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EXTENDED GAUGED SUPERGRAVITIES 
AND  FLUXES



Extended gauged supergravities and fluxes

Supersymmetric deformations of extended supergravities 

deformation parameters: charges ~ fluxes

They can often be discussed in the context 
of M-Theory compactifications

or



   11D 
               supergravity
IIA / IIB

 4D ungauged 

 supergravity

  4D  gauged 

 supergravity

reduction in presence of

           — p-form fluxes

                      — torsion (geometric flux)

                                 — nongeometric fluxes

                                            —   ! ! !

dea = T a
bc eb ∧ ec

∫
Σ F (p) = CΣ

gauging

  reduction
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T .
  n

Figure 1: Gauged supergravities and flux compactifications.

in all lower dimensions are obtained by dimensional reduction on torus manifolds T n

(the vertical arrow). Their characteristic properties include exceptionally large global

symmetry groups and abelian gauge groups; e.g. for the maximal four-dimensional

theory these are a global E7 and a local U(1)28 symmetry, respectively [10]. None

of the matter fields are charged under the abelian gauge group, hence the name of

ungauged supergravity. Another distinct feature of these theories is their maximally

supersymmetric Minkowski ground state in which all fields are massless.

Instead, one may consider more complicated compactifications (the diagonal ar-

row in figure 1), in which e.g. the torus is replaced by manifolds with more structure

(such as spheres Sn), in which higher-dimensional p-form fields may acquire non-trivial

background fluxes, in which the torus may be supplied with torsion, etc. All these

compactifications lead to more complicated effective theories in four dimensions which

typically come with non-abelian gauge symmetries under which the matter fields are

charged, and which are referred to as gauged supergravities. In contrast to their un-

gauged counterparts, these theories typically come with a scalar potential which is a

result of the more complicated internal geometry. This is one of the reasons that has

triggered the interest in these compactifications: the scalar potential may support an

effective cosmological constant, provide mass terms for the fields of the theory (moduli

stabilization), describe scenarios of spontaneous supersymmetry breaking, etc., thereby

accommodating many phenomenologically desirable properties. Except for very few

examples, these gauged supergravities do no longer admit maximally supersymmetric

groundstates in accordance with the fact that the presence of non-vanishing background

fluxes typically breaks supersymmetry.

The most systematic approach to the construction and study of these gauged su-

pergravities is by considering them as deformations of the ungauged theories obtained

by simple torus reduction. This is depicted by the horizontal arrow in figure 1, with

the flux and geometric parameters acting as deformation parameters. On the level

3

Samtleben, 0808.4076

Truncation of the infinite tower of KK states. The 
embedding of the gauged theory in the original theory  
differs from the embedding of the ungauged theory.



The possible gaugings may teach us something about 
BPS states of M-Theory that are not contained in the 
supergravity approximation

HIDDEN SYMMETRIES

GAUGING AND GAUGE GROUP EMBEDDINGS

THE p-FORM HIERARCHY IN 4 SPACE-TIME DIMENSIONS

MAXIMAL SUPERGRAVITIES

TOPICS

LIFE AT THE END OF THE p-FORM HIERARCHY

HIERARCHY OF p-FORM FIELDS



HIDDEN SYMMETRIES 
The toroidal compactification of pure gravity (Kaluza-Klein)

MD →Md × Tn (D = d + n)

resulting theory is invariant under the group GL(n)

charge lattice of KK tower: symmetry restricted to GL(n, Z)

gMN → gµν + Aµ
n + gmn

massless states:  graviton,     gauge fields (KK photons),
               scalar fields 

n
1
2n(n + 1)
infinite tower of massive graviton states

 non-linearly realized on the scalars:
GL(n)
SO(n)

the massive states carry KK photon charges



Lower space-time dimensions do not follow the generic pattern:

three space-time dimensions: the vector fields 
can be dualized to scalars  (Hodge duality)

massless:  graviton (no states),                scalars  1
2n(n + 3)

Systematic features of toroidal compactifications:

SL(n + 1)
SO(n + 1)

symmetry non-linearly realized on the scalars

the rank of the invariance group increases with n★

when starting with scalars that parametrize a homogeneous 
target space, the target space remains homogeneous 

