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Although SM is in agreement with experimental observation
fundamental questions still remain unanswered
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v - mixing parameters and masses, Higgs-boson mass.

@ Why three generations 7 Why quarks mix ?

@ Substructute of Leptons and Quarks ?

@ Higgs sector 7

@ Strong and EW forces Unify 7 Gravity how does it fit ?

@ Why the EW scale is sixteen orders of magnitude smaller than the
Planck scale 7
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Open Questions

@ Too many parameters Gr, Mz, aem, as, Ogcp, 12-fermion masses,
v - mixing parameters and masses, Higgs-boson mass.

@ Why three generations 7 Why quarks mix ?

@ Substructute of Leptons and Quarks ?

@ Higgs sector 7

@ Strong and EW forces Unify 7 Gravity how does it fit ?

@ Why the EW scale is sixteen orders of magnitude smaller than the
Planck scale ?

Need move Beyond the SM physics !
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Why Supersymmetry ?

@ Good theoretical reasons to believe that SUSY will be the next big
discovery !

@ Some believe that SUSY is the low energy manifestation of a unified
description valid at Planckian energies !

@ Its mathematical beauty and its less divergent character, as a QFT,
qualifies it as a powerful tool to build theoretical models.

@ It is the only known symmetry that treats bosons and fermions on
equal footing.
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Why Supersymmetry ?

Supersymmetry resolves the GHP and it is an indispensable
ingredient of String Theories !

Historical note !

e ~ 1970, Supersymmetry ( SUSY ) was invoked to explain the
masslessness of the neutrino. ( Volkov , Akulov - Wess, Zumino )
Goldstone modes of SB theories with fermionic generators are
massless fermions ( Goldstinos ). These could be the neutrinos !

e ~ 1981, it was called back as resolution of the Gauge Hierarchy
Problem in GUTs.
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Why Supersymmetry ?

With SM promoted to a SUSY model :
@ SM gauge couplings unify at a scale Mgyt ~ 10'® GeV.

@ The top quark mass drives the Higgs potential mass parameter to
1% < 0 in a natural way and the hierarchy My, ~ 1071 Mgyt is
understood.

@ Supersymmetric GUT models predict larger unification scales
( better chance to reconcile proton lifetime with experimental data )

@ The quartic Higgs self-couplings are not arbitrary, A ~ g2. Higgs
masses are bounded my < 135 GeV

@ Rich phenomenology: Predicts more Higgses, and sparticles with
masses in the TeV scale, likely to be discovered at LHC.

@ Predicts WIMP candidates for DM.

@ Gauged SUSY is a Supergravity Theory believed to be the low
energy manifestation of String Theories !
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How the Higgs stays light ?

The presence of a Higgs boson poses a severe problem if a theory at a
highier scale, A, couples to the SM !

V(H) = —i2|H]? + %IHI“ (M) = 175GeV

The quartic coupling is bounded by theory A < O(1), ( Unitarity, ...),
and Higgs mass is bounded :

m} = 2X(H)* < (few hundred GeV)?
Higgs mass is subject to radiative corrections and its value changes !

m = 2xv? + aN?
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How the Higgs stays light ?

The presence of a Higgs boson poses a severe problem if a theory at a
highier scale, A, couples to the SM !

V(H) = —i2|H)? + gIHI“ , (H) = 175 GeV

The quartic coupling is bounded by theory A < O(1), ( Unitarity, ...),
and Higgs mass is bounded :

m} = 2X(H)* < (few hundred GeV)?
Higgs mass is subject to radiative corrections and its value changes !
m = 2xv? + aN?
@ SM corrections pose no problem, A ~ My, and Higgs stays light.

@ In the presence of a highier scale theory, A > My, , Gravity is one
example, my ~ A and Higgs mass is driven to high values !
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To avoid Higgs mass from becoming large a fine - tuning of a is
necessary

i 2 /2 3
Gravity =  a < mi/mpe ~ 1073
2 /2 —26

GUTs = a < my/mgr ~10

Couplings should be tuned to many decimal places, Unnatural !
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L The Gauge Hierarchy Problem (GHP)

To avoid Higgs mass from becoming large a fine - tuning of a is
necessary

i 2 /2 _3
Gravity =  a < mi/mpe ~ 1073
2 /2 —26

GUTs = a < my/mgr ~10

Couplings should be tuned to many decimal places, Unnatural !

