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Motivations

• Resolve a quite old misconception regarding the expansion of E2 to sl2
(Gilmore ’74). This is explained via the representation theory of quadratic

quantum algebras arising in quantum integrable systems (quantum spin chains).

• Moreover using the quadratic (boundary) algebras we are able to obtain

centrally extended algebras. More precisely, we exploit the symmetry break-

ing mechanism due to the presence of suitable boundaries to extract the

centrally extended algebras. Note, centrally extended algebras arise within

AdS/CFT (Beisert ’08).

• This process provides the most natural and straightforward means to obtain

higher Casimir operators associated to any Lie or deformed Lie algebra. Focus

here on particular prototype examples gl3, Uq(gl3) → Ec
2 and Uq(E

c
2)



A simple observation

Consider the E2 algebra (also from sl2 via Inonü-Wigner contraction) defined

by generators J, P± and exchange relations

[
J, P±

]
= ±P±,

[
P+, P−

]
= 0

with quadratic Casimir: C = P+P−.

Define now Y ± = JP± then Y ±, J satisfy (Gilmore ’74):

[
J, Y ±

]
= ±Y ±,

[
Y +, Y −

]
= −2JP+P−

Already a ‘hint’ of sl2



Define Ỹ ± = Y ±√
P+P− then ‘recover’ the sl2 exchange relations

[
J, Ỹ ±

]
= ±Ỹ ±,

[
Ỹ +, Ỹ −

]
= −2J

‘Naively’ one may say the E2 is expanded to sl2, but not true!

Check compatibility of representations: only the unit works suggesting that

something is wrong. Moreover, check co products of sl2 again inconsisten-

cies arise! Search for a broader (quadratic) algebra Ỹ ±, J part of this.

Quantum algebras arise in quantum integrable systems.



Quantum algebras: a brief review

Introduce the fundamental object in quantum integrability, YBE (Baxter ’72)

R12(λ1 − λ2) R13(λ1) R23(λ2) = R23(λ2) R13(λ1) R12(λ1 − λ2)

The equation acts on V ⊗ V ⊗ V , R acts on V ⊗ V and R12 = R ⊗ I,
R23 = I⊗R. Consider a tensor product sequence then the notation:

An = I⊗ . . . I⊗ A︸︷︷︸
n

⊗I . . . I

The R-matrix physically describes the scattering of low lying excitations

arising in quantum integrable systems.



An example, solution of the Yangian Y(gln) (Yang ’67)

R(λ) = I +
i

λ
P

P(a⊗ b) = (b⊗ a). The gln case:

P =

n∑
i.j=1

eij ⊗ eji

where (eij)kl = δikδjl. Both spaces represented by the fundamental rep of

gln. For sl2 in particular:

P =




1

1

1

1


 =

1

2
(σx ⊗ σx + σy ⊗ σy + σz ⊗ σz + I)

σx,y,z the usual 2× 2 Pauli matrices.



Given a solution of the YBE (Faddeev, Reschetikhin, Takhtajan 80’s)→ defining

relations of quantum algebras. Consider L ∈ End(V ) ⊗ A (quantum Lax

operator):

R12(λ1 − λ2) L1j(λ1) L2j(λ2) = L2j(λ2) L1j(λ1) R12(λ1 − λ2)

Traditionally the indices 1, 2 denote the ‘auxiliary’ space the index i the

‘quantum’.

Example the Y(gln) L-matrix

L(λ) = I +
i

λ
P, P =

∑
i,j

eij ⊗ Pij

Pij elements of gln satisfying:

[
Pij, Pkl

]
= δilPkj − δjkPil , i = 1, 2, . . . , n



This allows the construction of tensorial representations of the FRT algebra

(QISM, St. Petersburg group 80’s):

T0(λ) = L0N(λ− θN) L0N−1(λ− θN−1) . . . L02(λ− θ2) L01(λ− θ1)

T (λ) ∈ End(V) ⊗ A⊗N . θi are free complex parameters. Using FRT one

may show that

[
tr0T0(λ), tr0T0(µ)

]
= 0 ,

Integrability condition

t(λ) = trT (λ) ∈ A⊗N system. A ↪→ V the tensorial representation ac-

quires the meaning of the monodromy matrix of a quantum spin chain and

and trT , the transfer matrix. building periodic spin chains!