★

the presence of the massive states breaks the 
symmetry group to an arithmetic subgroup

★



the symmetry of the resulting compactified theory 
depends sensitively on the original theory

gMN → gµν + Aµ
m + gmn

BMN → Bµν + Bmµ + Bmn

LD = − 1
2

√
g R− 3

4

√
g
(
∂[MBNP ]

)2

 tower of massive graviton and tensor states ⇒

⇒ massless states: graviton, tensor,       spin-1 
states, and      spinless statesn2

2n

⇒ G ⊂ SO(n, n; Z)

Another example: graviton-tensor theory



GOAL: study all possible deformations induced by 
gauging subgroups of G

not the generic pattern in five, four and three space-time dimensions ! 

e.g. upon including a dilaton in the original theory, one finds :

d > 5 : G = R+ × SO(n, n; Z) (n, n) vectors
d = 5 : G = R+ × SO(n, n; Z) (n, n) + 1 vectors
d = 4 : G = SL(2; Z)× SO(n, n; Z) (n, n) + 1 vectors
d = 3 : G = SO(n + 1, n + 1; Z) 0 vectors

The Hodge dilemma:
to increase the symmetry  ⇒  dualize to lower-rank form fields★

the presence of certain form fields may be an obstacle to certain gauge groups★

what to do when the theory contains no (vector) gauge fields★



Example: maximal supergravity in 3 space-time dimensions

gauging versus scalar-vector-tensor duality 

128 scalars and 128 spinors, but no vectors !
E8(8)(R)obtained by dualizing vectors in order to realize the symmetry 

solution: 
introduce 248 vector gauge fields with Chern-Simons terms

vectors ‘invisible’ at the level of the toroidal truncation

EMBEDDING TENSOR

LCS ∝ g εµνρ Aµ
MΘMN

[
∂νAρ

N − 1
3
g fPQ

NAν
P Aρ

Q
]

Θ

Nicolai, Samtleben, 2000

First: general analysis of gauge group embeddings.



There are restrictions on the possible gaugings 

GAUGING AND GAUGE GROUP EMBEDDINGS

Restrictions follow from the consistency of the 
combined p-form gauge transformations.

The gauge group must be a subgroup of the full rigid 
symmetry group of the Lagrangian and/or the 
equations of motion.

They can also follow from supersymmetry.

The restrictions are subtle!
a gauge group may be a proper subgroup but can still not be realized 
for a certain ungauged Lagrangian.



Hence the field content is important

But also the space-time dimension is relevant. 
In particular even and odd dimensions are different



EMBEDDING TENSOR ΘM
αgauge group encoded into the 

gauge group generators generatorsG↵ ↵
XM = ΘM

α tαΘM
α

 

according to a product representation
Gtransforming under the action of 

treated as a spurionic quantity, ΘM
α

with gauge fields          transforming in some representation of GAµ
M

gauge a subgroup of     ,  the symmetry group of the ungauged theory G

dW, Nicolai, Samtleben, 
Trigiante,  2000-2008

Gauge group embeddings



EMBEDDING TENSORS  FOR MAXIMAL SUPERGRAVITY IN D = 3,4,5,6,7 

characterize all possible gaugings 
group-theoretical classification
universal Lagrangians 

dW, Samtleben, Trigiante,  2002

7 SL(5) 10× 24 = 10 + 15 + 40 + 175

6 SO(5, 5) 16× 45 = 16 + 144 + 560

5 E6(6) 27× 78 = 27 + 351 + 1728

4 E7(7) 56× 133 = 56 + 912 + 6480

3 E8(8) 248× 248 = 1 + 248 + 3875 + 27000 + 30380

G M αD

This representation branches into irreducible representations.
Not all these representations are allowed !! 
(for instance, because of supersymmetry)

➟  Representation (linear) constraint



XMN
P

contains the gauge group structure constants, but is 
in general not symmetric in lower indices, unless 
contracted with the embedding tensor !!!!

