Naïve approach to the little hierarchy problem

Bohdan GRZADKOWSKI
University of Warsaw

- The little hierarchy problem
- Dark Matter
- Neutrino physics
- Summary and comments
B.G., J. Wudka, arXiv:0902.0628 (to appear in PRL), work in progress

The little hierarchy problem

$$
\begin{gathered}
m_{h}^{2}=m_{h}^{(B) 2}+\delta^{(S M)} m_{h}^{2}+\cdots \\
\delta^{(S M)} m_{h}^{2}=\frac{\Lambda^{2}}{\pi^{2} v^{2}}\left[\frac{3}{2} m_{t}^{2}-\frac{1}{8}\left(6 m_{W}^{2}+3 m_{Z}^{2}\right)-\frac{3}{8} m_{h}^{2}\right] \\
m_{h}=130 \mathrm{GeV} \Rightarrow \delta^{(S M)} m_{h}^{2} \simeq m_{h}^{2} \quad \text { for } \quad \Lambda \simeq 580 \mathrm{GeV}
\end{gathered}
$$

- For $\Lambda \gtrsim 580 \mathrm{GeV}$ there must be a cancellation between the tree-level Higgs mass ${ }^{2}$ $m_{h}^{(B) 2}$ and the 1-loop leading correction $\delta^{(S M)} m_{h}^{2}$:

$$
\begin{gathered}
m_{h}^{(B) 2} \sim \delta^{(S M)} m_{h}^{2}>m_{h}^{2} \\
\Downarrow
\end{gathered}
$$

the perturbative expansion is breaking down.

- The SM cutoff is very low!

Solutions to the little hierarchy problem:
© Suppression of corrections growing with Λ^{2} at the 1-loop level:

- The Veltman condition, no Λ^{2} terms at the 1-loop level:

$$
\frac{3}{2} m_{t}^{2}-\frac{1}{8}\left(6 m_{W}^{2}+3 m_{Z}^{2}\right)-\frac{3}{8} m_{h}^{2}=0 \quad \Longrightarrow \quad m_{h} \simeq 310 \mathrm{GeV}
$$

- SUSY:

$$
\delta^{(\text {SUSY })} m_{h}^{2} \sim m_{\tilde{t}}^{2} \frac{3 g_{t}^{2}}{8 \pi^{2}} \ln \left(\frac{\Lambda^{2}}{m_{\tilde{t}}^{2}}\right)
$$

then for $\Lambda \sim 10^{16-18} \mathrm{GeV}$ one gets $m_{\tilde{t}}^{2} \approx 1 \mathrm{TeV}^{2}$ in order to have $\delta^{(S U S Y)} m_{h}^{2} \sim$ m_{h}^{2}.

A Increase of the allowed value of m_{h} :

- The inert Higgs model by Barbieri, Hall, Rychkov, arXiv:hep-ph/0603188, (see also Ma$) \quad \Rightarrow \quad m_{h} \sim 400-600 \mathrm{GeV},\left(m_{h}^{2}\right.$ terms in T parameter canceled by $m_{H^{ \pm}}, m_{A}, m_{S}$ contributions).
- The little hierarchy

$$
\delta^{(S M)} m_{h}^{2} \lesssim m_{h}^{2} \quad \Longrightarrow \quad \Lambda \lesssim 600 \mathrm{GeV}
$$

- "The "LEP paradox"", Barbieri \& Strumia, hep-ph/0007265 (see lecture by G. Altarelli)

$$
\mathcal{L}=\mathcal{L}_{S M}+\frac{1}{\Lambda^{2}} \sum_{i} c_{i} \mathcal{O}_{i}
$$

EWPT (LEP)
\Downarrow

$\Lambda \gtrsim 5 \mathrm{TeV}$

\Downarrow
There is no physics beyond the SM without some fine tunning

Motivation: to lift the cutoff to few TeV range in the most economic way

- N_{φ} extra gauge singlets φ_{i} with $\left\langle\varphi_{i}\right\rangle=0$ (no $H \leftrightarrow \varphi_{i}$ mixing from $\varphi_{i}^{2}|H|^{2}$).
- Symmetries $\mathbb{Z}_{2}^{(i)}: \varphi_{i} \rightarrow-\varphi_{i}$ (to eliminate $|H|^{2} \varphi_{i}$ couplings).
- Gauge singlet neutrinos: $\nu_{R j}$ for $j=1,2,3$.