Unless loop contributions conspire to cancelling each other !
For a Dirac fermion ( 4 d.o.f ) coupled to Higgs

corrections are
2
Af
16 72

sm} = [—2A2 + 6m? In(A/mg) ]
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A complex scalar boson coupled to Higgs

yields quadratic corrections with opposite sign

A

2
Omy = 162

[ A2 —2m} In(A/m}) ]
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A complex scalar boson coupled to Higgs

/\2
sm} = 16,2 [ A2 —2m} In(A/m}) ]
If Ar = Ap and two complex scalars, to match the d.o.f of the Dirac

fermion, the quadratic divergences of the two graphs cancel !
This occurs automatically is supersymmetric theories even if they are
broken softly !
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In Supersymmetry:

Particles go in pairs | To each Fermion F there is a Boson B with same
mass and same couplings. Only their spins differ by half a unit

om

T
I
£5|
~
I
o

Their contributions to Higgs mass exactly cancel !
When SUSY is broken "softly” couplings same but masses differ

2 2 L A2
mg — mg =~ Mgysy
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Leading quadratic corrections, ~ A2, cancel, next to leading ~ InA

survive
§miy = (mg — m¢) InA~ M3ysy (InA)

corrections are not dangerous ( large ) due to their logarithmic nature !
To keep corrections of the order of the EW scale =

Msysy < O(1 TeV)

Important for collider searches, supersymmetric particles have masses in
the TeV range, supersymmetry is likely to be discovered at the LHC !
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Supersymmetry controls the UV corrections more efficiently than
an ordinary field theory !
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Leading quadratic corrections, ~ A2, cancel, next to leading ~ InA

survive
om? = (m3 — m2) InA~ MZys, (InA)

corrections are not dangerous ( large ) due to their logarithmic nature !

To keep corrections of the order of the EW scale =

Msysy < O(1 TeV)
Important for collider searches, supersymmetric particles have masses in
the TeV range, supersymmetry is likely to be discovered at the LHC !
Supersymmetry controls the UV corrections more efficiently than
an ordinary field theory !

Due to this it also ameliorates the cosmological constant problem!



The rudiments of Supersymmetry
L Introduction
L The Gauge Hierarchy Problem (GHP)

Why vacuum energy is so tiny ?

Vacuum energy of zero point fluctuations in gravity

( TIJJ/ ) = m;lanck Buv

Vacuum energy
4
Evac ~ Mppapci

Observations point to a much lower value
-3 4 —120 . 4
Eyac ~ (10 eV) ~ 10 Mpjanck

In Supersymmetry leading contributions cancel between fermions and
bosons even if SUSY is broken

2
Msysy ) 4

S ~ M2 2 _ _ 10—60 .4
Evac - MSUSY Mppapck = ( Mpjapek = 10 Mpjanck !
Mpjanck
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Why vacuum energy is so tiny ?

Vacuum energy of zero point fluctuations in gravity

( TI“’) = m;lanck 8uv

Vacuum energy
4
Evac ~ Mppapci

Observations point to a much lower value
-3 4 —120 . 4
Eyac ~ (10 eV) ~ 10 Mpjanck

In Supersymmetry leading contributions cancel between fermions and
bosons even if SUSY is broken
Msysy \ 2
S~ M2 2 _ 4 _ 10—60 .4
Evac - MSUSY Mppapck = ( ) Mpjapek = 10 Mpjanck !
Mpjanck

Much improvement but still far from 1071 m},
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SUSY in QM

Bosonic oscillator

2 2
He = X24P° :hw(m;)

a~x+ip = [aal]=1

States  |n)g have energies E, = hw(n+ %) ,n=0,1,..
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SUSY in QM

Bosonic oscillator

2 2 1
HB:X -;-p = hw (afa-l-a)
a~x+ip = [aal]=1
States  |n)g have energies E, = hw(n+%) ,n=0,1,..

Fermionic oscillator

Hf = hw (bfb—%)

{bpt}=1 , B =b"=0

Two states  |0)g , |1) with energies & =-hw/2, & =+hw/2
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L Introducing SUSY

The combined Hamiltonian

H = Hg + Hf

States |n,s) = |n) ®|s) have energies Eps=hw(n+s)
@ States labelled by Quantum numbers: s=0,1, n=20,1,2...

@ s declares the fermionic content : s = 0 no-fermion, s = 1 one
fermion

@ Except the vacuum Egyg the energy spectrum is degenerate !

@ |m,0),|m-1,1) have same energy Epns=hwm
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L Introducing SUSY

The combined Hamiltonian

H = Hg + Hf

States |n,s) = |n) ®|s) have energies Eps=hw(n+s)
@ States labelled by Quantum numbers: s=0,1 , n=0,1,2...

@ s declares the fermionic content : s = 0 no-fermion, s = 1 one
fermion

@ Except the vacuum Egyg the energy spectrum is degenerate !
@ |m,0),|m-1,1) have same energy Epns=hwm
Is there a symmetry behind ?
Q=+Vhwa'b, Qf =+/Aw ab' and H close a graded Lie algebra !
{Q, Q" =2H
[Q,H] =[Q@",H] =0
@=qQ"=0
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L Introducing SUSY

For systems based on this algebra:

@ @, Q' generate "Supersymmetric’ ( SUSY ) transformations and
they transform fermionic states to bosonic and v.v.

@ The Hamiltonian H commutes with @, Qf, respects SUSY.
Degeneracy is a consequence of this symmetry !