ZM
NP ≡ X(NP )

M ZM
NP ΘM

α = 0

X[NP
R XQ]R

M = 2
3ZM

R[N XPQ]
R

Jacobi identity affected :

[XM , XN ] = XMN
P XP⇔

ΘM
α is invariant under the gauge group  ⇔

−(XM )γ
α

[XM , XN ] = fMN
P XPclosure:

XMN
P↵

ΘM
β ΘN

γ fβγ
α = fMN

P ΘP
α = −ΘM

β tβN
P ΘP

α

∈ g↵

➟  Closure (quadratic) constraint



in special basis:

The gauge fields           not involved in the gauging can still carry charges.
This is known to be inconsistent !   To see this:

Aµ
M

[Dµ, Dν ] = −gFµν
M XMRicci identity

Dµ = ∂µ − g Aµ
M XMcovariant derivative

Fµν
M = ∂µAν

M − ∂νAµ
M + g XNP

M A[µ
NAν]

P
field strength

XMN
P =









−fM∗
∗ problematic !!

anti-symmetric part

↵



δFµν
M = 2D[µδAν]

M − 2 g ZM
PQ δA[µ

P Aν]
Q

Palatini identity

NOT covariant  indeed !

options: 

acts as an intertwining tensor between the gauge field 
representation and the 2-form field representationZM

NP

Fµν
M → Hµν

M = Fµν
M + g ZM

NP Bµν
NP

try to enlarge/change  the gauge group
or .....

★

introduce an extra gauge transformation 
and 
introduce 2-form gauge fields                 whose variation 
cancels the undesirable terms: 

Bµν
MN

δΞAµ
M = −g ZM

NP Ξµ
NP★

subtle: regard         as a single index, which does not map into the
 full symmetric tensor product !

(NP )



This leads to, e.g.

δBµν
MN = 2D[µΞν]

MN − 2 Λ!MHµν
N"

+ 2 A[µ
!MδAν]

N"

− g Y MN
P!RS" Φµν

P!RS"

Hµνρ
MN = 3D[µBνρ]

MN

+ 6 A[µ
!M

(
∂νAρ]

N" + 1
3gX[PQ]

N"Aν
P Aρ]

Q
)

+g Y MN
P!RS" Cµνρ

P!RS"

etcetera

Cµνρ
P!RS" new tensor field

Φµν
P!RS" new gauge parameterwhere

Potentially there are complete p-form representations 

Y MN
P!RS" new covariant tensor proportional to 

the embedding tensor, orthogonal to ZM
NP



HIERARCHY OF p-FORM FIELDS

this structure continues indefinitely 

The covariant intertwining tensors are all proportional to the 
embedding tensor and mutually orthogonal.
The intertwining tensors have been determined by induction. 

Aµ
M −→ Bµν

MN −→ Cµνρ
MNP −→ · · · (p-form gauge fields)

ΛM −→ Ξµ
MN −→ Φµν

MNP −→ · · · (transformation parameters)

ZM
NP −→ Y MN

PQR −→ Y MNP
QRST −→ · · ·

(intertwining tensors)

dW, Samtleben, 2005
dW, Nicolai, Samtleben, 2008



Alternative deformations (digression)

An obvious question is whether the gaugings discussed so far are the 
only viable deformations. While it is true that other deformations are 
known in supergravity, there are indications that these deformations are 
already incorporated in the present approach.

Hµν
M = ∂µAν

M − ∂νAµ
M + g XNP

M A[µ
NAν]

P

+ g ZM
NP Bµν

NP

Hµνρ
MN = 3D[µBνρ]

MN

+ 6 A[µ
!M

(
∂νAρ]

N" + 1
3gX[PQ]

N"Aν
P Aρ]

Q
)

+g Y MN
P!RS" Cµνρ

P!RS"

✓ O(g0) : survives            limit g = 0 (known from Einstein-Maxwell SG)

ZM
NP ΘM

α = 0 =⇒ Θ = 0 , Z "= 0
(Romans massive deformation) 

✓



Often the hierarchy breaks off at some point and higher rank forms do not 
appear in the Lagrangian (projection)

The physical degrees of freedom are shared between the various tensor 
fields in a way which depends on the embedding tensor.