$$
V\left(H, \varphi_{i}\right)=-\mu_{H}^{2}|H|^{2}+\lambda_{H}|H|^{4}+\mu_{\varphi}^{2} \sum_{i=1}^{N_{\varphi}} \varphi_{i}^{2}+\frac{\lambda_{\varphi}}{24} \sum_{i=1}^{N_{\varphi}} \varphi_{i}^{4}+\lambda_{x}|H|^{2} \sum_{i=1}^{N_{\varphi}} \varphi_{i}^{2}
$$

with $O\left(N_{\varphi}\right)$ symmetry imposed

$$
\langle H\rangle=\frac{v}{\sqrt{2}}, \quad\left\langle\varphi_{i}\right\rangle=0 \quad \text { for } \quad \mu_{\varphi}^{2}>0
$$

then

$$
m_{h}^{2}=2 \mu_{H}^{2} \quad \text { and } \quad m^{2}=2 \mu_{\varphi}^{2}+\lambda_{x} v^{2}
$$

- Positivity (stability): $\quad \lambda_{H}, \lambda_{\varphi}, \lambda_{x}>0$
- Unitarity in the limit $s \gg m_{h}^{2}, m^{2}: \lambda_{H} \leq \frac{4 \pi}{3}$ (the SM requirement) and $\lambda_{\varphi} \leq 8 \pi$, $\lambda_{x}<4 \pi$

$$
\begin{aligned}
& \delta^{(\varphi)} m_{h}^{2}=-N_{\varphi} \frac{\lambda_{x}}{8 \pi^{2}}\left[\Lambda^{2}-m^{2} \ln \left(1+\frac{\Lambda^{2}}{m^{2}}\right)\right] \\
& \left|\delta m_{h}^{2}\right|=\left|\delta^{(S M)} m_{h}^{2}+\delta^{(\varphi)} m_{h}^{2}\right|=D_{t} m_{h}^{2} \\
& \Downarrow \\
& \lambda_{x}=\lambda_{x}\left(m, m_{h}, D_{t}, \Lambda, N_{\varphi}\right)
\end{aligned}
$$

Figure 1: Plots of λ_{x} as a function of m for $N_{\varphi}=3, D_{t}=0$ and various choices of $\Lambda=8,12,16$ and 20 TeV shown above each panel. The curves correspond to $m_{h}=130,150,170,190,210,230 \mathrm{GeV}$ (starting with the uppermost curve).

Figure 2: Plots of λ_{x} as a function of m for $N_{\varphi}=6, D_{t}=0$ and various choices of $\Lambda=8,12,16$ and 20 TeV shown above each panel. The curves correspond to $m_{h}=130,150,170,190,210,230 \mathrm{GeV}$ (starting with the uppermost curve).

Stability of the fine tunning

$$
\begin{aligned}
\delta^{(S M)} m_{h}^{2} & =\frac{\Lambda^{2}}{16 \pi^{2}}\left(12 g_{t}^{2}-\frac{9}{2} g_{2}^{2}-\frac{3}{2} g_{1}^{2}-12 \lambda_{H}\right) \\
\delta^{(\varphi)} m_{h}^{2} & =-N_{\varphi} \frac{\lambda_{x}}{8 \pi^{2}}\left[\Lambda^{2}-m^{2} \ln \left(1+\frac{\Lambda^{2}}{m^{2}}\right)\right]
\end{aligned}
$$

In general

$$
\delta m_{h}^{2}=\underbrace{\delta^{(S M)} m_{h}^{2}+\delta^{(\varphi)} m_{h}^{2}}_{\simeq 0}+2 \Lambda^{2} \sum_{n=1}^{\infty} f_{n}(\lambda, \ldots) \ln ^{n}\left(\frac{\Lambda}{\mu}\right)
$$

where (see I. Jack and D. R. T. Jones, Plys. Lett. B234, 321 (1990))

$$
(n+1) f_{n+1}=\mu \frac{\partial}{\partial \mu} f_{n}=\beta_{i} \frac{\partial}{\partial \lambda_{i}} f_{n} \quad \text { and } \quad f_{n} \propto\left(\frac{N_{\varphi} \lambda_{x}}{16 \pi^{2}}\right)^{n+1}
$$

