingredients • cocompact Fuchsian group Γ

- measured geodesic lamination on Riemann surface $\Sigma_{g}=\mathbb{H}^{2} / \Gamma$ (simplest case: multicurve on Σ_{g})
earthquake on a Riemann surface cutting surface along geodesics rotating edges by angle=weight
 earthquake on ($2+1$)-spacetimes earthquake simultaneously on each cct-surface of static spacetime (angles=constant)
construction in domain
1.lift geodesic g_{Σ} on $\Sigma=\mathbb{H}^{2} / \Gamma$ to multicurve

2. select basepoint \mathbf{q} outside of lifted geodesics

3. cut lightcone along planes defined by geodesics in multicurve

Geometry change via earthquake ingredients • cocompact Fuchsian group Γ

- measured geodesic lamination on Riemann surface $\Sigma_{g}=\mathbb{H}^{2} / \Gamma$ (simplest case: multicurve on Σ_{g})
earthquake on a Riemann surface cutting surface along geodesics rotating edges by angle=weight
 earthquake on (2+1)-spacetimes earthquake simultaneously on each cct-surface of static spacetime (angles=constant)
construction in domain
1.lift geodesic g_{Σ} on $\Sigma=\mathbb{H}^{2} / \Gamma$ to multicurve

2. select basepoint \mathbf{q} outside of lifted geodesics

3. cut lightcone along planes defined by geodesics in multicurve 4.apply Lorentz boost which preserves these planes to pieces that do not contain the basepoint

Geometry change via earthquake ingredients • cocompact Fuchsian group Γ

- measured geodesic lamination on Riemann surface $\Sigma_{g}=\mathbb{H}^{2} / \Gamma$ (simplest case: multicurve on Σ_{g})
earthquake on a Riemann surface cutting surface along geodesics rotating edges by angle=weight
 earthquake on (2+1)-spacetimes earthquake simultaneously on each cct-surface of static spacetime (angles=constant)
construction in domain

1. lift geodesic g_{Σ} on $\Sigma=\mathbb{H}^{2} / \Gamma$ to multicurve
2. select basepoint \mathbf{q} outside of lifted geodesics

3. cut lightcone along planes defined by geodesics in multicurve 4.apply Lorentz boost which preserves these planes to pieces that do not contain the basepoint

domain

domain

- domain and cct-surfaces preserved under earthquake
- domain and cct-surfaces preserved under earthquake
- resulting spacetime = conformally static
- domain and cct-surfaces preserved under earthquake
- resulting spacetime = conformally static
- points moved inside each cct-surface

domain

- domain and cct-surfaces preserved under earthquake
- resulting spacetime = conformally static
- points moved inside each cct-surface
group homomorphism $h: \pi_{1}(S) \rightarrow P_{3}$

domain

- domain and cct-surfaces preserved under earthquake
- resulting spacetime = conformally static
- points moved inside each cct-surface
group homomorphism $h: \pi_{1}(S) \rightarrow P_{3}$
- translational component remains trivial

domain

- domain and cct-surfaces preserved under earthquake
- resulting spacetime = conformally static
- points moved inside each cct-surface
group homomorphism $h: \pi_{1}(S) \rightarrow P_{3}$
- translational component remains trivial
- Lorentzian component changes

domain

- domain and cct-surfaces preserved under earthquake
- resulting spacetime = conformally static
- points moved inside each cct-surface
group homomorphism $h: \pi_{1}(S) \rightarrow P_{3}$
- translational component remains trivial
- Lorentzian component changes

domain

- domain and cct-surfaces preserved under earthquake
- resulting spacetime = conformally static
- points moved inside each cct-surface
group homomorphism $h: \pi_{1}(S) \rightarrow P_{3}$
- translational component remains trivial
- Lorentzian component changes

$$
\begin{aligned}
h(\lambda) & =(v, 0) \\
h^{\prime}(\lambda) & =\prod_{g_{i} \cap[\mathbf{q}, v \mathbf{q}] \neq 0}\left(\exp \left(2 \pi w_{i} n_{i}^{a} J_{a}\right), 0\right) \cdot(v, 0)
\end{aligned}
$$

domain

- domain and cct-surfaces preserved under earthquake
- resulting spacetime = conformally static
- points moved inside each cct-surface
group homomorphism $h: \pi_{1}(S) \rightarrow P_{3}$
- translational component remains trivial
- Lorentzian component changes

$$
\begin{aligned}
h(\lambda) & =(v, 0) \\
h^{\prime}(\lambda) & =\prod_{g_{i} \cap[\mathbf{q}, v \mathbf{q}] \neq 0}\left(\exp \left(2 \pi w_{i} n_{i}^{a} J_{a}\right), 0\right) \cdot(v, 0)
\end{aligned}
$$