At this point there is no Lagrangian yet. (There exist universal 
Lagrangians!) In the context of a Lagrangian the transformations 
of the gauge hierarchy are subject to change.

studied/applied in D = 2,3,4,5,6,7 space-time dimensions
in D=4, for N = 0,1,2,4,8 supergravities
in D=3, for N = 1,...,6,8,9,10,12,16 supergravities

by e.g.: Bergshoeff, Derendinger, de Vroome, dW, Herger, Hohm, Nicolai, 
Petropoulos, Ortin, Prezas, Riccione, Samtleben, Schön, Sezgin, Trigiante, Van 
Proeyen, van Zalk, Weidner, West, Zagermann, etc.
Related work by, e.g.:D’Auria, Ferrara, Hull, Louis, Micu, Reid-Edwards, 
Sommovigo, Vaula, etc.



42 scalars and 27 vectors, and no tensors !
in order to realize the symmetry                             . Erigid

6(6) ×USp(8)local

introduce a local subgroup such as E6(6) → SO(6)local × SL(2)

27 → (15,1) + (6,2)
inconsistent! 
vectors decompose according to: 

↵charged vector fields
must be (re)converted to tensor fields !

Another example:  5 space-time dimensions

Günaydin, Romans, Warner, 1986

dW, Samtleben, Trigiante,  2005

quadratic constraint follows from closure:

(351× 351)s = 27 + 1728 + 351′ + 7722 + 17550 + 34398

ΘM
α ∈ 351 27× 78 = 27 + 351 + 1728

linear constraint follows from supersymmetry:



X(MN)
P = dMNQ ZPQ

consider the representations appearing in
digression: 

invariant tensor(s)X(MN)
P = dI,MN ZP,I dMNI : E6(6)

(27× 27)s = (27 + 351′)

27× (27× 27)s = 351 + 27 + 27 + 351′ + 1728 + 7722

(27× 27)a = 351indeed: 

  two possible representations can be associated with the new index

{
27
351′

XMN
[P ZQ]N = 0 gauge invariant tensor

ZMN ΘN
α = 0 → ZMN XN = 0 orthogonality

from the closure constraint:

this structure is generic !

anti-symmetric !



Fµν
M = ∂µAν

M − ∂νAµ
M + g X[NP ]

M Aµ
NAν

P

upon switching on the gauging there will be a balanced 
decomposition of vector and tensor fields

because of the extra gauge invariance, the degrees 
of freedom remain unchanged (subtle)

Rather than converting and tensors into vectors and reconverting 
some of them them when a gauging is switched on, we introduce 
both vectors and tensors from the start, transforming into the 
representations       and     , respectively. 27 27

not fully covariant

Hµν
M = Fµν

M + g ZMN Bµν Nintroduce fully covariant field strength

to compensate for lack of closure:

δAM
µ = ∂µΛM − g X[PQ]

M ΛP AQ
µ − g ZMN Ξµ NΞ

extra gauge invariance↵

δBµν M = 2 ∂[µΞν]N − g XPN
Q A[µ

P Ξν]Q + g ZMN ΛP XPN
Q Bµν Q

− g
(
2 dMPQ ∂[µAν]

P − g XRM
P dPQSA[µ

R Aν]
S
)
ΛQ

Ξ Ξ



this term is present for ALL gaugings
there is no other restriction than the constraints on 
the embedding tensor

Universal invariant Lagrangian containing 
kinetic terms for the tensor fields combined with a
Chern-Simons term for the vector fields

dW, Samtleben, Trigiante,  2005

LVT =
1
2
iεµνρστ

{
gZMNBµν M

[
DρBστ N + 4 dNPQ Aρ

P
(
∂σAτ

Q +
1
3
g X[RS]

Q Aσ
R Aτ

S
)]

− 8
3
dMNP

[
Aµ

M ∂νAρ
N ∂σAτ

P

+
3
4
g X[QR]

M Aµ
NAν

QAρ
R
(
∂σAτ

P +
1
5
g X[ST ]

P Aσ
SAτ

T
)]}

ZMN

zeroth order in the coupling constant !

projects higher-p gauge transformations



The embedding tensor approach yields universal 
results for any theory of interest. 

The previous examples concerned odd space-time dimensions.
Now we turn to even dimensions and consider D=4.

Crucial: one works with complete duality representations 
of all the p-forms. Therefore there is a considerable 
redundancy of degrees of freedom which are controlled by 
the extra gauge invariances. There are also (unexpected) 
additional symmetries in the context of specific actions. 