From 1-loop condition $(n=0)$

$$
\delta^{(S M)} m_{h}^{2}+\delta^{(\varphi)} m_{h}^{2} \simeq 0
$$

we have

$$
\lambda_{x}=\frac{1}{N_{\varphi}}\left\{4.8-3\left(\frac{m_{h}}{v}\right)^{2}+2 D_{t}\left[\frac{2 \pi}{\Lambda / \mathrm{TeV}}\right]^{2}\right\}\left[1-\frac{m^{2}}{\Lambda^{2}} \ln \left(\frac{m^{2}}{\Lambda^{2}}\right)\right]+\mathcal{O}\left(\frac{m^{4}}{\Lambda^{4}}\right)
$$

Therefore at the 2-loop ($n=1$)

$$
D_{t} \equiv \frac{\delta m_{h}^{2}}{m_{h}^{2}} \simeq\left(\frac{N_{\varphi} \lambda_{x}}{16 \pi^{2}}\right)^{2} \frac{\Lambda^{2}}{m_{h}^{2}} \simeq\left(\frac{4}{16 \pi^{2}}\right)^{2} \frac{\Lambda^{2}}{m_{h}^{2}}
$$

for $D_{t} \lesssim 1$

$$
\Lambda \lesssim 4 \pi^{2} m_{h} \simeq 4-9 \mathrm{TeV}
$$

(0.15, 3\}

(0.15, 3)

Figure 3: Contour plots of the Barbieri-Giudice parameters Δ_{Λ} plotted against corresponding value of $D_{t} \equiv \delta m_{h}^{2} / m_{h}^{2}$ for $m_{h}=150 \mathrm{GeV}, N_{\varphi}=3$ and $0.2 \leq \lambda_{x} \leq 6,1 \mathrm{TeV} \leq m \leq 10 \mathrm{TeV}$ and $10 \mathrm{TeV} \leq \Lambda \leq 20 \mathrm{TeV}$.

$$
\begin{aligned}
\Delta_{\Lambda} \equiv \frac{\Lambda}{m_{h}^{2}} \frac{\partial m_{h}^{2}}{\partial \Lambda}= & \left|2 \frac{\delta^{(S M)} m_{h}^{2}}{m_{h}^{2}}-\frac{\Lambda^{2}}{m_{h}^{2}} \frac{N_{\varphi} \lambda_{x}}{4 \pi^{2}} \frac{\Lambda^{2}}{m^{2}+\Lambda^{2}}\right| \\
& \frac{\delta m_{h}^{2}}{m_{h}^{2}}=\Delta_{\Lambda} \frac{\delta \Lambda}{\Lambda}
\end{aligned}
$$

Figure 4: Contour plots of the Barbieri-Giudice parameters Δ_{m} plotted against corresponding value of $D_{t} \equiv \delta m_{h}^{2} / m_{h}^{2}$ for $m_{h}=150 \mathrm{GeV}, N_{\varphi}=3$ and $0.2 \leq \lambda_{x} \leq 6,1 \mathrm{TeV} \leq m \leq 10 \mathrm{TeV}$ and $10 \mathrm{TeV} \leq \Lambda \leq 20 \mathrm{TeV}$.

$$
\begin{gathered}
\Delta_{m} \equiv \frac{m}{m_{h}^{2}} \frac{\partial m_{h}^{2}}{\partial m}=\left|\frac{m^{2}}{m_{h}^{2}} \frac{N_{\varphi} \lambda_{x}}{4 \pi^{2}}\left[\ln \left(1+\frac{\Lambda^{2}}{m^{2}}\right)-\frac{\Lambda^{2}}{m^{2}+\Lambda^{2}}\right]\right| \\
\frac{\delta m_{h}^{2}}{m_{h}^{2}}=\Delta_{m} \frac{\delta m}{m}
\end{gathered}
$$