- change of Fuchsian group

$$
\Gamma=h\left(\pi_{1}(S)\right) \mapsto \Gamma^{\prime}=h^{\prime}\left(\pi_{1}(S)\right)
$$

domain

- domain and cct-surfaces preserved under earthquake
- resulting spacetime = conformally static
- points moved inside each cct-surface
group homomorphism $h: \pi_{1}(S) \rightarrow P_{3}$
- translational component remains trivial
- Lorentzian component changes

$$
\begin{aligned}
h(\lambda) & =(v, 0) \\
h^{\prime}(\lambda) & =\prod_{g_{i} \cap[\mathbf{q}, v \mathbf{q}] \neq 0}\left(\exp \left(2 \pi w_{i} n_{i}^{a} J_{a}\right), 0\right) \cdot(v, 0)
\end{aligned}
$$

- change of Fuchsian group

$$
\Gamma=h\left(\pi_{1}(S)\right) \mapsto \Gamma^{\prime}=h^{\prime}\left(\pi_{1}(S)\right)
$$

quotient spacetime

domain

- domain and cct-surfaces preserved under earthquake
- resulting spacetime = conformally static
- points moved inside each cct-surface
group homomorphism $h: \pi_{1}(S) \rightarrow P_{3}$
- translational component remains trivial
- Lorentzian component changes

$$
\begin{aligned}
h(\lambda) & =(v, 0) \\
h^{\prime}(\lambda) & =\prod_{g_{i} \cap[\mathbf{q}, v \mathbf{q}] \neq 0}\left(\exp \left(2 \pi w_{i} n_{i}^{a} J_{a}\right), 0\right) \cdot(v, 0)
\end{aligned}
$$

- change of Fuchsian group

$$
\Gamma=h\left(\pi_{1}(S)\right) \mapsto \Gamma^{\prime}=h^{\prime}\left(\pi_{1}(S)\right)
$$

quotient spacetime

- conformally static spacetime for different Fuchsian group
4.Geometry change and Wilson loops [Goldman C.M.]
4.Geometry change and Wilson loops [Goldman C.M.]

2 fundamental ways of changing spacetime geometry

- grafting: conf. static spacetime Δ evolving spacetime cutting cct surfaces and inserting strip
4.Geometry change and Wilson loops [Goldman C.M.]

2 fundamental ways of changing spacetime geometry

- grafting: conf. static spacetime \leftrightarrows evolving spacetime cutting cct surfaces and inserting strip \sim translation associated with geodesic
4.Geometry change and Wilson loops [Goldman C.M.]

2 fundamental ways of changing spacetime geometry

- grafting: conf. static spacetime \leadsto evolving spacetime cutting cct surfaces and inserting strip \sim translation associated with geodesic
- earthquake: conf. static spacetime \triangleright conf.static spacetime
4.Geometry change and Wilson loops [Goldman C.M.]

2 fundamental ways of changing spacetime geometry

- grafting: conf. static spacetime \leftrightarrows evolving spacetime cutting cct surfaces and inserting strip \sim translation associated with geodesic
- earthquake: conf. static spacetime \leadsto conf.static spacetime cutting cct surfaces and rotating edges of cut
4.Geometry change and Wilson loops [Goldman C.M.]

2 fundamental ways of changing spacetime geometry

- grafting: conf. static spacetime \leftrightarrows evolving spacetime cutting cct surfaces and inserting strip \sim translation associated with geodesic
- earthquake: conf. static spacetime Δ conf.static spacetime cutting cct surfaces and rotating edges of cut ~ rotation associated with geodesic
$\stackrel{\rightharpoonup}{ }$ transformations on phase space $\operatorname{Hom}_{0}\left(\pi_{1}(M), P_{3}\right) / P_{3}$
4.Geometry change and Wilson loops [Goldman C.M.]

2 fundamental ways of changing spacetime geometry

- grafting: conf. static spacetime $₫$ evolving spacetime cutting cct surfaces and inserting strip \sim translation associated with geodesic
- earthquake: conf. static spacetime \downarrow conf.static spacetime cutting cct surfaces and rotating edges of cut ~ rotation associated with geodesic
\triangleright transformations on phase space $\operatorname{Hom}_{0}\left(\pi_{1}(M), P_{3}\right) / P_{3}$ [Goldman,C.M.]

The phase space transformations associated with grafting and earthquake along a closed geodesic λ on a cct-surface are generated via the Poisson bracket by its two Wilson loop observables: the mass m_{λ} generates grafting, the $s^{\prime} \mathrm{spin}_{\lambda}$ generates earthquakes
5. Physics: Measurements by observers [C.M.]
5. Physics: Measurements by observers [C.M.] Qu: How to get physics from the theory?
5. Physics: Measurements by observers [C.M.] Qu: How to get physics from the theory? use universal cover (domains)
5. Physics: Measurements by observers [C.M.] Qu: How to get physics from the theory? use universal cover (domains)
observer

5. Physics: Measurements by observers [С.М.]

Qu: How to get physics from the theory? use universal cover (domains)
observer worldline of observer in free fall:

- timelike, future oriented geodesic in quotient spacetime

5. Physics: Measurements by observers [С.М.]

Qu: How to get physics from the theory? use universal cover (domains)
observer worldline of observer in free fall:

- timelike, future oriented geodesic in quotient spacetime
- $\pi_{1}(M)$-equiv. class of timelike, future oriented geod's in domain

5. Physics: Measurements by observers [С.М.]

Qu: How to get physics from the theory? use universal cover (domains)
observer worldline of observer in free fall:

- timelike, future oriented geodesic in quotient spacetime
- $\pi_{1}(M)$-equiv. class of timelike, future oriented geod's in domain

5. Physics: Measurements by observers [C.M.]

Qu: How to get physics from the theory? use universal cover (domains)
observer worldline of observer in free fall:

- timelike, future oriented geodesic in quotient spacetime
- $\pi_{1}(M)$-equiv. class of timelike, future oriented geod's in domain
parametrisation $h(\lambda) g=\left(v_{\lambda}, \mathbf{a}_{\lambda}\right) g, \lambda \in \pi_{1}(M)$

$$
g(t)=t \cdot \mathbf{x}+\mathbf{x}_{0} \quad \mathbf{x}^{2}=-1, \mathbf{x}_{0} \in D
$$

5. Physics: Measurements by observers [C.M.]

Qu: How to get physics from the theory? use universal cover (domains)
observer worldline of observer in free fall:

- timelike, future oriented geodesic in quotient spacetime
- $\pi_{1}(M)$-equiv. class of timelike, future oriented geod's in domain
parametrisation $h(\lambda) g=\left(v_{\lambda}, \mathbf{a}_{\lambda}\right) g, \lambda \in \pi_{1}(M)$
lightray

$$
g(t)=t \cdot \mathbf{x}+\mathbf{x}_{0} \quad \mathbf{x}^{2}=-1, \mathbf{x}_{0} \in D
$$

5. Physics: Measurements by observers [C.M.]

Qu: How to get physics from the theory? use universal cover (domains)
observer worldline of observer in free fall:

- timelike, future oriented geodesic in quotient spacetime
- $\pi_{1}(M)$-equiv. class of timelike, future oriented geod's in domain
parametrisation $h(\lambda) g=\left(v_{\lambda}, \mathbf{a}_{\lambda}\right) g, \lambda \in \pi_{1}(M)$
lightray

$$
g(t)=t \cdot \mathbf{x}+\mathbf{x}_{0} \quad \mathbf{x}^{2}=-1, \mathbf{x}_{0} \in D
$$

- lightlike, future oriented geodesic in quotient spacetime

5. Physics: Measurements by observers [C.M.]

Qu: How to get physics from the theory? use universal cover (domains)
observer worldline of observer in free fall:

- timelike, future oriented geodesic in quotient spacetime
- $\pi_{1}(M)$-equiv. class of timelike, future oriented geod's in domain
parametrisation $h(\lambda) g=\left(v_{\lambda}, \mathbf{a}_{\lambda}\right) g, \lambda \in \pi_{1}(M)$

lightray

$$
g(t)=t \cdot \mathbf{x}+\mathbf{x}_{0} \quad \mathbf{x}^{2}=-1, \mathbf{x}_{0} \in D
$$

- lightlike, future oriented geodesic in quotient spacetime $\bullet \pi_{1}(M)$-equivalence class of lightlike, future oriented geodesics in domain

5. Physics: Measurements by observers [C.M.]

Qu: How to get physics from the theory? use universal cover (domains)
observer worldline of observer in free fall:

- timelike, future oriented geodesic in quotient spacetime
- $\pi_{1}(M)$-equiv. class of timelike, future oriented geod's in domain
parametrisation $h(\lambda) g=\left(v_{\lambda}, \mathbf{a}_{\lambda}\right) g, \lambda \in \pi_{1}(M)$
lightray

$$
g(t)=t \cdot \mathbf{x}+\mathbf{x}_{0} \quad \mathbf{x}^{2}=-1, \mathbf{x}_{0} \in D
$$

- lightlike, future oriented geodesic in quotient spacetime
$\bullet \pi_{1}(M)$-equivalence class of lightlike, future oriented geodesics in domain
returning lightray

5. Physics: Measurements by observers [C.M.]

Qu: How to get physics from the theory? use universal cover (domains)
observer worldline of observer in free fall:

- timelike, future oriented geodesic in quotient spacetime
- $\pi_{1}(M)$-equiv. class of timelike, future oriented geod's in domain parametrisation $h(\lambda) g=\left(v_{\lambda}, \mathbf{a}_{\lambda}\right) g, \lambda \in \pi_{1}(M)$

lightray

$$
g(t)=t \cdot \mathbf{x}+\mathbf{x}_{0} \quad \mathbf{x}^{2}=-1, \mathbf{x}_{0} \in D
$$

- lightlike, future oriented geodesic in quotient spacetime
$\bullet \pi_{1}(M)$-equivalence class of lightlike, future oriented geodesics in domain

returning lightray

lightray emitted by observer at time t that returns at time $t+\Delta t$

5. Physics: Measurements by observers [C.M.]

Qu: How to get physics from the theory? use universal cover (domains)
observer worldline of observer in free fall:

- timelike, future oriented geodesic in quotient spacetime
- $\pi_{1}(M)$-equiv. class of timelike, future oriented geod's in domain parametrisation $h(\lambda) g=\left(v_{\lambda}, \mathbf{a}_{\lambda}\right) g, \lambda \in \pi_{1}(M)$

lightray

$$
g(t)=t \cdot \mathbf{x}+\mathbf{x}_{0} \quad \mathbf{x}^{2}=-1, \mathbf{x}_{0} \in D
$$