The Hamiltonian has energies E >0,

H=3(Qa+Q'Q)
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L Introducing SUSY

For systems based on this algebra:

e Q, QF generate "Supersymmetric’ ( SUSY ) transformations and
they transform fermionic states to bosonic and v.v.

@ The Hamiltonian H commutes with @, Qf, respects SUSY.
Degeneracy is a consequence of this symmetry !

The Hamiltonian has energies E >0,
1
H = E(QQT + Q' Q)

If the symmetry breaks spontaneously, the vacuum state |vac) is not
invariant

Q |vac) , QT |vac) # 0

The vacuum energy is strictly positive
- 2 t 2
Evue = [|Q|vac)||” + || Q" |vac)||” > 0

and sets the scale of spontaneous breaking of Supersymmetry!
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L Introducing SUSY

Physical System ?

Electron moving on a plane under the influence of a constant magnetic
field B L plane
Ho:§(7rx +m,°) = hws | a a+§
eB

mec

wg = ~ Larmor frequency
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L Introducing SUSY

Physical System ?

Electron moving on a plane under the influence of a constant magnetic
field B L plane

1 1
Ho = 5(7rx2+7ry2) = hweg (a"a+§)
B
wg = © ~ Larmor frequency
me c

Electron carries spin - 1/2, couples to B

L o= hwg o,
Hs=—M'B=gsTB?

With the gyromagnetic ratio gs = 2

H, = hwg <bfb— 5)
0
0

with = b:<2g) and bT:< é)

[y
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The total Hamiltonian Hi: = Hp + Hs is like the supersymmetric
Hamiltonian studied before ! The energy spectrum

_ 1 o oc=+1, spin T
En,o‘ = hwp (n+§+5) ) o =—1, spin l
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The total Hamiltonian Hi: = Hp + Hs is like the supersymmetric
Hamiltonian studied before ! The energy spectrum

_ 1 o oc=+1, spin T
En,o' = hwp (n+§+5) ) o =—1, spin l

Two energy eigenstates for each Landau level E,, = hwgm,
m=1,2,..
| m, l) ) | m— 11 T)

One state |0, | ) to the vacuum energy, Eg = 0, not degenerate !
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L Introducing SUSY

The total Hamiltonian Hi: = Hp + Hs is like the supersymmetric
Hamiltonian studied before ! The energy spectrum

_ 1 o oc=+1, spin T
En,a = hwp (n+§+5) ) o =—1, spin l

Two energy eigenstates for each Landau level E,, = hwgm,
m=1,2,..
| m, l) ) | m— 11 T)

One state |0, | ) to the vacuum energy, Eg = 0, not degenerate !
Action of @, Q-

Q' |

m—1,1) flips spin up
Q | m+1,|) flips spin down

33

1)
1)
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L Introducing SUSY

The total Hamiltonian Hi: = Hp + Hs is like the supersymmetric
Hamiltonian studied before ! The energy spectrum

_ 1 o oc=+1, spin T
En,a = hwp (n+§+5) ) o =—1, spin l

Two energy eigenstates for each Landau level E,, = hwgm,
m=1,2,..

|mal> ) |m_17T)

One state |0, | ) to the vacuum energy, Eg = 0, not degenerate !
Action of @, Q-

Qfm, |)=|m-1,1) flips spin up
Q m1T)=|m+1,]) flips spin down

QED corrections induce gs # 2 and break SUSY since the Hamiltonian is
not supersymmetric !
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In Particle Theory SUSY may play a fundamental role !
It is a Femion, Boson symmetry enlarging the Poincare symmetry.
The Algebra :
Poincare symmetry :
[Pm, P] 0
[Pm, M™] i(n™ P —(res))
[an,MIS] _ i(nmSMnf+nnmeS_(rHs))
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L The Algebra of Supersymmetry

In Particle Theory SUSY may play a fundamental role !
It is a Femion, Boson symmetry enlarging the Poincare symmetry.

The Algebra :
Poincare symmetry :
[p™, P"] =0
[P™, M®] = i(n™P° —(res))

[an,MfS] _ i(nmSMnf+nnmeS_(rHS))

Coleman - Mandula Theorem :
There is no fusion of internal with space-time symmetries, i.e. the maximal symmetry
of the S - matrix is

Poincare ® Internal symmetries

Haag-Lopuszanski-Sohnius :
The symmetry algebra is promoted to a Graded Lie Algebra ( GLA ) with Even E
and Odd O elements closing the GLA

[E,E]=E , [E,0]=0 , {0,0}=E

.} =
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L The Algebra of Supersymmetry

The minimal extension is the N=1 SUSY including two Weyl-type spinorial

generators Q, Q , in addition to P™, M™"

{Q, Q%) = 2(om)ipPm
[@,Pm] = [Q,P"] =0
[Q’Mm"] = aan

Highier Supersymmeries have more spinorial charges, N > 1!
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(and v.v. )
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H=3(0a+@df + Qe+ aa)
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L The Algebra of Supersymmetry

The minimal extension is the N=1 SUSY including two Weyl-type spinorial

generators Q, Q , in addition to P™, M™"

{Q, Q%) = 2(om)&pm
[@,Pm] = [Q,P"] =0
[Q’an] = aan

Highier Supersymmeries have more spinorial charges, N > 1!

