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Lecture 1 :  The basic notions and tools



The idea that elementary particles may correspond to quantum states of an
extended structureless object dates back to 1962, when P.A.M. Dirac tried to 
model the electron and the muon as different states of a charged membrane.

Some years later it was realized  that meson resonances  in hadronic collisions 
could be well described by the excitations of a quantum relativistic string.

Both ideas are alive today,  though in transmuted form. 



 The modern reincarnation of dual models is the AdS/CFT correspondence. Besides
its potential application to QCD, theorists believe that this duality between gauge

 theories and gravity could have more far-reaching consequences. 

     The quarks, leptons and gauge bosons of the Standard Model are not 
    organized in Regge trajectories [or if they are, they each belong to a separate
      trajectory]. Yet, because it  incorporates quantum gravity, string theory has 

  played  a central  role in the effort to unify the fundamental forces.

Strong interactions, on the other hand, are described by a beautiful theory: 
QuantumChromodynamics. Perturbative and lattice QCD calculations are, 

furthermore, adequate in many contexts.

 Thus, if string theory is to play any 
role, it should be as an analytic tool 
for accessing the low-E dynamics. 

from Necco+ Sommer, hep-lat/0108008

Stretched chromo-magnetic flux tubes do
 behave like strings, as is clear from lattice 
calculations of the heavy-quark potential.
This explains the qualitative successes of 

dual (and also the Lund) models. 



This is described by the Nambu-Gotto action,  i.e. the (Lorentz- and) reparametrization-
invariant area of the string trajectory  [or worldsheet] ,  mutliplied by the string tension.
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To  begin, we need to undestand the dynamics of a relativistic string.

NB:  This is not the unique invariant action, but it is the lowest-order term in
         derivatives (higher-order terms involve extrinsic or intrinsic curvature). 

  

where

and

X · X = −(X0)2 + (X1)2 · · · + (Xd)2



When compared, say, to a violin string, relativistic strings have unusual properties:
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In the so-called static parametrization  (                                )  the NG action reads:X0 = τ, X1 = σ

 mass density = tension ,    and   waves propagate at the speed of light .   

A violin string, by contrast, has  mass density > tension ;  it supports both
transverse and longitudinal waves traveling at subluminal speeds.  



A more convenient parametrization is by conformal coordinates,  in which the tangent 
vectors are everywhere orthogonal and of equal (up to a sign) length. The induced metric 

in such a coordinate system is conformally flat: 
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The parametrization of the earth by latitude and  
longitude is orthogonal but NOT conformal. One 

degree of latitude corresponds roughly to 110 
km,  while a degree in longitude corresponds to 
110 km on the equator, and zero on the poles.     

In conformal coordinates the NG equations become the free-wave equations in 2d:   
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We may also write ,  where are independent

functions in the case of closed strings.  Open strings have only standing waves, i.e.        

for
free-endpoint  (Neumann) 

fixed-endpoint  (Dirichlet)   

{

fµ = ±f̃µ

fµ, f̃µXµ = fµ(τ − σ) + f̃µ(τ + σ)

boundary conditions.

a closed string

an open string seen from far look like point particles with .....

mass  m
spin  J

charge  q

vibration energy

intrinsic angular momentum

momentum in 5th dimension



To compute the mass, let’s look at the conformal-gauge conditions : f ′ · f ′ = f̃ ′ · f̃ ′ = 0 .

These  are constraints on phase-space, i.e. on the initial data. They can be solved most easily in 

the  light-cone gauge:

X± ≡ X0 ±X1 (=⇒ X · X = −X+X− + |X⊥|2 )

X+ = α′p+τ where

Since (f+)′ = (f̃+)′ =
1
2
α′p+ we can solve the gauge conditions for  f− and f̃−.

Thus, only the  D-2  transverse oscillation modes are physical degrees of freedom. 
Furthermore the gauge conditions give:

m2 = −p2 =
4
α′
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|a⊥n |2 =
4
α′

∞∑

n=1

|ã⊥n |2 .
positive definite
and continuous
mass spectrum

Similarly, one can compute the angular momentum in the c.o.m. rest frame and show that:

for open strings
1/α′

J ≤ α′m2 (as compared with                     for a rigid bar); try to prove this!         J ∼
√

E

open
 strings



Of course the masses and spins of elementary particles must be discrete. 
No problem, this is automatic upon quantization: 

1
n
|aj

n|2 → N j
n = 0, 1, 2 · · ·

number of  excitations
with frequency n and

polarization j

What looks harder  is:  how to obtain massless particles, like the photon?  
The ground state energy comes here to the rescue!  e.g. for open strings:

α′m2
0 = (D − 2)

