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A broad perspective on the challenges, structure and successes of loop quantum gravity.

Focus on conceptual issues with emphasis on cosmology.

Organization:

1. Historical & Conceptual Setting

2. Structure of Loop Quantum Gravity

3. The Big Bang: Loop Quantum Cosmology
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1. Historical and Conceptual Setting

Einstein’s resistance to accept quantum mechanics as a fundamental
theory is well known. However, he had a deep respect for quantum
mechanics and was the first to raise the problem of unifying general
relativity with quantum theory.

“Nevertheless, due to the inner-atomic movement of
electrons, atoms would have to radiate not only
electro-magnetic but also gravitational energy, if only in tiny
amounts. As this is hardly true in Nature, it appears that
quantum theory would have to modify not only Maxwellian
electrodynamics, but also the new theory of gravitation.”

(Albert Einstein, Preussische Akademie Sitzungsberichte, 1916)
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• Physics has advanced tremendously in the last 90 years but the the
problem of unification of general relativity and quantum physics still open.
Why?
⋆ No experimental data with direct ramifications on the quantum nature of
Gravity.
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the problem of unification of general relativity and quantum physics is still
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⋆ But then this should be a theorist’s haven! Why isn’t there a plethora of
theories?
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⋆ No experimental data with direct ramifications on quantum Gravity.
⋆ But then this should be a theorist’s haven! Why isn’t there a plethora of
theories?

• In general relativity, gravity is coded in space-time geometry. Most
spectacular predictions —e.g., the Big-Bang, Black Holes & Gravitational
Waves— emerge from this encoding. Suggests: Geometry itself must
become quantum mechanical. How do you do physics without a
space-time continuum in the background?

• Several approaches: Causal sets, twistors, AdS/CFT conjecture of
string theory. Loop Quantum Gravity grew out of the Hamiltonian
approach pioneered by Bergmann, Dirac, and developed by Wheeler,
DeWitt and others.
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Contrasting LQG with String theory

Because there are no direct experimental checks, approaches are driven
by intellectual prejudices about what the core issues are and what will
“take care of itself” once the core issues are resolved.

Particle Physics: ‘Unification’ Central: Extend Perturbative, flat space
QFTs; Gravity just another force.
• Higher derivative theories; • Supergravity
• String theory incarnations:
⋆ Perturbative strings; ⋆ M theory
⋆ Matrix Models; ⋆ AdS/CFT Correspondence.
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Contrasting LQG with String theory

• Particle Physics: ‘Unification’ Central: Extend Perturbative, flat space
QFTs; Gravity just another force.
• Higher derivative theories; • Supergravity
• String theory incarnations:
⋆ Perturbative strings; ⋆ M theory/F theory;
⋆ Matrix Models; ⋆ AdS/CFT Correspondence.

• General Relativity: ‘Background independence’ Central: LQG
⋆ Quantum Geometry (Hamiltonian Theory used for cosmology & BHs),
⋆ Spin-foams (Path integrals used to bridge low energy physics.)

Issues:
• Unification: Ideas proposed in LQG but strong limitations;
Recall however, QCD versus Grand Unified Theories.
• Background Independence: Progress through AdS/CFT; but a ‘small
corner’ of QG; Physics beyond singularities and S-matrices?

A. Ashtekar: LQG: Four Recent Advances and a dozen FAQs;

arXiv:0705.2222
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2. Loop Quantum Gravity: Quantum Geometry

• Geometry: Physical entity, as real as tables and chairs.
Riemann 1854: Göttingen Address; Einstein 1915: General Relativity

• Matter has constituents. GEOMETRY??
‘Atoms of Geometry’? Why then does the continuum picture work so well?
Are there physical processes which convert Quanta of Geometry to
Quanta of Matter and vice versa?
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2. Loop Quantum Gravity: Quantum Geometry

• A Paradigm shift to address these issues

“The major question for anyone doing research in this field is: Of which mathematical type
are the variables . . . which permit the expression of physical properties of space. . . Only
after that, which equations are satisfied by these variables?” Albert Einstein
(1946); Autobiographical Notes.