Q,Q generate SUSY transformations and transform bosonic states to fermionic

(and v.v. )
Q|B) =|F),Q|F)=|B) (idemQ)

The Hamiltonian is positive definite operator, and energies are E > 0.

H=3(0a+@df + Qe+ aa)

Exact SUSY : The vacuum state is invariant Q|vac) = Q|vac) = 0 and the
vacuum energy Eyae =0 !
SB SUSY : The vacuum state is non-invariant Q |vac) , @ |vac) # 0 and the
vacuum energy Eyac >0 !
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Spinology and Conventions

The fundamental spinor representations of the Poincare symmetry are the Weyl spinors

e A Left-handed Weyl spinor ¢ has two components 94

o=(%)

e The operation 9 = i o2 1* defines a Right-handed antispinor with components Ea

- _ P2
V= ( —wl*)
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Spinology and Conventions

The fundamental spinor representations of the Poincare symmetry are the Weyl spinors

e A Left-handed Weyl spinor ¢ has two components 94
_( %
v = ( 2
e The operation 9 = i o2 1* defines a Right-handed antispinor with components Ed
7 _ P*
"/) - ( _,'/JI*
o Invariant "mass” terms ( indices raised lowered by €*? , €ap ... )
¥X =¥ Xa , X = Pa X°
e Invariant "kinetic” terms ( with 6™ = (1,5) anda™ = (1,—3 ) )

i OmY , iYo"OmY
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e In the Weyl basis of the gamma matrices

o _ (0 1 . _( 0 &
T=\110)" 7T\ - o

L,R projection operators are diagonal

_ 1+ _ (1 0 _1-9% _ (0 O
Po=—= —<0 0>’PR—T—<0 1)

and the L and R -handed components of a Dirac fermion are Weyl spinors, ¥ and $

n-(3)
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L The Algebra of Supersymmetry

e In the Weyl basis of the gamma matrices

o _ (0 1 . _( 0 &
T=\110)" 7T\ - o

L,R projection operators are diagonal

_ 1+ _ (1 0 _1-9% _ (0 O
Po=—= —(0 0>’PR—T—<0 1)

and the L and R -handed components of a Dirac fermion are Weyl spinors, ¥ and $

n-(3)

e The charge conjugation matrix C = i+2?~° and upon charge conjugation

W =>Pc = CP'  equivalent to '¢=<1£):>1PC (ZZ)
A Majorana fermion is self conjugate ©» = ¢, Fermions = Antifermions !

e (3)
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The building blocks :
The supersymmetry representations are called supermultiplets

Multiplet name Particle content Spin content

Chiral ) P 0 1/2
Vector A, A 1 1/2
Gravity 8w  Yu 2 3/2

Every multiplet includes a boson and a fermion with spin differing by 1/2.
They are connected by SUSY transformations

SUSY : ¢;}¢ 3 A#@A ) gp.ll;>"/)#

Besides the physical d.o.f. they include auxiliary fields to match the
number of bosonic and fermionic components off-shell.

The most elegant description of supermultiplets is done through the
notion of superspace !
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Superspace & Superfields

B Minkowski space-time :

@ Coordinates are x™

@ G(a) = exp(iam P™) generates translations by am
@ G(a) G(x) = G(x') with x/, =xm+ am
(]

Fields transform as G(a) #(x)G(a)t = #(x')
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Superspace & Superfields

B Minkowski space-time :
@ Coordinates are x™
@ G(a) = exp(iam P™) generates translations by am
@ G(a) G(x) = G(x') with x/, =xm+ am

(]

Fields transform as G(a) #(x)G(a)t = #(x')

B Superspace
@ Coordinates are z™ = ( x™, 6, 6 ) with 6,8 Weyl spinors
@ G(a,£,8) = exp(iam P™+i& Q+i€ Q) generates translations by am, &, €

@ G(a, & 8) G(x,0,0) = G(x',6",8') with
X =Xm+ am+i (om0 —00mE), 0/ =0+£,0 =0+¢

@ Superfields transform as G(a, &, €) ®(x, 0, 0)G(a, &, £)t = o(x',0’, 5’)
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LSupermultiplets

Expanding ®(x, 6, 8) in 6, & no more than two powers of 0, 6 can appear, the series
terminates !

®(x,0,0) = A(x)+0W¥(x) + 6X(x)+
05™0 Vim(x) + 60 M(x) + 80 N(x)+
000 \(x) + 006&(x) + 0606 D(x)



The rudiments of Supersymmetry
L The SUSY fundamentals

LSupermultiplets

Expanding ®(x, 6, 8) in 6, & no more than two powers of 0, 6 can appear, the series
terminates !