∞∑

1

n

2
= −D − 2

24

NB: the divergence is unambiguously subtracted, because the (infinite) energy density 
must be (by locality)                    , where         is the short-distance cutoff.   ∝ 1/ε2 ε

The ground state            has imaginary mass, it is a tachyon.|0〉o



The first excited states                    transform as a vector of the transverse rotation group, and

have mass α′m2 = 1− D − 2
24

. Since only massless particles can have (D-2) polarization

states, consistency requires 

D=26 critical dimension

Thus the massless states of an open string correspond to a higher-dimensional photon.  
Remaining states have mass                  , and they are organized in  Regge trajectories. ≥ 1/

√
α′

  Repeating the analysis for the closed strings one finds a tachyon             at the lowest level,  |0〉c

αj
−1|0〉o

and  the following states at zero mass: 

αj
−1α̃

l
−1|0〉c

symmetric traceless:  graviton (hjl)

anti-symmetric 2-index

trace part:  dilaton (Φ)

(Bjl)



    The fact that the closed-string spectrum includes a massless spin-2 state 
prompted the reinterpretation of string theory as a theory of quantum gravity. 

Scherk, Schwarz;  Yoneya  ‘74

What about the problem of the tachyon?   In ordinary field theory a scalar 
tachyon field signals a perturbative instability of the vacuum: 

V (φ) = −aφ2 + · · ·

φ
0

In bosonic string field theory the ultimate fate of  26D Minkowski spacetime 
is not well understood [the known stable backgrounds are in 2D].

There is, however, a remedy for stability:  space-time supersymmetry.

?



There exist several [technically-different but physically-equivalent] descriptions of the
superstring.  In the so-called  NSR formulation,  one introduces one anticommuting
coordinate for each normal (commuting) coordinate of the string: 

(Xµ, ψµ, ψ̃µ)NSR  super-coordinate:

left and right
real fermions
on worldsheetThe critical dimension is now D=10. 

 The rest of the analysis proceeds as 
before, with two crucial differences: 

The fermions can be either periodic (Ramond) or antiperiodic (Neveu-Schwarz),
with modes that have either integer or half-integer frequencies  [for the open string 
this corresponds to                      at one end,  and                         at the other].                                ψµ = ψ̃µ ψµ = ±ψ̃µ

In the Ramond sector,  there are anti-commuting zero modes acting on the states: 

{ψµ
0 , ψν

0} = ηµν Dirac        matrices.γ

These states transform therefore as space-time spinors! 



It is consistent (and necessary) to impose definite world-sheet fermion parity. 

This is known as the GSO projection: (−)F = −1 .

It projects out the tachyon, and acts as a chirality projection on Ramond states.

Let us consider the spectrum of the open superstring:

α′m2
sectors

|0〉NS

|0,+〉R

|0,−〉R
0

−1
2

ψj
− 1

2
|0〉NS

Neveu-Schwarz Ramond

....  plus massive states.

The massless states are those of the  D=10,  N=1 supersymmetric  Maxwell theory.

D=10 Weyl
Majorana spinor



For closed strings,  one must impose separate boundary conditions and GSO 
projections on the left and right fermions. The massless states are:     

ψj
− 1

2
ψ̃l
− 1

2
|0〉

NS/NS

ψ̃l
− 1

2
|0〉

R/NS
ψj
− 1

2
|0〉

NS/R ,

|0〉
R/R

graviton, dilaton, NS-NS tensor

gravitini  with  
{opposite

equal
chirality

(IIA)

(IIB)

R-R antisymmetric tensor fields [      bi-spinors] !

These states are those of the maximal (N=2) supergravity theories in D=10 .

By studying the interactions of the massless modes it has 
been shown that the effective low-E theories are precisely 
N=2 (IIA or IIB) supergravity in ten dimensions. This is 
not surprising: maximal two-derivative supergravities are 
unique,  i.e. they are completely fixed by symmetry.



How about the open strings?  Recall that each coordinate can obey either 
Neumann or Dirichlet boundary conditions:  open-string endpoints are thus 
stuck on hyper-planar subspaces, or  Dp-branes.

D-branes interact with the closed strings [e.g. an open string can emit a closed one].

x0

x1···p

xp+1,···9

more precisely, 
worldvolumes of 
static  p-branes

open

closed

They have in particular RR-charge and mass density (tension); they are solitonic 
excitations of type II string theory, analogous to magnetic monopoles. 