$\{0.15,3\}$

$(0.15,3)$

Figure 5: Contour plots of the Barbieri-Giudice parameters $\Delta_{\lambda_{x}}$ plotted against corresponding value of $D_{t} \equiv \delta m_{h}^{2} / m_{h}^{2}$ for $m_{h}=150 \mathrm{GeV}, N_{\varphi}=3$ and $0.2 \leq \lambda_{x} \leq 6,1 \mathrm{TeV} \leq m \leq 10 \mathrm{TeV}$ and $10 \mathrm{TeV} \leq \Lambda \leq 20 \mathrm{TeV}$.

$$
\begin{gathered}
\Delta_{\lambda_{x}} \equiv \frac{\lambda_{x}}{m_{h}^{2}} \frac{\partial m_{h}^{2}}{\partial \lambda_{x}}=\frac{\left|\delta^{(\varphi)} m_{h}^{2}\right|}{m_{h}^{2}} \\
\frac{\delta m_{h}^{2}}{m_{h}^{2}}=\Delta_{\lambda_{x}} \frac{\delta \lambda_{x}}{\lambda_{x}}
\end{gathered}
$$

Dark Matter

V. Silveira and A. Zee, (1985), J. McDonald, (1994), C. P. Burgess, M. Pospelov and T. ter Veldhuis, (2001), H. Davoudiasl, R. Kitano, T. Li and H. Murayama, (2005),
J. J. van der Bij, (2006), S. Andreas, T. Hambye and M. H. G. Tytgat, (2008)

It is possible to find parameters Λ, λ_{x} and m such that both the hierarchy is ameliorated to the prescribed level and such that $\sum_{i} \Omega_{\varphi_{i}} h^{2}$ is consistent with $\Omega_{D M} h^{2}$

$$
\varphi_{i} \varphi_{i} \rightarrow h h, W^{+} W^{-}, Z Z, l \bar{l}, q \bar{q}, g g, \gamma \gamma \Rightarrow\left\langle\sigma_{i} v\right\rangle=\left\langle\sigma_{i} v\right\rangle\left(\lambda_{x}, m\right)
$$

$$
\begin{equation*}
\left\langle\sigma_{i} v\right\rangle \simeq \frac{\lambda_{x}^{2}}{8 \pi m^{2}}+\frac{\lambda_{x}^{2} v^{2} \Gamma_{h}(2 m)}{8 m^{5}} \simeq \frac{1.73}{8 \pi} \frac{\lambda_{x}^{2}}{m^{2}} \tag{1}
\end{equation*}
$$

The Boltzmann equation $\Rightarrow x_{f}\left(\equiv \frac{m}{T_{f}}\right) \simeq \ln \left[0.038 \frac{m_{P \mid m}\langle\sigma v\rangle}{g_{\star}^{1 / 2} x_{f}^{1 / 2}}\right]$

$$
\Omega_{\varphi_{i}} h^{2} \simeq 1.06 \cdot 10^{9} \frac{x_{f}}{g_{\star}^{1 / 2} m_{P l}\langle\sigma v\rangle \mathrm{GeV}}
$$

$$
\left|\delta m_{h}^{2}\right|=D_{t} m_{h}^{2} \quad \text { and } \quad \sum_{i=1}^{N_{\varphi}} \Omega_{\varphi_{i}} h^{2}=\Omega_{D M} h^{2}=0.106 \pm 0.008 \quad \Rightarrow \quad m=m(\Lambda)
$$

Figure 6: Allowed regions in the space (m, Λ) are plotted for $D_{t}(m)=0, N_{\varphi}=3$ and assuming that each φ_{i} contributes the same to the total $\Omega_{D M}$ at the 3σ level: $\Omega_{\varphi} h^{2}=0.106 \pm 0.008$ for the Higgs mass shown above each panel; $m_{h}=130,150,170,190,210,230 \mathrm{GeV}$.