®(x,0,0) = A(x)+0W¥(x) + 6X(x)+
05™0 Vim(x) + 60 M(x) + 80 N(x)+
000 \(x) + 006&(x) + 0606 D(x)
@ The fields A, WV, %, Vi,, M, N, £, )\, D are the " components” of ®(x, 0, 5) in
increasing mass dimension, D has the highiest !

@ They transform to one another by SUSY transformations.

@ Since D carries the highiest dimension and the parameters of SUSY
transformations have mass dimension —1/2

dsusy D = Om K™
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L Supermultiplets

Expanding ®(x, 6, 8) in 6, & no more than two powers of 8, 6 can appear, the series
terminates !

®(x, 0,0) = A(x)+6V¥(x) + 0X(x)+
05™0 Vim(x) + 60 M(x) + 00 N(x) +
000 \(x) + 006&(x) + 0606 D(x)
@ The fields A, W, X, Viy, M, N, £, )\, D are the " components” of ®(x, 6, ) in
increasing mass dimension, D has the highiest !

@ They transform to one another by SUSY transformations.

@ Since D carries the highiest dimension and the parameters of SUSY
transformations have mass dimension —1/2

dsusy D = Om K™

The integral of the highiest dimensionality component of any
superfield is supersymmetric invariant !

/ d*x D = SUSY invariant
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Chiral & Antichiral multiplets

The general superfield involves many components. Multiplets with fewer
components can be constructed !

Covariant derivatives :

) 8
=~ (00") a5 m

a6

9 may 0 =
Do = izoe+ (0"0)a5m, Da = —i

Commute with SUSY transformations :

[6susy , D] = [ésusy , D] =0

Chiral superfield : D® =0

These properties are preserved by SUSY transformations !
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L Supermultiplets

@ A chiral superfield contains a complex scalar A a Left - handed Weyl
fermion % and an auxiliary complex field F. Its particle content is
2 spin-0 and 2 - spin 1/2 states .

@ In terms of the variable y™ =x™—ifc™0
® = A(y)+V2604(y) +00F(y)

@ The 06 component field F, or last component, carries the highiest
dimensionality !

Under infinitesimal SUSY transformations by &, £ :
A = V2¢&y
09 = V2EF—ivV20mEORA
0F = —iV2Ea™0my

The last component transform as a total derivative —>

/ d*x F = SUSY invariant
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@ An antichiral superfield includes a complex scalar, a Right - handed
Weyl fermion and an auxiliary complex field.

@ If ® is a chiral superfield with components (A, ¥, F) its Hermitian
superfield ®T is antichiral with components ( A*, ¥, F*)

Products of chiral superfields :
If & ~ (A, 9, F)and &' ~ (A, 9', F') are chiral superfields their product

& = d ' is also a chiral field with components
A= AA
,lp// — Awl + A"lp
F'"'= AF+AF —v'
The product ®T ® is a real superfield which includes kinetic terms in its last 69
component, producing SUSY invariant kinetic terms upon f d*x |
ot @] 2R =
—1A0A -1 A*0A+ 1 |0mAlI? + & (Y0™0mp — h.c.) + FF*
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Vector multiplets

A Hermitian superfield V' defines a vector multiplet

Vector superfield : V vt

including, among other components, a vector field A, a Weyl fermion A

and an auxiliary field D as its last 6 52 component.
@ For any chiral field ® ~ (A, 4, F) the transformation
V= V+o+ot
defines a gauge transformation with gauge parameter A = —2ImA
@ Under the gauge transformation

A, = A, +0,A , ) D= themselves

@ The remaining components are not gauged invariant and can be
gauged way ! This defines the Wess - Zumino gauge
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@ In the Wess - Zumino gauge
V= —(Gaﬂa)Aﬂ+i005X—i§50A+%00§§D

and V"=0 for n>3

@ The vector field A, and its partner, gaugino , X are the physical
d.o.f. describing 2 spin-1 and 2 spin-1/2 states.
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@ In the Wess - Zumino gauge
V = —(00*0) A, +i000X — 000+ 3 0000 D

and V"=0 for n>3

@ The vector field A, and its partner, gaugino , X are the physical
d.o.f. describing 2 spin-1 and 2 spin-1/2 states.