Polchinski  ‘95



  
The simplest soliton is the kink. This is a domain wall in a scalar-field theory with a 
double-well potential  [in d spatial dimensions it is a p=(d-1) - brane].  As a toy example, 

consider the following two-scalar model:

1/m

width

tension

∼ 1/m

heavy at weak
coupling

The two vacua are at  ,  and a kink solution is

φ̂ = ± m
√

g
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m(x⊥ − a)

2

)
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(φ, χ) = (± m
√

g
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2
(∂χ)2 +

g

8
[φ2 + χ2 − m2

g
]2 +

g̃

8
χ4



The low-E  excitations in the background of the kink are of two kinds:

χ(x)(i)  those of the field            , which is massless far from the kink;  

(ii)  the long-wavelength transverse excitations of the brane,                          φ(x) ∼ Y (x‖)∂aφ̂(x⊥) .

The corresponding effective action reads: 

Seff =
∫

bulk
[
1
2
(∂χ)2 +

g + g̃

8
χ4] +

∫

brane
[
1
2
(∂Y )2 + Vb(Y,χ)] + · · ·

NB: there is, in fact, also a tachyonic field    
   on the brane, corresponding to the fact 
   that there is a lower-tension, stable domain

wall. For simplicity, we have neglect  this  
    tachyon in the current discussion.

This can be derived from the initial Lagrangian, by a decomposition of the scalar
fields in modes of the reduced transverse-space linearized equations: 

Φ := φ + iχ =
∑

λ

ψλ(x‖)Φλ(x⊥)

both continuous 
(bulk), and discrete 
(localized) modes



Unfortunately, we don’t know the Lagrangian of (second-quantized)  string field theory.

Nevertheless, we interpret closed and open strings as the bulk and brane-localized 
modes in the presence of solitons.  In particular, the low-E excitations of a D-brane 

are described by open strings  with   m2 ! 1/α′ .

For an isolated Dp-brane, we saw that these strings correspond to a D=10
Maxwell (super)field, dimensionally reduced to  D= p+1 :

Aα=0,··· ,p

λa=1···16

photon field

gauginos

scalars  (= transverse coordinates)

The effective two-derivative D-brane action is a free, supersymmetric Maxwell theory. 

Covariantized by the Dirac-Born-Infeld action:
∫

dp+1ζ
√
−det(∂αY · ∂βY + Fαβ) + fermionic

Y J=p+1,··· ,9



 A  surprise comes when one considers two nearby D-branes:  

b!
√

α′

i = 1
i = 2

Fields acquire Chan-Paton 
indices, labeling the branes
of the string endpoints:

Aα
ij , ΦJ

ij , λa
ij

and they interact
 as matrix products.

The low-E  field theory is supersymmetric Yang-Mills theory
with gauge group  U(2) ; for N D-branes the group is U(N) .  

spontaneously-broken to
U(1)x ... x U(1)

when branes are separated
(“Coulomb phase”)



 
The double role of D-branes, as  (1) solitons in a theory of gravity, and
(2) habitats of non-abelian gauge theories, is at the core of most recent 

developments in the subject. More in the upcoming lectures. 

Here, I will conclude with one last remark:  the type IIA theory has stable 
supersymmetric D-particles with mass                     . These become light 
when the coupling is strong.  But is it possible to add more light fields to

 the highly-constrained  N=2, 10D supergravity theory?

∼ 1/gs

√
α′

The only known extension is maximal supergravity in 11 dimensions
[from which the IIA theory is obtained by dimensional reduction].  

Cremmer, Julia, Scherk ‘78

A reasonable conjecture (that passes many tests):  strongly-coupled IIA theory 
has a dual description in terms of D=11 supergravity compactified on a large 

circle, and coupled consistently to membranes and five-branes.

It is rather unlikely that D=11 supergravity is a consistent theory at all 
scales. Its UV completion (if it exists) has been called M-theory; it has

no dimensionless parameter, and no sharp definition.  

Hull, Townsend ’94
Witten ‘95



Let us now summarize:

A      Relativistic  strings can be consistently quantized.  They describe infinite
        towers of particles, with spin and mass-squared on Regge  trajectories.

    One of these particles is massless and has spin 2:   it is the graviton.

B        To solve the problem of the tachyon one needs supersymmetry. Also, 
        consistency requires 10 space time dimensions. Closed strings give a  

          finite theory of quantum gravity whose low-E limit is type II supergravity.

C      The theory has solitonic excitations that can be described by D-branes.
         These have the surprising property of binding non-abelian Yang Mills

theories in their worldvolume.



Further reading:  there are many textbooks on string theory.
  Here is a (partial) list:

B. Zweibach,  First Course in String Theory

M. Green, J. Schwarz, E. Witten,  Supertring Theory

J. Polchinski,  String Theory

E. Kiritsis,  String Theory in a Nutshell

K+M. Becker, J. Schwarz,  String Theory and M-theory