• Choice in General Relativity: Metric, gµν . Directly determines
Riemannian geometry; Geometrodynamics.
In all other interactions, by contrast, the basic variable is a Connection,
i.e., a matrix valued vector potential Ai

a;
Gauge theories: Connection-dynamics

• Key new idea: ‘Kinematic unification.’ Cast GR also as a theory of
connections. Import into GR techniques from gauge theories.
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Holonomies/Wilson Lines and Frames/Triads

• Connections: Vehicles for parallel transport.
In QED: parallel transport of the state of an electron
Recall: ∂ψ → (∂ − ieA)ψ
In QCD: parallel transport of the state of a quark
In gravity: parallel transport a spinor

p • − −− > −−− • q ψ(q) = [P exp
∫ q

p
A · dS]ψ(p)

• In Gravity: the (canonically conjugate) non-Abelian electric fields Ea
i

interpreted as orthonormal frames/triads. They determine the physical,
curved geometry. Structure group: Rotations of triads SO(3) or, in
presence of spinors, its double covering SU(2).
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Uniqueness of Canonical Quantization?
• von Neumann’s uniqueness theorem:
There is a unique IRR of the Weyl operators Û(λ), V̂ (µ) by 1-parameter
unitary groups on a Hilbert space satisfying:
i) Û(λ) V̂ (µ) = eiλµ V̂ (µ) Û(λ); and ii) Weak continuity in λ, µ.
This is the standard Schrödinger representation: H = L2(R, dx);
x̂Ψ(x) = xΨ(x); p̂Ψ(x) = −i~dΨ(x)/dx, and U(λ) = eiλx̂,V (µ) = eiµp̂

• Strategy for more general systems: Consider the analog a of the Weyl
algebra. Look for cyclic representations. The ‘VEVs’ i.e. expectation
values in the cyclic state determine the representation through an explicit
(GNS) construction. If the VEVs are invariant under a group, the group is
unitarily implemented in the representation.

• Uniqueness does not hold for systems with an infinite number of
degrees of freedom even after imposing additional symmetry
requirements such as Poincaré invariance.
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Uniqueness of LQG Kinematics!

• Surprise: Quantum algebra a generated by holonomies and
triad-fluxes. It admits a unique diff invariant state ⇒. Thanks to
background independence, quantum kinematics is unique in LQG!
(Lewandowski, Okolow, Sahlmann, Thiemann; Fleischhack)

Surprisingly powerful role of diff invariance! (AA)
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Polymer Geometry

• This unique kinematics was first constructed explicitly in the early
nineties. High mathematical precision. Provides a Quantum Geometry
which replaces the Riemannian geometry used in classical gravity
theories. (AA, Baez, Lewandowski, Marolf, Mourão, Rovelli, Smolin, Thiemann,...)

Details: Review by AA & Lewandowski; monographs by Rovelli;
Thiemann.

• Quantum States: Ψ ∈ H = L2(Ā, dµo)

µo a diffeomorphism invariant, regular measure on the space Ā of
(generalized) connections.

• Fundamental excitations of geometry 1-dimensional. Polymer geometry
at the Planck scale. Continuum arises only in the coarse rained
approximation.
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• Flux lines of area. Background independence!

• Examples of Novel features:

⋆ All eigenvalues of geometric operators discrete. Area gap. Eigenvalues
not just equally-spaced but crowd in a rather sophisticated way. Geometry
quantized in a very specific way. (Recall Hydrogen atom.)

⋆ Inherent non-commutativity: Areas of intersecting surfaces don’t
commute. Inequivalent to the Wheeler-DeWitt theory (quantum
geometrodynamics).

Summary: AA & Lewandowski, Encyclopedia of Mathematical Physics
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Applications of this Quantum Geometry

• Quantum geometry used crucially in calculating the statistical
mechanical entropy of isolated horizons. Encompass physically realistic
black holes as well as cosmological horizons in one go.

• This unique kinematical arena provides a Quantum Riemannian
Geometry to formulate dynamics, i.e. quantum Einstein’s equations. Main
challenge of LQG. Progress in the Hamiltonian theory (Giesel, Thiemann,...)

and path integrals/spin foams (Baez, Barrett, Reisenberger, Rovelli, ...) which
address issues of propagators, low energy limit, .....

• As lectures in this workshop will show there have been impressive
advances in the last couple of years in bridging the two approaches.
In my lectures, I will use cosmology to illustrate how: i) both programs can
be completed; and ii) the Big Bang Singularity can be resolved; and iii)
New Planck scale physics emerges.