Under infinitesimal SUSY transformations A, D and the field strength
Fuy =0, A, — 0, A, transform to each other :

6Fn = —i(0,0,) + £5,0,0) — (v & p)
P it¢D + io* F,,
6D = EdMN — ETHOLN
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Ungauged Lagrangians

The recipe to construct ungauged SUSY Lagrangians involving N chiral
multiplets is easy

. . . -2
@ Kinetic terms are included in the 68 , or D - terms, of ¢:.’ d;

(0] ;)] o = /d20d2§¢}¢,

@ Non - gauge interaction terms are included in the 02 , F -terms, of a
chiral field called superpotential, W( ®;), function of ®;’s

w(o;) = ’\"kcp o0 + 2;J¢¢

for renormalizable theories up to cubic terms are kept,

W(®;)|,2 +hc. = /d20W(<D,-) + h.c.
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Auxiliary F - fields arise from the kinetic and superpotential terms
OW(A;)
Fi R+ (F,.* T+ h.c.)
and are eliminated by their eqs. of motion

OW(A))
t—
i = OA;
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Auxiliary F - fields arise from the kinetic and superpotential terms

aW(A)
t t
F,-F,—l-(F, A +h.c.)

and are eliminated by their eqs. of motion

OW(A;)
T _
Fi = 0A;
@ The SUSY Lagrangian is :
1 2w
= K _
L= |3A| +/1/)10' a;ﬂ/’: ‘BA 2(6/43/4 'l;bﬂ/{[‘i‘hC)
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Auxiliary F - fields arise from the kinetic and superpotential terms

aW(A)
t t
F,-F,—l-(F, A +h.c.)

and are eliminated by their eqs. of motion

o _ OW(A;)
! 0A;
@ The SUSY Lagrangian is :
L =18, Ail* + iic" b — ‘BA %(3?42;‘,/4 1/1,1/),+hc>
@ A positive definite scalar potential arises :
2

V=F,.*F,-=‘ 0

0A;
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Bosons and Fermions come in pairs with same mass as a manifestation
of supersymmetry
mp = Mg

as long as the vacuum energy vanishes, Vo = 0. If Vi # 0, due to
some (F;) # 0, the mass degeneracy is lifted !
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Bosons and Fermions come in pairs with same mass as a manifestation
of supersymmetry
mp = Mg

as long as the vacuum energy vanishes, Vo = 0. If Vi # 0, due to
some (F;) # 0, the mass degeneracy is lifted !

@ Exact SUSY : Vy=0and mg=mg
e SB SUSY : W 7& 0 and mp 76 mg

Only broken Supersymmetry, spontaneously or other, can be realized in
nature to lift mass degeneracies !
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Gauged SUSY Lagrangians

Generalize gauge transformations for chiral multiplets
¢ — et
A= NAN?T?, A? = chiral superfields, T? = group generators.

e &' ® is not gauge invariant, Introduce gauge multiplet V = V2 T2
with V2 = (A3, A?, D) to make

ot e2eV o
be gauge invariant. The gauge multiplet should transform as
e2gV SN e—ig/\1 e2gV eigA
@ In the Abelian case this reads

V — V + (A=A
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The gauge interactions of the chiral fields can be easily read in the
Wess-zumino gauge since V" =0, n> 3.

o e26V e = ot d + 20TV + g2t V20



The rudiments of Supersymmetry

L Supersymmetric Field Theories

L susy Lagrangians

The gauge interactions of the chiral fields can be easily read in the
Wess-zumino gauge since V" =0, n> 3.

o e26V e = ot d + 20TV + g2t V20

The SUSY Yang-Mills Lagrangian

Longe = —5 Le@?y ! )\(a)_“D 2@ 4 2 D(a)2

with D, 2@ = Oy A@) 4 g fabe A,‘: A€ covariant derivative and G,(f,’,)
the non-Abelian gauge field strength is both gauge and SUSY invariant !
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The gauge interactions of the chiral fields can be easily read in the
Wess-zumino gauge since V" =0, n> 3.

o e26V e = ot d + 20TV + g2t V20

The SUSY Yang-Mills Lagrangian

Longe = —5 Le@?y ! ,\"") 74D A@ 4 - 0(3)2

with D, 2@ = Oy A@) 4 g fabe Az A€ covariant derivative and G,(f,’,)
the non-Abelian gauge field strength is both gauge and SUSY invariant !

A supersymmetric gauge Lagrangian with chiral multiplets ®; put in
some representation @, reducible in general, is

L = Lgage + /d20d2§¢’f e2eV o + (/d29W(<|>) + h.c.)
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@ Auxiliary D - fields arise from the YM kinetic and gauge interaction terms and
are eliminated by their eqs. of motion.

1 32 a * a
ED() + D()zi:gA T A

@ D and F type auxiliary fields are

_aw(A)
A

D@ = - SN gaT@A | Fl =

1
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@ Auxiliary D - fields arise from the YM kinetic and gauge interaction terms and
are eliminated by their egs. of motion.

1 32 a * a
ED() + D()zi:gA T@ A

@ D and F type auxiliary fields are

_aw(A)
9A;

D@ = — Y gAT@A |, F =

The complete SUSY Lagrangian

2 i —(a 7 _
—% i +|D#A|2+(%X()E“D#/\(’)+2W&"D,L\I!+h.c.)