THE p-FORM HIERARCHY IN 4 SPACE-TIME DIMENSIONS

Here the ungauged Lagrangian is not unique because of 
electric/magnetic duality

Field equations & Bianchi identities: ∂[µFνρ]
Λ = 0 = ∂[µGνρ] Λ

Gµν
M =

(
Fµν

Λ

GµνΛ

)

Gµν Λ = εµνρσ
∂L

∂Fρσ
Λwhere

2n-component vector of electric and magnetic fields and inductions:

Consider with n abelian gauge fields Aµ
Λ

Its rotations leave the field equations and Bianchi identities invariant!



(
FΛ

GΛ

)
−→

(
F̃Λ

G̃Λ

)
=

(
UΛ

Σ ZΛΣ

WΛΣ VΛ
Σ

)(
FΣ

GΣ

)

The equations can be described on the basis of a new Lagrangian 
provided the rotation matrix is symplectic, 

Ω =
(

0 1
−1 0

)
 i.e. when it leaves the matrix                             invariant.

The new Lagrangian, which describes equivalent field equations 
and Bianchi identities, does not follow from straightforward 
substitution. Instead:

L̃(F̃ ) + 1
8εµνρσF̃µν

Λ G̃ρσΛ = L(F ) + 1
8εµνρσFµν

Λ GρσΛ

L̃(F̃ ) != L(F )

L(F ) + 1
8εµνρσFµν

Λ GρσΛ

The Lagrangian does not transform as a function:

but does.

“Hamiltonian”



Ltop = 1
3g εµνρσ XΛΣΓ Aµ

ΛAν
Σ(∂ρAσ

Γ + 3
8g XΞ∆

Γ Aρ
ΞAσ

∆)

Electric groups  (            ) :Z = 0 F̃Λ
µν = UΛ

Σ Fµν
Σ

L̃(F̃ ) = L(F̃ )Invariance  when

Electric gaugings

δlocalL = 1
8 εµνρσ ΛΛ XΛΣΓ Fµν

ΣFρσ
Γ

non-abelian field strengthsfunction of coordinates

this requires an extra term

dW, Lauwers, Van Proeyen, 1985

L(UΛ
Σ FΣ) = L(FΛ)− 1

8εµνρσ(UTW )ΛΣ Fµν
ΛFρσ

Σ

“Peccei-Quinn”

then



XM [N
Q ΩP ]Q = 0

The gauge generators should be consistent with the symplectic 
property of the electro/magnetic duality transformations:

and are subject to a representation (linear) constraint:

X(MN
Q ΩP )Q = 0 =⇒






X(ΛΣΓ) = 0
2X(ΓΛ)

Σ = XΣ
ΛΓ

X(ΛΣΓ) = 0
X(ΓΛ)

Σ = XΣ
ΛΓ

hence, not in general anti-symmetric !



X(MN)
P = ZP

MN = 1
2ΩPRΘR

α tαM
Q ΩNQ = ZP,α dαMN

dα MN ≡ (tα)M
P ΩNP

ZM,α ≡ 1
2ΩMNΘN

α =⇒
{

ZΛα = 1
2ΘΛα

ZΛ
α = − 1

2ΘΛ
α

ZM α ΘM
β dαPQ = 1

2ΩMN ΘM
βΘN

α dαPQ = 0

Consider also:

This leads to the definitions:

electricmagnetic

Quadratic constraint:

ΩMN ΘM
βΘN

α = 0Possibly stronger version:

➞  there exists a purely electric duality frame!

➞  2-forms transform in adjoint representation



Ltop = 1
8gεµνρσΘΛαBµνα

(
2∂ρAσΛ + gXMNΛAρ

MAσ
N − 1

4gΘΛ
βBρσβ

)

+ 1
3gεµνρσXMNΛAµ

MAν
N

(
∂ρAσ

Λ + 1
4gXPQ

ΛAρ
P Aσ

Q
)

+ 1
6gεµνρσXMN

ΛAµ
MAν

N
(
∂ρAσΛ + 1

4gXPQΛAρ
P Aσ

Q
)

Hµν
M = Fµν

M + gZM,αBµν α

The Lagrangian:
1 - Define new electric and magnetic covariant field 
strengths:

2 - Include electric and magnetic gauge fields in the 
covariant derivatives and replace the (electric) field strengths 
by the modified ones given above.