- lightlike, future oriented geodesic in quotient spacetime $\bullet \pi_{1}(M)$-equivalence class of lightlike, future oriented geodesics in domain

returning lightray

lightray emitted by observer at time t that returns at time $t+\Delta t$

- lightlike geodesic in D from g to image $h(\lambda) g, \lambda \in \pi_{1}(M)$

5. Physics: Measurements by observers [C.M.]

Qu: How to get physics from the theory? use universal cover (domains)
observer worldline of observer in free fall:

- timelike, future oriented geodesic in quotient spacetime
- $\pi_{1}(M)$-equiv. class of timelike, future oriented geod's in domain parametrisation $h(\lambda) g=\left(v_{\lambda}, \mathbf{a}_{\lambda}\right) g, \lambda \in \pi_{1}(M)$

lightray

$$
g(t)=t \cdot \mathbf{x}+\mathbf{x}_{0} \quad \mathbf{x}^{2}=-1, \mathbf{x}_{0} \in D
$$

- lightlike, future oriented geodesic in quotient spacetime
$\bullet \pi_{1}(M)$-equivalence class of lightlike, future oriented geodesics in domain

returning lightray

lightray emitted by observer at time t that returns at time $\mathrm{t}+\Delta \mathrm{t}$

- lightlike geodesic in D from g to image $h(\lambda) g, \lambda \in \pi_{1}(M)$

5. Physics: Measurements by observers [C.M.]

Qu: How to get physics from the theory? use universal cover (domains)
observer worldline of observer in free fall:

- timelike, future oriented geodesic in quotient spacetime
- $\pi_{1}(M)$-equiv. class of timelike, future oriented geod's in domain parametrisation $h(\lambda) g=\left(v_{\lambda}, \mathbf{a}_{\lambda}\right) g, \lambda \in \pi_{1}(M)$

lightray

$$
g(t)=t \cdot \mathbf{x}+\mathbf{x}_{0} \quad \mathbf{x}^{2}=-1, \mathbf{x}_{0} \in D
$$

- lightlike, future oriented geodesic in quotient spacetime
$\bullet \pi_{1}(M)$-equivalence class of lightlike, future oriented geodesics in domain

returning lightray

lightray emitted by observer at time t that returns at time $\mathrm{t}+\Delta \mathrm{t}$

- lightlike geodesic in D from g to image $h(\lambda) g, \lambda \in \pi_{1}(M)$
- 1:1-correspondence with elements of $\pi_{1}(M)$

5. Physics: Measurements by observers [С.М.]

Qu: How to get physics from the theory? use universal cover (domains)
observer worldline of observer in free fall:

- timelike, future oriented geodesic in quotient spacetime
- $\pi_{1}(M)$-equiv. class of timelike, future oriented geod's in domain parametrisation $h(\lambda) g=\left(v_{\lambda}, \mathbf{a}_{\lambda}\right) g, \lambda \in \pi_{1}(M)$

lightray

$$
g(t)=t \cdot \mathbf{x}+\mathbf{x}_{0} \quad \mathbf{x}^{2}=-1, \mathbf{x}_{0} \in D
$$

- lightlike, future oriented geodesic in quotient spacetime
$\bullet \pi_{1}(M)$-equivalence class of lightlike, future oriented geodesics in domain

returning lightray

lightray emitted by observer at time t that returns at time $\mathrm{t}+\Delta \mathrm{t}$

- lightlike geodesic in D from g to image $h(\lambda) g, \lambda \in \pi_{1}(M)$
- 1:1-correspondence with elements of $\pi_{1}(M)$
- condition $(h(\lambda) g(t+\Delta t)-g(t))^{2}=0 \quad \lambda \in \pi_{1}(M)$

Measurements associated with returning lightrays [C.M.]

- return time:
eigentime elapsed between emission and return of lightray

Measurements associated with returning lightrays [C.M.]

- return time:
eigentime elapsed between emission and return of lightray
ς via condition $(h(\lambda) g(t+\Delta t)-g(t))^{2}=0 \lambda \in \pi_{1}(M)$

- return time:
eigentime elapsed between emission and return of lightray \leadsto via condition $(h(\lambda) g(t+\Delta t)-g(t))^{2}=0 \quad \lambda \in \pi_{1}(M)$
- directions yielding returning lightrays,
 angles between them

Measurements associated with returning lightrays [C.M.]

- return time:
eigentime elapsed between emission and return of lightray ς via condition $(h(\lambda) g(t+\Delta t)-g(t))^{2}=0 \lambda \in \pi_{1}(M)$
- directions yielding returning lightrays,
 angles between them
\Rightarrow projection of returning lightray on orthogonal complement of observer's velocity vector

Measurements associated with returning lightrays [C.M.]

- return time:
eigentime elapsed between emission and return of lightray \Rightarrow via condition $(h(\lambda) g(t+\Delta t)-g(t))^{2}=0 \quad \lambda \in \pi_{1}(M)$
- directions yielding returning lightrays,
 angles between them
¢ projection of returning lightray on orthogonal complement of observer's velocity vector

Measurements associated with returning lightrays [C.M.]