1

—(% Wi iy + ivV2gA*T@WAA 4 he)—|F|? - 50(3)2
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Ay Ap A, A,
= 2 .. g 2
G gauge kinetic  + + g
A, Ay Ap
B A
(3

X(a) o D“ A2) gaugino kinetic +

|D, Al? scalar kinetic +

WGk D, W fermion kinetic  +
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Unconventional gauge interactions :

P A -
I}'
+ g
gA*T@ W@ 4+ he.
A
il A,
> Y
D)2 ‘o g2
AX wa
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Non - gauge ( superpotential ) interactions :

With a superpotential w(e) = Mic o0 + Mdh- > P,

) 2 3!
|F-|2 _ |low
! 0A;
Scalar mass terms : A Mg My A;
5 A A A, (A Ag.
Y Y X > Y
ME g ¥ + Mgy, + 7 YijkYing
calar interactions : W E vk | AN
° Y A Y
:Aa ! Aq ’,Aj Ai\‘
W i + h.c.
Fermion mass terms : Mj; i + h.c.
Ya Ys Ya g
Yukawa interactions : Iy y
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Vertices are related by SUSY transformations!
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Vertices are related by SUSY transformations!

Essential for cancellations among graphs !

A 50 s
7
H_é:::? H o, HAS H L HDYN L H

8 g? g
A A
H gfrm%% H LE W -
s Semgd  heds o g g
" fi

Gauge-boson and Gaugino corrections to the Higgs mass

dm? = 0 if SUSY is exact !
dm? ~ mZ, In (A/msn) if SUSY is broken spontaneously or " softly”
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The Wess - Zumino model

Describes one chiral multiplet ® = (A, v, F) with superpotential,
A

W(o) = gtb + 5@
Defining the Majorana fermion W, two d.o.f.!
- (5)
the SUSY Lagrangian is :
Lsysy =
|D,AP> + é VA4 9, W Kinetic terms

1
-3 [(M+XA)V Vg + h.c] Fermion mass and Yukawa terms

Y 2

—‘ mA + §A2 Potential terms
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The potential is positive definite

A 2

V:'mA+—A2 >0

2

@ There are two vacua, at (A) =0 or (A)=—2m/)\, symmetric
about the point (A) = —m/\ .

@ The vacuum energy vanishes, Vpi, =0 and SUSY is unbroken !

The model describes :
@ A complex scalar boson A of mass m, two d.o.f.

@ A Majorana fermion W of mass m, two d.o.f !
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Renormalization effects :

o
P
4 )’\ 5 = Zr ¥ + finite
3

= Zp p? + finite

Neither mass nor Yukawa coupling get renormalized. Only wave function
renormalizations with Zg = Z¢
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Renormalization effects :

= Zp p? + finite

Neither mass nor Yukawa coupling get renormalized. Only wave function
renormalizations with Zg = Z¢

No - Renormalization Theorem :

Superpotential parameters are not renormalized. The only infinities are
those associated with the wave function renormalization of the chiral and
vector multiplets and renormalization of the gauge couplings !
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Spontaneous Breaking of Global SUSY

W SSB of SUSY occurs if Q, |vacuum ># 0 or Qg |vacuum ># 0
-
EVaCUUm > 0

Lift of the vacuum energy signals SSB of global Supersymmetry !
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Spontaneous Breaking of Global SUSY

W SSB of SUSY occurs if Q, |vacuum ># 0 or Qg |vacuum ># 0
-
EVaCUUm > 0

Lift of the vacuum energy signals SSB of global Supersymmetry !

M Tree level vacuum energy :

D*)?
Evacuum = Vmin =|<Fl>|2 + ( )

2

and spontaneous breaking occurs for
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Spontaneous Breaking of Global SUSY

W SSB of SUSY occurs if Q, |vacuum ># 0 or Qg |vacuum ># 0
——2
EVaCUUm > 0

Lift of the vacuum energy signals SSB of global Supersymmetry !

M Tree level vacuum energy :

D*)?
Evacuum = Vmin :|<Fl>|2 + ( )

2

and spontaneous breaking occurs for

o (F;) #0,F - type breaking, ( or O' Raifertaight breaking )
Need special form of superpotential.

@ (D?) #0, D - type breaking, ( or Fayet - lliopoulos breaking )
Need a U(1) gauge symmetry.
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D - type breaking

B Need a U(1) gauge symmetry and a U(1) vector multiplet V
Add to SUSY Lagrangian a term

L =2¢V =¢D

This is U(1) and SUSY invariant !
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D - type breaking

B Need a U(1) gauge symmetry and a U(1) vector multiplet V
Add to SUSY Lagrangian a term

0L =28V =¢D
This is U(1) and SUSY invariant !

@ The presence of the £ - term alters the eqgs. of motion for the
auxiliary field D resultingto (D) # 0.

@ ¢ sets the order parameter of global SUSY breaking and lifts the
vacuum energy by Eyacuum ~ &2.
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D - type breaking

B Need a U(1) gauge symmetry and a U(1) vector multiplet V
Add to SUSY Lagrangian a term

0L =28V =¢D
This is U(1) and SUSY invariant !