Bµνα = dαMNBµν
MNwhere 

3 - Add the following term to the Lagrangian:

This represents the universal Lagrangian for any gauging. It depends on the 
embedding tensor whose constraints ensure its full gauge invariance !



4 - In principle the tensor fields can be integrated out. One 
then finds a conventional Lagrangian with electric gaugings 
written in an another electric/magnetic duality frame.



Apply the embedding tensor formalism to the maximal 
supergravities, with the duality group, the representations 
of the vector gauge fields and the embedding tensor as 
input.

MAXIMAL  SUPERGRAVITIES

At this point, the number of space-time dimensions is not used! 

This purely group-theoretic analysis yields all the 
representations for the hierarchy of p-form fields.



Striking feature:

rank D-2 : adjoint representation of the duality group

Leads to :

2 1 4 6 5 3 rank ➯

7 SL(5) 10 5 5 10 24 15 + 40

6 SO(5, 5) 16c 10 16s 45 144s 10+126s+320

5 E6(+6) 27 27 78 351 27+1728

4 E7(+7) 56 133 912 133+8165

3 E8(+8) 248 3875 3875+147250

dW, Samtleben, Nicolai, 2008

note:  restricted representation, not the full symmetric tensor product



Striking feature:

rank D-1 : embedding tensor !

7 SL(5) 10 5 5 10 24 15 + 40

6 SO(5, 5) 16c 10 16s 45 144s 10+126s+320

5 E6(+6) 27 27 78 351 27+1728

4 E7(+7) 56 133 912 133+8165

3 E8(+8) 248 3875 3875+147250

2 1 4 6 5 3 rank ➯



Striking feature:

rank D : closure constraint on the embedding tensor !

7 SL(5) 10 5 5 10 24 15 + 40

6 SO(5, 5) 16c 10 16s 45 144s 10+126s+320

5 E6(+6) 27 27 78 351 27+1728

4 E7(+7) 56 133 912 133+8165

3 E8(+8) 248 3875 3875+147250

2 1 4 6 5 3 rank ➯



Perhaps most striking:

implicit connection between space-time electric/magnetic 
(Hodge) duality and the U-duality group

Probes new states in M-Theory!
Θ dial

7 SL(5) 10 5 5 10 24 15 + 40

6 SO(5, 5) 16c 10 16s 45 144s 10+126s+320

5 E6(+6) 27 27 78 351 27+1728

4 E7(+7) 56 133 912 133+8165

3 E8(+8) 248 3875 3875+147250

2 1 4 6 5 3 rank ➯



M-theory implications:

The table coincides substantially with results based on several 
rather different conceptual starting points:

Correspondence between toroidal compactifications of M-Theory 
and del Pezzo surfaces 

M(atrix)-Theory compactified on a torus: duality representations of states

E11 decompositions

7 SL(5) 10 5 5 10 24 15 + 40

6 SO(5, 5) 16c 10 16s 45 144s 10+126s+320

5 E6(+6) 27 27 78 351 27+1728

4 E7(+7) 56 133 912 133+8165

3 E8(+8) 248 3875 3875+147250

2 1 4 6 5 3 



Elitzur, Giveon, Kutasov, Rabinovici, 1997

The explicit duality multiplets arise as representations of 
this group. 

Ri →
l3p

RjRk
Rj →

l3p
RkRi

Rk →
l3p

RiRj
l3p →

l6p
RiRjRk

Invariance group consist of permutations of the 
combined with the T-duality relations (               ) :

Ri

i != j != k

Algebraic Aspects of Matrix Theory on Tn

generate a group isomorphic with the Weyl group of En(n)

in the infinite-momentum frame. 
and M-Theory on , a rectangular torus with radii 
Based on the correspondence between super-Yang-Mills on 

T̃n R1, R2, . . . Rn

Tn



for higher n the multiplets are sometimes incomplete, because 
they are not generated as a single orbit by the  Weyl group.

the dimensions of these two multiplets coincide with those of the 
multiplets presented previously for vectors and tensors

Example n=4           D=7       

4 KK states on  

6 2-brane states wrapped on

Tn

Tn M ∼ RjRk

l3p

M ∼ 1
Ri

j != k

4 2-brane states wrapped on

1 5-brane state wrapped on

M ∼ R11Ri

l3p

M ∼ R11R1R2R3R4

l6p

Tn × x11

Tn × x11



This cannot be a coincidence!