- return time:
eigentime elapsed between emission and return of lightray \leftrightharpoons via condition $(h(\lambda) g(t+\Delta t)-g(t))^{2}=0 \quad \lambda \in \pi_{1}(M)$
- directions yielding returning lightrays,
 angles between them
¢ projection of returning lightray on orthogonal complement of observer's velocity vector

- frequency shifts between emitted and returning lightrays

Measurements associated with returning lightrays [C.M.]

- return time:
eigentime elapsed between emission and return of lightray \leftrightharpoons via condition $(h(\lambda) g(t+\Delta t)-g(t))^{2}=0 \quad \lambda \in \pi_{1}(M)$
- directions yielding returning lightrays,
 angles between them
\leadsto projection of returning lightray on orthogonal complement of observer's velocity vector

- frequency shifts between emitted and returning lightrays ¢ via relativistic Doppler effect

Measurements associated with returning lightrays [C.M.]

- return time:
eigentime elapsed between emission and return of lightray \Rightarrow via condition $(h(\lambda) g(t+\Delta t)-g(t))^{2}=0 \quad \lambda \in \pi_{1}(M)$
- directions yielding returning lightrays,
 angles between them
ص projection of returning lightray on orthogonal complement of observer's velocity vector

- frequency shifts between emitted and returning lightrays ¢ via relativistic Doppler effect
explicit expressions as functions of
emission time t observer $\mathrm{x} \in \mathbb{H}^{2}, \mathbf{x}_{0} \in D$ holonomies $h(\lambda)$

Results

Results

parameters

Results

parameters

rapidity $\cosh \rho_{\lambda}=\mathbf{x} \cdot v_{\lambda} \mathbf{x}$

parameters

rapidity $\cosh \rho_{\lambda}=\mathrm{x} \cdot v_{\lambda} \mathbf{x}$
3 parameters for relative initial position
$h(\lambda) g(0)-g(0)=\sigma_{\lambda}\left(v_{\lambda} \mathbf{x}-\mathbf{x}\right)+\tau_{\lambda} v_{\lambda} \mathbf{x}+\nu_{\lambda} \mathbf{x} \wedge v_{\lambda} \mathbf{x}$

parameters

rapidity $\cosh \rho_{\lambda}=\mathbf{x} \cdot v_{\lambda} \mathbf{x}$
3 parameters for relative initial position
$h(\lambda) g(0)-g(0)=\sigma_{\lambda}\left(v_{\lambda} \mathbf{x}-\mathbf{x}\right)+\tau_{\lambda} v_{\lambda} \mathbf{x}+\nu_{\lambda} \mathbf{x} \wedge v_{\lambda} \mathbf{x}$

parameters

rapidity $\cosh \rho_{\lambda}=\mathbf{x} \cdot v_{\lambda} \mathbf{x}$
3 parameters for relative initial position
$h(\lambda) g(0)-g(0)=\sigma_{\lambda}\left(v_{\lambda} \mathbf{x}-\mathbf{x}\right)+\tau_{\lambda} v_{\lambda} \mathbf{x}+\nu_{\lambda} \mathbf{x} \wedge v_{\lambda} \mathbf{x}$

formulas

return time

$$
\Delta t\left(t, \mathbf{x}, \mathbf{x}_{0}, h(\lambda)\right)=\left(t+\sigma_{\lambda}\right)\left(\cosh \rho_{\lambda}-1\right)-\tau_{\lambda}+\sinh \rho_{\lambda} \sqrt{\left(t+\sigma_{\lambda}\right)^{2}+\nu_{\lambda}^{2}}
$$

Results

parameters
 rapidity $\cosh \rho_{\lambda}=\mathrm{x} \cdot v_{\lambda} \mathrm{x}$

3 parameters for relative initial position
$h(\lambda) g(0)-g(0)=\sigma_{\lambda}\left(v_{\lambda} \mathbf{x}-\mathbf{x}\right)+\tau_{\lambda} v_{\lambda} \mathbf{x}+\nu_{\lambda} \mathbf{x} \wedge v_{\lambda} \mathbf{x}$

formulas

 return time $\Delta t\left(t, \mathbf{x}, \mathbf{x}_{0}, h(\lambda)\right)=\left(t+\sigma_{\lambda}\right)\left(\cosh \rho_{\lambda}-1\right)-\tau_{\lambda}+\sinh \rho_{\lambda} \sqrt{\left(t+\sigma_{\lambda}\right)^{2}+\nu_{\lambda}^{2}}$ OITECtions of AMISSIOn $\hat{\mathbf{p}}_{\lambda}(t)=\widehat{\Pi}_{\mathbf{x}^{\perp}}(h(\lambda) g(t+\Delta t)-g(t))=\cos \phi \hat{\Pi}_{\mathbf{x}^{\perp}}\left(v_{\lambda} \mathbf{x}\right)+\sin \phi \frac{\mathbf{x} \wedge v_{\lambda} \mathbf{x}}{\left|\mathbf{x} \wedge v_{\lambda} \mathbf{x}\right|}$