Figure 7: Allowed regions in the space (m, Λ) are plotted for $D_{t}(m)=0, N_{\varphi}=6$ and assuming that each φ_{i} contributes the same to the total $\Omega_{D M}$ at the 3σ level: $\Omega_{\varphi} h^{2}=0.106 \pm 0.008$ for the Higgs mass shown above each panel; $m_{h}=130,150,170,190,210,230 \mathrm{GeV}$.

Neutrino physics

$$
\begin{aligned}
& \mathcal{L}_{Y}=-\bar{L} Y_{l} H l_{R}-\bar{L} Y_{\nu} \tilde{H} \nu_{R}-\frac{1}{2} \overline{\left(\nu_{R}\right)^{c}} M \nu_{R}-\varphi_{i} \overline{\left(\nu_{R}\right)^{c}} Y_{\varphi_{i}} \nu_{R}+\text { H.c. } \\
& \mathbb{Z}_{2}^{(i)}: \quad H \rightarrow H, \varphi_{i} \rightarrow-\varphi_{i}, L \rightarrow S_{L} L, l_{R} \rightarrow S_{l_{R}} l_{R}, \nu_{R} \rightarrow S_{\nu_{R}} \nu_{R}
\end{aligned}
$$

The symmetry conditions $\left(S_{i} S_{i}^{\dagger}=S_{i}^{\dagger} S_{i}=\mathbb{1}\right)$:

$$
S_{L}^{\dagger} Y_{l} S_{l_{R}}=Y_{l}, \quad S_{L}^{\dagger} Y_{\nu} S_{\nu_{R}}=Y_{\nu}, \quad S_{\nu_{R}}^{T} M S_{\nu_{R}}=+M, \quad S_{\nu_{R}}^{T} Y_{\varphi} S_{\nu_{R}}=-Y_{\varphi}
$$

The implications of the symmetry (in the basis in which M is diagonal):

$$
S_{\nu_{R}}^{T} M S_{\nu_{R}}=+M \quad \Rightarrow \quad S_{\nu_{R}}= \pm \mathbb{1}, \quad S_{\nu_{R}}= \pm \operatorname{diag}(1,1,-1)
$$

$$
S_{\nu_{R}}= \pm \mathbb{1} \Rightarrow Y_{\varphi}=0 \text { or } S_{\nu_{R}}= \pm \operatorname{diag}(1,1,-1) \Rightarrow Y_{\varphi}=\left(\begin{array}{ccc}
0 & 0 & b_{1} \\
0 & 0 & b_{2} \\
b_{1} & b_{2} & 0
\end{array}\right)
$$

Basis choice: Y_{l} real and diagonal.

$$
\begin{aligned}
& S_{L}^{\dagger} Y_{l} S_{l_{R}}=Y_{l} \quad \Rightarrow \quad S_{L}=S_{l_{R}}=\operatorname{diag}\left(s_{1}, s_{2}, s_{3}\right), \quad\left|s_{i}\right|=1 \\
& S_{L}^{\dagger} Y_{\nu} S_{\nu_{R}}=Y_{\nu} \quad \Rightarrow \quad 10 \text { Dirac neutrino mass textures }
\end{aligned}
$$

For instance the solution corresponding to $s_{1,2,3}= \pm 1$:

$$
Y_{\nu}=\left(\begin{array}{ccc}
a & b & 0 \\
d & e & 0 \\
g & h^{\prime} & 0
\end{array}\right)
$$

$$
\mathcal{L}_{m}=-\left(\bar{n} M_{n} n+\bar{N} M_{N} N\right)
$$

with the see-saw mechanism explaining $M_{n} \ll M_{N}$:

$$
M_{N} \sim M \quad \text { and } \quad M_{n} \sim\left(v Y_{\nu}\right) \frac{1}{M}\left(v Y_{\nu}\right)^{T}
$$

where

$$
\begin{gathered}
\nu_{L}=n_{L}+M_{D} \frac{1}{M} N_{L} \quad \text { and } \quad \nu_{R}=N_{R}-\frac{1}{M} M_{D}^{T} n_{R} \\
Y_{\nu}=\left(\begin{array}{ccc}
a & b & 0 \\
d & e & 0 \\
g & h^{\prime} & 0
\end{array}\right) \quad \Rightarrow \quad M_{n}
\end{gathered}
$$