@ The presence of the £ - term alters the eqgs. of motion for the
auxiliary field D resultingto (D) # 0.

@ ¢ sets the order parameter of global SUSY breaking and lifts the

vacuum energy by Eyacuum ~ &2.

Example: Two chiral multiplets ®;, ®, with U(1) charges +1, -1 and
a superpotential W(®) = m®; &,
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Aucxiliary fields :

D=—g(|Al —|4l") - ¢
F1 =—mA2 N Fz =—mA2

Potential :
2 » , D2
V = |F1| + |F2| + 7

(m+g€&)|A? + (m*—g€)| A

2 2 2
EUMP 14D+ 20
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Aucxiliary fields :

D=—g(|Al —|4l") - ¢
F1 =—mA2 N Fz =—mA2

Potential :
2 » , D2
V = |F1| + |F2| + 7

(m+g€&)|A? + (m*—g€)| A

2 2 2
EUMP 14D+ 20

Case |g&| < m?

@ Minimum of potential at (A12) =0 = U(1) unbroken

o (D) = —¢, (Fi2)=0 = SUSY is broken by the D- term
and Vpin = £2/2 > 0
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Y
N,
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g

‘ ‘ Masses? ‘ # of states ‘ States ‘
Spin - 0 m?+g¢ 2s A
m*—g¢ 28 Az
Spin - 1/2 m? 4F Dirac: V= ( %: )
0 2F Goldstino :
Spin - 1 0 2 Gauge boson : A,
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Case |g&| > m?

Take & > 0, if negative the role of A, Ay is interchanged
(g6 —m?)"”

@ Minimum of potential at (A1) =0, (A2) = z

= the gauge symmetry U(1) is broken !
@ (D) #0, (FR) #0, (FR)=0 = SUSY is broken, by the
D- term, and also F;

m?
@ The vacuum energy is Vipin = E(2|g§|—m2) >0

@ Since both (D), (F) non-zero the Goldstino = x is mixture of
11 and the gaugino A
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2
)

E

(2]g€l — m?)

N
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vV
)
| 35 (2198 - m?)
Masses 2 # of states ‘ States
Spin - 0 2m? 2p A
2g2 12 1p Re (A2 —u)
0 1g Goldstone : Im(A2)
Spin - 1/2 | m? + 2g2% 2 4F Dirac: W= ( %2 )
T
0 2F Goldstino : X
Spin - 1 2g2 42 3B Gauge boson : Ay
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F -type breaking

The form of the superpotential forces at least one F- term (F;) # for .

Example :
Three chiral multiplets ®4, ®g, ®x coupled with a superpotential

W = gox (05— 12) + moadp
The equations for the auxiliary fields :

Fi = —g(A*—p?) , Fl=-mA , Fi=—-(2gAX+mB)
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F -type breaking

The form of the superpotential forces at least one F- term (F;) # for .

Example :
Three chiral multiplets ®4, ®g, ®x coupled with a superpotential

W = gox (93 —p?) + mdyop
The equations for the auxiliary fields :
Fi = —g(A—p?) , Fl=-mA , F,=—-(2gAX+mB)
The potential has a flat direction along X
V = g2 |A2—uz|2 + |2gAX+mB|? + m? |A|?
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In the range m? (4pu2g? — m?) > 4u*g* the minimum of the
potential is at

(AYy = (B) =0 , (X) = undetermined
and the F - terms

(Fx) = gp?* , (Fag) =0

@ Supersymmetry is broken by ( Fx) # 0.

@ The vacuum energy is Vpnin = g2 p* and the order parameter of
SUSY breaking is f = g u?.

@ The Goldstino is the partner of the scalar X .
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Comments :

@ In only F - type breaking of global SUSY some sfermions become
lighter than their corresponding fermions, due to the relation

Strm? =" (1) (20+1)m] =0
J

which is preserved after SUSY breaking. In D - type breaking this
problem is evaded since the r.h.s. receives (D) contributions !

@ For D - type breaking an extra U(1) is required, a new neutral vector
boson appears and new neutral current interactions are present !

@ The presence of a U(1) vector multiplet may have disastrous
consequences since quadratic loop corrections may emerge

A2 /d20d2§ V = A2D

This may be circumvented if U(1) is subgroup of a simple group.
then the corrections are proportional to Trace Y =0 .
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Further

@ The Goldstino mode is not observed in nature ! In local versions of
Supersymmetry this is absorbed by a massless gravitino to make it
massive. The Goldstino disappears and the gravitino provides for a
Dark Matter candidate ( in addition ...)

@ Supergravity and String Theories provide additional mechanisms for
SUSY breaking !
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LSummary of this Lecture

Topics covered and the way ahead

@ Motivation for SUSY
SUSY Algebra

Multiplets
SUSY Lagrangians

Supersymmetry Breaking

What comes next ?

B Build models encompassing the SM !

B Study their phenomenology and make predictions !
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