$$
\phi\left(t, \mathbf{x}, \mathbf{x}_{0}, h(\lambda)\right)=\arctan \left(\frac{\nu_{\lambda}}{\sinh \rho_{\lambda} \sqrt{\left(t+\sigma_{\lambda}\right)^{2}+\nu_{\lambda}^{2}}+\left(t+\sigma_{\lambda}\right) \cosh \rho_{\lambda}}\right)
$$

parameters

rapidity $\cosh \rho_{\lambda}=\mathbf{x} \cdot v_{\lambda} \mathbf{x}$
3 parameters for relative initial position
$h(\lambda) g(0)-g(0)=\sigma_{\lambda}\left(v_{\lambda} \mathbf{x}-\mathbf{x}\right)+\tau_{\lambda} v_{\lambda} \mathbf{x}+\nu_{\lambda} \mathbf{x} \wedge v_{\lambda} \mathbf{x}$

formulas

return time

$$
\Delta t\left(t, \mathbf{x}, \mathbf{x}_{0}, h(\lambda)\right)=\left(t+\sigma_{\lambda}\right)\left(\cosh \rho_{\lambda}-1\right)-\tau_{\lambda}+\sinh \rho_{\lambda} \sqrt{\left(t+\sigma_{\lambda}\right)^{2}+\nu_{\lambda}^{2}}
$$

$$
\phi\left(t, \mathbf{x}, \mathbf{x}_{0}, h(\lambda)\right)=\arctan \left(\frac{\nu_{\lambda}}{\sinh \rho_{\lambda} \sqrt{\left(t+\sigma_{\lambda}\right)^{2}+\nu_{\lambda}^{2}}+\left(t+\sigma_{\lambda}\right) \cosh \rho_{\lambda}}\right)
$$

angles between directions of emission

$$
\cos \Phi_{\lambda_{1}, \lambda_{2}}=\hat{\mathbf{p}}_{\lambda_{1}}(t) \cdot \hat{\mathbf{p}}_{\lambda_{1}}(t)
$$

parameters

rapidity $\cosh \rho_{\lambda}=\mathbf{x} \cdot v_{\lambda} \mathbf{x}$
3 parameters for relative initial position
$h(\lambda) g(0)-g(0)=\sigma_{\lambda}\left(v_{\lambda} \mathbf{x}-\mathbf{x}\right)+\tau_{\lambda} v_{\lambda} \mathbf{x}+\nu_{\lambda} \mathbf{x} \wedge v_{\lambda} \mathbf{x}$

formulas

return time

$$
\Delta t\left(t, \mathbf{x}, \mathbf{x}_{0}, h(\lambda)\right)=\left(t+\sigma_{\lambda}\right)\left(\cosh \rho_{\lambda}-1\right)-\tau_{\lambda}+\sinh \rho_{\lambda} \sqrt{\left(t+\sigma_{\lambda}\right)^{2}+\nu_{\lambda}^{2}}
$$

OIFECHOMS Of AMISSIOn $\hat{\mathbf{p}}_{\lambda}(t)=\widehat{\Pi}_{\mathbf{x}^{\perp}}(h(\lambda) g(t+\Delta t)-g(t))=\cos \phi \hat{\Pi}_{\mathbf{x}^{\perp}}\left(v_{\lambda} \mathbf{x}\right)+\sin \phi \frac{\mathbf{x} \wedge v_{\lambda} \mathbf{x}}{\left|\mathbf{x} \wedge v_{\lambda} \mathbf{x}\right|}$

$$
\phi\left(t, \mathbf{x}, \mathbf{x}_{0}, h(\lambda)\right)=\arctan \left(\frac{\nu_{\lambda}}{\sinh \rho_{\lambda} \sqrt{\left(t+\sigma_{\lambda}\right)^{2}+\nu_{\lambda}^{2}}+\left(t+\sigma_{\lambda}\right) \cosh \rho_{\lambda}}\right)
$$

angles between directions of emission

$$
\cos \Phi_{\lambda_{1}, \lambda_{2}}=\hat{\mathbf{p}}_{\lambda_{1}}(t) \cdot \hat{\mathbf{p}}_{\lambda_{1}}(t)
$$

frequency shift

$$
f_{r} / f_{e}\left(t, \mathbf{x}, \mathbf{x}_{0}, h(\lambda)\right)=\frac{\sqrt{\left(t+\sigma_{\lambda}\right)^{2}+\nu_{\lambda}^{2}}}{\cosh \rho_{\lambda} \sqrt{\left(t+\sigma_{\lambda}\right)^{2}+\nu_{\lambda}^{2}}+\sinh \rho_{\lambda}\left(t+\sigma_{\lambda}\right)}
$$

- are physically meaningful, similar to gravitational lensing
- are physically meaningful, similar to gravitational lensing
- allow observer to reconstruct full geometry of spacetime in finite eigentime

Measurements associated with returning lightrays [C.M.]

- are physically meaningful, similar to gravitational lensing
- allow observer to reconstruct full geometry of spacetime in finite eigentime
- relate spacetime geometry as perceived by observer to variables used in quantisation (holonomies)

Measurements associated with returning lightrays [C.M.]