LQC started with a seminal paper by Bojowald in 2001. Over 500 papers by now. Will focus

on the basic conceptual and mathematical, rather than phenomenological issues.
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3. Big-Bang: Loop Quantum Cosmology

• Deepest Feature of General Relativity: Gravity encoded in Geometry.
Space-time geometry became a physical and dynamical entity.
Spectacular consequences: Cosmology, Black holes, Gravitational
Waves. Impressive mathematical applications: Geometric Analysis.

• But this fusion comes with a price: Now space-time itself ends at
singularities (also in inflationary scenarios). Big Bang thought of as the
Beginning and black hole singularities as the End.

• In particular, the assumption of spatial homogeneity & isotropy implies
that the metric has the FLRW form: ds2 = −dt2 + a2(t) d~x2

a(t): Scale Factor; Volume ∼ [a(t)]3; Curvature ∼ [a(t)]−n

Einstein Equations ⇒ volume → 0 and Curvature → ∞: BIG BANG!!
Classically: PHYSICS STOPS!!
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The Big Bang in classical GR

Artist’s conception of the Big-Bang. Credits: Pablo Laguna.

In classical general relativity the fabric of space-time is violently torn apart
at the Big Bang singularity.
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• Expectation: Just an indication that the theory is pushed beyond its
domain of validity. Example: H-atom. Energy unbounded below in the

classical theory; instability. Quantum theory: Eo = −me4

2~2

• Is this the case? If so, what is the true physics near the Big Bang?
Need a theory which can handle both strong gravity/curvature and
quantum physics, i.e., Quantum Gravity.
Classical singularities are gates to Physics Beyond Einstein.

• Serious Challenge to LQG since the Gravity-Geometry duality lies at
the heart of this approach. UV-IR Challenge: Do Quantum Geometry
effects resolve the big bang singularity? If they are so strong as to
overwhelm classical gravitational pull near the singularity, why aren’t there
observable deviations from GR today. The UV-IR tension!

• In cosmological models Quantum Physics does not stop at singularities.
Quantum Riemannian geometry extends its life. Rather startling
perspectives on the nature of space-time in LQG. Models simple but, in
contrast to string theory, encompass physically most interesting
singularities.
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• Some Long-Standing Questions expected to be answered by Quantum
Gravity from first principles:

⋆ How close to the big-bang does a smooth space-time of GR make
sense? (Onset of inflation?)
⋆ Is the Big-Bang singularity naturally resolved by quantum gravity? Or,
Is a new principle/ boundary condition at the Big Bang essential?
⋆ Is the quantum evolution across the ‘singularity’ deterministic?
(answer ‘No’ e.g. in the Pre-Big-Bang and Ekpyrotic scenarios)

⋆ What is on the other side? A quantum foam? Another large, classical
universe? ...
(Fascinating history within classical GR: de Sitter, Tolman, Gamow, Dicke, Sakharov,

Weinberg ...)
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• Some Long-Standing Questions expected to be answered by Quantum
Gravity from first principles:

⋆ How close to the big-bang does a smooth space-time of GR make
sense? (Onset of inflation?)
⋆ Is the Big-Bang singularity naturally resolved by quantum gravity? Or,
Is a new principle/ boundary condition at the Big Bang essential?
⋆ Is the quantum evolution across the ‘singularity’ deterministic?
(answer ‘No’ e.g. in the Pre-Big-Bang and Ekpyrotic scenarios)

⋆ What is on the other side? A quantum foam? Another large, classical
universe? ...
(Fascinating history within classical GR: de Sitter, Tolman, Gamow, Dicke, Sakharov,

Weinberg ...)

• Emerging Scenario: vast classical regions bridged deterministically by
quantum geometry. No new principle needed. (AA, Bojowald, Chiou, Corichi,

Pawlowski, Singh, Vandersloot, Wilson-Ewing,... )

• In the classical theory, don’t need full Einstein equations in all their
complexity. Almost all work in physical cosmology based on
homogeneous isotropic models and perturbations thereon. At least in a
first step, can use the same strategy in the quantum theory: mini and
midi-superspaces.
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A Simple Model
The k=0, Λ = 0 FRW Model coupled to a massless scalar field φ.
Instructive because every classical solution is singular. Provides a
foundation for more complicated models.
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Older Quantum Cosmology (DeWitt, Misner, . . . 70’s)

• Since only finite number of DOF a(t), φ(t), field theoretical difficulties
bypassed; analysis reduced to standard quantum mechanics.