A Mysterious Duality Iqbal, Neitzke, Vafa, 2001

Such probe is the gauging encoded in the embedding tensor!

West et. al., 2001-2007
Bergshoeff et. al.,2005-2007

E11 decomposition

It is important to uncover the physical interpretation of these 
duality relations. One possibility is that the del Pezzo surface is 
the moduli space of some probe in M-Theory. It must be a
U-duality invariant probe .......

Based on the conjecture that E11 is the underlying symmetry 
of M-Theory. Decomposing the relevant E11 representation to 
dimensions D<11 yields representations that substantially 
overlap with those generated for the gaugings.



LIFE AT THE END OF THE p-FORM HIERARCHY

7 SL(5) 10 5 5 10 24 15 + 40

6 SO(5, 5) 16c 10 16s 45 144s 10+126s+320

5 E6(+6) 27 27 78 351 27+1728

4 E7(+7) 56 133 912 133+8165

3 E8(+8) 248 3875 3875+147250

2 1 4 6 5 3 

It is possible to construct the hierarchy starting from the 
intermediate (D-3)-forms, assuming that they transform 
according to the conjugate of the representation associated with 
the vector fields.  In this way one generates the (D-2)-, the (D-1)-, 
and the D-form fields, in accordance we the results found in the 
table. Note that the latter two forms are not related to any other 
forms by Hodge duality! 



p-forms transforming in the conjugate of the representations of the 1-forms, 
the adjoint representation, the embedding tensor and the constraints:

∆
[D−3]

C M = D
[D−4]

Φ M + · · ·− YM
α

[D−3]

Φ α

∆
[D−2]

C α = D
[D−3]

Φ α + · · ·− Yα,M
β

[D−2]

Φ M
β

∆
[D−1]

C M
α = D

[D−2]

Φ M
α + · · ·− Y M

α,PQ
β

[D−1]

Φ PQ
β

∆
[D]

C MN
α = D

[D−1]

Φ MN
α + · · ·− Y MN

α,PQR
β

[D]

Φ PQR
β

∆
[D+1]

C PQR
α = D

[D]

Φ PQR
α + · · ·− · · ·

intertwiners



QMN
α ≡ δMΘN

α = ΘM
β δβΘN

α

YM
α = ΘM

α

Yα,M
β = δαΘM

β

Y M
α,PQ

β =
δ

δ ΘM
α
QPQ

β

Y MN
α,PQR

β = −δM
P Y N

α,QR
β + XPQ

M δN
R δβ

α + XPR
N δM

Q δβ
α −XPα

β δN
R δM

Q

closure constraint

intertwiners



Alternative form for the intertwiners
(closer to the generic formulae that follow by induction)

Yα,M
β = tαM

N YN
β −XM

β
α ,

Y M
α,PQ

β = − δP
M Yα,Q

β − (XP )Q
β,M

α ,

Y MN
α,PQR

β = − δP
M Y N

α,QR
β − (XP )QR

β,MN
α

orthogonality: Y × Y ′ ∝ QMN
α

Y MN
α,PQR

β QMN
α = 0



What is the role of the higher form fields ?

This construction supports the following idea which has been worked 
out completely for three and four space-time dimensions:

Regard the embedding tensor as a space-time field transforming in the 
appropriate representation, but not satisfying the quadratic closure 
constraint.  Add the gauge invariant Lagrangian with (D-1)- and D-form 
fields:

L = g εµ1µ2···µD Cµ1···µD−1
M

α DµDΘM
α

+ g2 εµ1µ2···µD Cµ1···µD
MN

α QMN
α

dW, Samtleben, Nicolai, 2008
dW, van Zalk, 2009



Conclusions

✦ Maximal supergravity theories contain subtle information 
about  M-Theory. This may be interpreted as an indication 
that supergravity needs to be extended towards string/M-
theory. 

✦ General gaugings of a large variety of theories can be constructed 
and studied in the framework of the embedding tensor technique, 
which, in principle, entails a hierarchy of p-forms.