- are physically meaningful, similar to gravitational lensing
- allow observer to reconstruct full geometry of spacetime in finite eigentime
- relate spacetime geometry as perceived by observer to variables used in quantisation (holonomies)
- involve Wilson loop observables: mass and spin arise canonically in measurements of special (comoving) observers
- are physically meaningful, similar to gravitational lensing
- allow observer to reconstruct full geometry of spacetime in finite eigentime
- relate spacetime geometry as perceived by observer to variables used in quantisation (holonomies)
- involve Wilson loop observables: mass and spin arise canonically in measurements of special (comoving) observers
- provide a framework for investigation of conceptual questions of (quantum) gravity:
- are physically meaningful, similar to gravitational lensing
- allow observer to reconstruct full geometry of spacetime in finite eigentime
- relate spacetime geometry as perceived by observer to variables used in quantisation (holonomies)
- involve Wilson loop observables: mass and spin arise canonically in measurements of special (comoving) observers
- provide a framework for investigation of conceptual questions of (quantum) gravity:
- measurements vs observables (partial observables)
- are physically meaningful, similar to gravitational lensing
- allow observer to reconstruct full geometry of spacetime in finite eigentime
- relate spacetime geometry as perceived by observer to variables used in quantisation (holonomies)
- involve Wilson loop observables: mass and spin arise canonically in measurements of special (comoving) observers
- provide a framework for investigation of conceptual questions of (quantum) gravity:
- measurements vs observables (partial observables)
- role of time and observers in (quantum) gravity

5. Outlook and conclusions

5. Outlook and conclusions

vacuum spacetimes in Lorentzian (2+1)-gravity with $\Lambda=0$

5. Outlook and conclusions

 vacuum spacetimes in Lorentzian $(2+1)$-gravity with $\Lambda=0$ - rich and subtle geometry
5. Outlook and conclusions

vacuum spacetimes in Lorentzian (2+1)-gravity with $\Lambda=0$

- rich and subtle geometry
- description via universal cover: quotient of domain $D \subset \mathbb{M}^{3}$

5. Outlook and conclusions

vacuum spacetimes in Lorentzian (2+1)-gravity with $\Lambda=0$

- rich and subtle geometry
- description via universal cover: quotient of domain $D \subset \mathbb{M}^{3}$
- physical degrees of freedom:holonomies (up to conjugation)

5. Outlook and conclusions

vacuum spacetimes in Lorentzian (2+1)-gravity with $\Lambda=0$

- rich and subtle geometry
- description via universal cover: quotient of domain $D \subset \mathbb{M}^{3}$
- physical degrees of freedom:holonomies (up to conjugation)
relation geometry - observables

5. Outlook and conclusions

vacuum spacetimes in Lorentzian (2+1)-gravity with $\Lambda=0$

- rich and subtle geometry
- description via universal cover: quotient of domain $D \subset \mathbb{M}^{3}$
- physical degrees of freedom:holonomies (up to conjugation)
relation geometry - observables
- 2 fundamental geometry transformations (grafting and earthquake) generated via \{ , \} by 2 Wilson loop observables (mass and spin)

5. Outlook and conclusions

vacuum spacetimes in Lorentzian (2+1)-gravity with $\Lambda=0$

- rich and subtle geometry
- description via universal cover: quotient of domain $D \subset \mathbb{M}^{3}$
- physical degrees of freedom:holonomies (up to conjugation)
relation geometry - observables
- 2 fundamental geometry transformations (grafting and earthquake) generated via \{ , \} by 2 Wilson loop observables (mass and spin)
- realistic measurements by observers associated with returning lightrays: return time, directions, frequency shift as function of holonomies

5. Outlook and conclusions

vacuum spacetimes in Lorentzian (2+1)-gravity with $\Lambda=0$

- rich and subtle geometry
- description via universal cover: quotient of domain $D \subset \mathbb{M}^{3}$
- physical degrees of freedom:holonomies (up to conjugation) relation geometry - observables
- 2 fundamental geometry transformations (grafting and earthquake) generated via \{ , \} by 2 Wilson loop observables (mass and spin)
- realistic measurements by observers associated with returning lightrays: return time, directions, frequency shift as function of holonomies
- Wilson loops (mass and spin) arise naturally in these measurements

5. Outlook and conclusions

vacuum spacetimes in Lorentzian (2+1)-gravity with $\Lambda=0$

- rich and subtle geometry
- description via universal cover: quotient of domain $D \subset \mathbb{M}^{3}$
- physical degrees of freedom:holonomies (up to conjugation) relation geometry - observables
- 2 fundamental geometry transformations (grafting and earthquake) generated via \{ , \} by 2 Wilson loop observables (mass and spin)
- realistic measurements by observers associated with returning lightrays: return time, directions, frequency shift as function of holonomies
- Wilson loops (mass and spin) arise naturally in these measurements
open questions application to quantum theory !