• Quantum States: Ψ(a, φ); âΨ(a, φ) = aΨ(a, φ) etc.
Quantum evolution governed by the Wheeler-DeWitt equation on Ψ(a, φ)
Without additional assumptions, singularity is not resolved by the
equation.

• General belief since late seventies: This situation can not be remedied
because of von-Neumann’s uniqueness theorem for quantum mechanics
of systems with a finite number of DOF. How could LQC escape this
conclusion?
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Older Quantum Cosmology (DeWitt, Misner, . . . 70’s)

• Since only finite number of DOF a(t), φ(t), field theoretical difficulties bypassed; analysis
reduced to standard quantum mechanics.

• Quantum States: Ψ(a, φ); âΨ(a, φ) = aΨ(a, φ) etc.
Quantum evolution governed by the Wheeler-DeWitt equation on Ψ(a, φ) Without additional
assumptions, singularity is not resolved by the equation.

• General belief since late seventies: This situation can not be remedied because of

von-Neumann’s uniqueness theorem for quantum mechanics of systems with a finite number

of DOF. How could LQC escape this conclusion?

• In WDW theory one did not have access to well-defined kinematics. In
LQG we do. The procedure that led us to unique kinematics in LQG now
leads us to a specific representation of the quantum algebra of LQC. The
analog of the continuity assumption of von Neumann fails in LQC ⇒
von-Neumann’s uniqueness result naturally bypassed (AA, Bojowald,

Lewandowski). New Quantum Mechanics! (H 6= L2(R) but rather
H = L2(R̄Bohr).) Novel features precisely in the deep Planck regime.
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LQC versus thew WDW Dynamics

• Because of these key differences, the LQC kinematics does not support
the WDW dynamics. The WDW differential equation is replaced by a
difference equation. (AA, Bojowald, Lewandowski, Pawlowski, Singh)

C+(v) Ψ(v+4, φ)+Co(v) Ψ(v, φ)+C−(v)Ψ(v−4, φ) = γℓ2P ĤφΨ(v, φ) (⋆)

• In LQG, basic geometrical observables such as areas and volumes are
quantized. The area operator has a smallest eigenvalue, the area gap ∆.

We will see that the step size in (⋆) is governed by the area gap ∆. Good
agreement with the WDW equation at low curvatures but drastic
departures in the Planck regime precisely because the WDW theory
ignores quantum geometry.
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LQC: Return to the k=0 FLRW Model

FLRW, k=0 Model coupled to a massless scalar field φ. Instructive
because every classical solution is singular. Provides a foundation for
more complicated models.
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k=0 LQC
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Expectations values and dispersions of V̂ |φ & classical trajectories.
Gamow’s favorite paradigm realized.
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k=0 LQC
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k=0 Results

Assume that the quantum state is semi-classical at a late time and evolve
backwards and forward. Then: (AA, Pawlowski, Singh)

• The state remains semi-classical till very early and very late times,
i.e., till R ≈ 1/lp2 or ρ ≈ 0.01ρPl. ⇒ We know ‘from first principles’ that
space-time can be taken to be classical during the inflationary era
(since ρ ∼ 10−12ρPl at the onset of inflation).

• In the deep Planck regime, semi-classicality fails. But quantum
evolution is well-defined through the Planck regime, and remains
deterministic unlike in other approaches. No new principle needed.

• No unphysical matter. All energy conditions satisfied. But the left side
of Einstein’s equations modified because of quantum geometry effects
(discreteness of eigenvalues of geometric operators.): Main difference
from WDW theory.
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k=0 Results

• To compare with the standard Friedmann equation, convenient to do an
algebraic manipulation and move the quantum geometry effect to the right
side. Then:

(ȧ/a)2 = (8πGρ/3)[1 − ρ/ρcrit] where ρcrit ∼ 0.41ρPl.
Big Bang replaced by a quantum bounce.