To compare our results with the data, we use the following approximate lepton mixing matrix (tri-bimaximal lepton mixing) that corresponds to $\theta_{13}=0, \theta_{23}=\pi / 4$ and $\theta_{12}=\arcsin (1 / \sqrt{3})$:

$$
U=\left(\begin{array}{ccc}
\sqrt{\frac{2}{3}} & \sqrt{\frac{1}{3}} & 0 \\
-\sqrt{\frac{1}{6}} & \sqrt{\frac{1}{3}} & \sqrt{\frac{1}{2}} \\
-\sqrt{\frac{1}{6}} & \sqrt{\frac{1}{3}} & -\sqrt{\frac{1}{2}}
\end{array}\right)
$$

Writing the diagonal light neutrino mass matrix as

$$
m_{\text {light }}=\operatorname{diag}\left(m_{1}, m_{2}, m_{3}\right)
$$

we find (see lecture by F. Del Aguila)
$M_{n}=U m_{\text {light }} U^{T}=\frac{1}{3}\left(\begin{array}{ccc}2 m_{1}+m_{2} & -m_{1}+m_{2} & -m_{1}+m_{2} \\ -m_{1}+m_{2} & \frac{1}{2}\left(m_{1}+2 m_{2}+3 m_{3}\right) & \frac{1}{2}\left(m_{1}+2 m_{2}-3 m_{3}\right) \\ -m_{1}+m_{2} & \frac{1}{2}\left(m_{1}+2 m_{2}-3 m_{3}\right) & \frac{1}{2}\left(m_{1}+2 m_{2}+3 m_{3}\right)\end{array}\right)$
In our case

$$
M_{n}=\left(v Y_{\nu}\right) \frac{1}{M}\left(v Y_{\nu}\right)^{T}
$$

\Downarrow
$Y_{\nu}=\left(\begin{array}{ccc}a & b & 0 \\ -\frac{a}{2} & b & 0 \\ -\frac{a}{2} & b & 0\end{array}\right) \begin{aligned} & m_{1}=-3 a^{2} \frac{v^{2}}{M_{1}} \\ & m_{2}=-6 b^{2} \frac{v^{2}}{M_{2}} \\ & m_{3}=0\end{aligned}$ and $Y_{\nu}=\left(\begin{array}{ccc}a & b & 0 \\ a & -\frac{b}{2} & 0 \\ a & -\frac{b}{2} & 0\end{array}\right) \begin{aligned} & m_{1}=-3 b^{2} \frac{v^{2}}{M_{2}} \\ & m_{2}=-6 a^{2} \frac{v^{2}}{M_{1}} \\ & m_{3}=0\end{aligned}$

Does $Y_{\varphi} \neq 0$ imply $\varphi \rightarrow n_{i} n_{j}$ decays?

$$
Y_{\nu}=\left(\begin{array}{ccc}
a & b & 0 \\
d & e & 0 \\
g & h^{\prime} & 0
\end{array}\right), Y_{\varphi}=\left(\begin{array}{ccc}
0 & 0 & b_{1} \\
0 & 0 & b_{2} \\
b_{1} & b_{2} & 0
\end{array}\right) \Rightarrow \varphi \rightarrow N_{1,2}^{\star} N_{3} \rightarrow \underbrace{n_{1,2,3} h}_{N_{1,2}^{\star}} N_{3}
$$

that can be kinematically forbidden by requiring $M_{3}>m$.

Summary

- The addition of N_{φ} real scalar singlets φ_{i} to the SM may ameliorate the little hierarchy problem (by lifting the cutoff Λ to $\sim 4-9 \mathrm{TeV}$ range). Some fine tuning remains.
- It also provides a realistic candidate for DM if $m_{\varphi} \sim 1-3 \mathrm{TeV}$ (depending on $\left.N_{\varphi}\right)$.
- For appropriate choices of \mathbb{Z}_{2} charges, the \mathbb{Z}_{2} symmetry implies one massless neutrino and light-neutrino mass matrix consistent with the tri-bimaximal lepton mixing.