1. Classification of vacuum spacetimes

[Mess, Barbot ,Benedetti, Bonsante, Schlenker,...]
gravity in (2+1)-dimensions
[Mess, Barbot ,Benedetti, Bonsante, Schlenker,...]
gravity in (2+1)-dimensions
vacuum Einstein equations $\operatorname{Ric}_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R+\Lambda g_{\mu \nu}=0$

- in 3d: Ricci tensor determines curvature
- in 3d: Ricci tensor determines curvature
- solutions of vacuum Einstein equations locally isometric to $A d S_{3}(\Lambda<0), d S_{3}(\Lambda>0), \mathbb{M}^{3}(\Lambda=0) \quad$ Lorentzian
$\mathbb{H}^{3}(\Lambda<0), S^{3}(\Lambda>0), \mathbb{E}^{3}(\Lambda=0) \quad$ Euclidean

1. Classification of vacuum spacetimes

 [Mess, Barbot ,Benedetti, Bonsante, Schlenker,...]gravity in (2+1)-dimensions
vacuum Einstein equations $\operatorname{Ric}_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R+\Lambda g_{\mu \nu}=0$

- in 3d: Ricci tensor determines curvature
- solutions of vacuum Einstein equations locally isometric to $\begin{array}{cl}A d S_{3}(\Lambda<0), d S_{3}(\Lambda>0), \mathbb{M}^{3}(\Lambda=0) & \text { Lorentzian } \\ \mathbb{H}^{3}(\Lambda<0), S^{3}(\Lambda>0), \mathbb{E}^{3}(\Lambda=0) & \text { Euclidean }\end{array}$
- no local gravitational degrees of freedom

1. Classification of vacuum spacetimes

 [Mess, Barbot ,Benedetti, Bonsante, Schlenker,...]gravity in (2+1)-dimensions
vacuum Einstein equations $\operatorname{Ric}_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R+\Lambda g_{\mu \nu}=0$

- in 3d: Ricci tensor determines curvature
- solutions of vacuum Einstein equations locally isometric to $\begin{array}{cl}A d S_{3}(\Lambda<0), d S_{3}(\Lambda>0), \mathbb{M}^{3}(\Lambda=0) & \text { Lorentzian } \\ \mathbb{H}^{3}(\Lambda<0), S^{3}(\Lambda>0), \mathbb{E}^{3}(\Lambda=0) & \text { Euclidean }\end{array}$
- no local gravitational degrees of freedom
- global degrees of freedom due to non-trivial topology

1. Classification of vacuum spacetimes

[Mess, Barbot ,Benedetti, Bonsante, Schlenker,...]
gravity in (2+1)-dimensions
vacuum Einstein equations $\operatorname{Ric}_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R+\Lambda g_{\mu \nu}=0$

- in 3d: Ricci tensor determines curvature
- solutions of vacuum Einstein equations locally isometric to $\begin{array}{cl}A d S_{3}(\Lambda<0), d S_{3}(\Lambda>0), \mathbb{M}^{3}(\Lambda=0) & \text { Lorentzian } \\ \mathbb{H}^{3}(\Lambda<0), S^{3}(\Lambda>0), \mathbb{E}^{3}(\Lambda=0) & \text { Euclidean }\end{array}$
- no local gravitational degrees of freedom
- global degrees of freedom due to non-trivial topology
- finite dimensional phase space

1. Classification of vacuum spacetimes

[Mess, Barbot ,Benedetti, Bonsante, Schlenker,...]
gravity in (2+1)-dimensions
vacuum Einstein equations $\operatorname{Ric}_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R+\Lambda g_{\mu \nu}=0$

- in 3d: Ricci tensor determines curvature
- solutions of vacuum Einstein equations locally isometric to

$$
\begin{array}{cl}
\text { AdS } S_{3}(\Lambda<0), d S_{3}(\Lambda>0), \mathbb{M}^{3}(\Lambda=0) & \text { Lorentzian } \\
\mathbb{H}^{3}(\Lambda<0), S^{3}(\Lambda>0), \mathbb{E}^{3}(\Lambda=0) & \text { Euclidean }
\end{array}
$$

- no local gravitational degrees of freedom
- global degrees of freedom due to non-trivial topology
- finite dimensional phase space
classification of spacetimes up to diffeomorphisms

1. Classification of vacuum spacetimes

[Mess, Barbot ,Benedetti, Bonsante, Schlenker,...]
gravity in (2+1)-dimensions
vacuum Einstein equations $\operatorname{Ric}_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R+\Lambda g_{\mu \nu}=0$

- in 3d: Ricci tensor determines curvature
- solutions of vacuum Einstein equations locally isometric to $\begin{array}{cl}A d S_{3}(\Lambda<0), d S_{3}(\Lambda>0), \mathbb{M}^{3}(\Lambda=0) & \text { Lorentzian } \\ \mathbb{H}^{3}(\Lambda<0), S^{3}(\Lambda>0), \mathbb{E}^{3}(\Lambda=0) & \text { Euclidean }\end{array}$
- no local gravitational degrees of freedom
- global degrees of freedom due to non-trivial topology
- finite dimensional phase space
classification of spacetimes up to diffeomorphisms
Setting •Lorentzian (2+1)-gravity, $\Lambda=0$
- vacuum spacetimes: no matter