• The matter density operator ρ̂ = 1
2 (V̂φ)−1 p̂2

(φ) (V̂φ)−1 has an absolute

upper bound on the physical Hilbert space (AA, Corichi, Singh):
ρsup =

√
3/16π2γ3G2

~ ≈ 0.41ρPl!
Provides a precise sense in which the singularity is resolved.
(Brunnemann & Thiemann)

• Quantum geometry creates a brand new repulsive force in the Planck
regime, replacing the big-bang by a quantum bounce. Physics does not
end at singularities. A robust super-inflation phase immediately after the
bounce.
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Generalizations

• More general singularities: At finite proper time, scale factor may blow
up, along with similar behavior of density or pressure (Big rip) or curvature
or their derivatives diverge at finite values of scale factor (sudden).
Quantum geometry resolves all strong singularities in homogeneous
isotropic models with p = p(ρ) matter (Singh).

• Inclusion of a cosmological constant and the standard m2φ2 inflationary
potential. Inclusion of anisotropies. k = 1 closed cosmologies.
Singularities resolved and Planck scale physics explored in all these
cases. (AA, Bentevigna, Pawlowski, Singh, Vandersloot, Wilson-Ewing, ...)
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k=0 Model with Positive Λ
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Inflation
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The k=1 Closed Model: Bouncing/Phoenix Universes.

Another Example: k = 1 FLRW model with a massless scalar field φ.
Instructive because again every classical solution is singular; scale factor
not a good global clock; More stringent tests because of the classical
re-collapse. (Le Maître, Tolman, Sakharov, Dicke,...)
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k=1 Model: WDW Theory
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k=1 Model: LQC
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Generalizations

• More general singularities: At finite proper time, scale factor may blow up, along with

similar behavior of density or pressure (Big rip) or curvature or their derivatives diverge at

finite values of scale factor (sudden). Quantum geometry resolves all strong singularities in

homogeneous isotropic models with p = p(ρ) matter (Singh).

• Inclusion of a cosmological constant and the standard m2φ2 inflationary potential.

inclusion of anisotropies. k = 1 closed cosmologies. Singularities resolved and Planck scale

physics explored in all these cases. (AA, Bentevigna, Pawlowski, Singh, Vandersloot,

Wilson-Ewing, ...)

Infinite number of degrees of freedom: Gowdy Model. Again the
singularity resolved by quantum geometry effects.
(Martin-Benito, Mena, Pawlowski).

• Together with the BKL conjecture on the nature of generic singularities
in general relativity, the accumulated evidence suggests that in Loop
Quantum Gravity there may well be a general singularity resolution
theorem. If so, we will have come a full circle from the singularity
theorems of Penrose, Hawking, and others which marked the beginning of
the modern era of general relativity.
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4. Summary and Plan
• The interplay between geometry and physics is the deepest feature of
general relativity. Loop Quantum Gravity elevates it to the quantum level.
Just as classical GR is based on Riemannian geometry, LQG is based on
a specific quantum theory of Riemannian geometry.

• Thanks to the LOST-F theorems, background independence leads to a
unique quantum kinematics. In it, the basic excitations of Riemannian
geometry are 1-dimensional and eigenvalues of geometrical operators are
discrete. Continuum Riemannian geometry arises as a coarse grained
approximation.

• Quantum geometry has several important physical ramifications. Using
the isolated horizon framework to describe black holes in equilibrium, one
can account for entropy of physically relevant black holes as well as
cosmological horizons in one go. Singularities in homogeneous classical
GR are resolved because of unforeseen effects of quantum geometry.
Quantum space-times can be vastly larger than what GR had us believe.
Many long standing issues in QC have been resolved.

• Challenge to background independent theories: Detailed recovery of
classical GR at low curvatures/densities? Met in homogeneous models.
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4. Summary and Plan (contd)

• What was there before the big bang? Broadly, “Phoenix Universe”.
Since the advent of GR, leading thinkers (Le Maître, Tolman, Gamow, Dicke,

Sakharov, Weinberg, ...) have expressed hopes and philosophical preferences.
Now, because the singularity is resolved and LQC equations provide a
deterministic evolution from the pre-bing to the post-big-bang branch,
what happens is not a philosophical preference but depends on the
cosmological parameters of today’s universe.

• In the remaining 4 lectures, I will focus on LQC and use it to illustrate
ideas, constructions and results of LQC. Specifically, I will
i) Discuss in detail the new Quantum Mechanics underlying LQC;
ii) Show how the singularity resolution arises in the FLRW model I
discussed (exactly soluble!);
iii) Discuss key features of more complicated models;
iv) Construct a path integral description to illustrate spin foam
constructions; and
v) Discuss elements of QFT on quantum cosmological space-times and
current work on phenomenology if time permits.
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