Example: XXX Hamiltonian

L ↪→ R one obtains local Hamiltonian from the transfer matrix (Heisenberg

model solved (Bethe ’31))

H ∝ dt(λ)

dλ
|λ=0 ∝ −1

2

N∑
i=1

(
σx

i σ
x
i+1 + σy

i σ
y
i+1 + σz

i σ
z
i+1

)

periodic b.c. ~σ1 = ~σN+1

Fundamental question: how integrable boundary conditions are incorporated

in this context? Answer next!



The reflection algebra

Reflection equation (Cherednik, Sklyanin 80’s)

R12(λ1 − λ2) K1(λ1) R21(λ1 + λ2) K2(λ2) =

K2(λ2) R12(λ1 + λ2) K1(λ1) R21(λ1 − λ2)

K reflection matrix, physically describes the interactions of the excitation

with the end of the chain.

Operatorial rep of the reflection algebra (Sklyanin ’84)

K(λ) = L(λ− Θ) K(λ) L−1(−λ− Θ)

K c-number solution of RE. K ∈ End(V )⊗R; R the reflection algebra



Tensorial rep of the reflection algebra → open spin chain systems

T0(λ) = T0(λ) K0(λ) T−1
0 (−λ)

Define also the open transfer matrix:

t(λ) = Tr0{K+
0 (λ) T0(λ)}

K+ also a c-number solution of RE, henceforth K+ ∝ I.

Use RE to show the integrability condition

[
t(λ), t(µ)

]
= 0.

Family of commuting operators → integrability.



After the brief review we come back to our problem: inconsistencies from the

E2 ‘expansion’ to sl2. Focus on rep of a ‘modified’ RE (twisted Yangian)

K(λ) = L(λ− i

2
) L̂(λ +

i

2
),

L̂(λ) = V Lt(−λ− i) V

K satisfies the quadratic algebra (twisted Yangian). Focus on the sl2 case

then:

L(λ− i

2
) = I +

i

λ
P , P =

(
J −J−

J+ −J

)

L̂(λ +
i

2
) = I +

i

λ
P̂ , P̂ =

(
J + 1 J−

−J+ −J + 1

)

J, J± generators of sl2:

[J, J±] = ±J± , [J+, J−] = −2J .



Expand K it in powers of 1
λ:

K(λ) = I +
1

λ
K(0) +

1

λ2
K(1) ,

where

K(0) = i

(
2J + 1 0

0 −2J + 1

)
,

K(1) =

( −J2 − 1
2{J+, J−} − 2J −2JJ−

−2JJ+ −J2 − 1
2{J+, J−} + 2J

)
.

Taking the trace we end up:

t̄(λ) = tr{K(λ)} = I +
i

λ
+

t(1)

λ2
, where t(1) ∝ J2 +

1

2
{J+, J−} .

t(1) structurally n su2 like Casimir. t is u(1) symmetric.



Define K(1)
12 = −2Y −, K(1)

21 = −2Y +. After performing the Inonü–Wigner

contraction

J± → 1

ε
P±, ε → 0

we end up

Y ± = JP± ,

precisely as in Gilomre’s ‘expansion’.

J and Y ± are elements of an extended algebra, i.e. the contracted sl2 twisted Yan-

gian, with exchange relations dictated by the quadratic equation reflection equ. This

will be more transparent in the following when constructing the N -tensor representation

of the twisted Yangian.



The N-particle construction

Define the N -tensor representation of the twisted Yangian

T̄0(λ) = L0N(λ− i

2
) . . . L01(λ− i

2
) L̂01(λ +

i

2
) . . . L̂0N(λ +

i

2
) .

Expansion in powers of 1
λ leads to

T(λ) = I +

2N∑

k=1

T(k−1)

λk
,

with

T(0)
0 =

N∑
i=1

(
P0i + P̂0i

)
,

T(1)
0 = −

( ∑
i>j

P0i P0j +
∑
i<j

P̂0i P̂0j +
∑
i,j

P0i P̂0j

)
. . .



The first non-trivial conserved quantity

t(1) ∝
N∑

i=1

(
J2

i +
1

2
{J+

i , J−i }
)

+ 4
∑
i<j

Ji Jj .

After I-W contraction

t(1) =

N∑
i=1

P+
i P−

i .

For N = 1 one obtains the expected E2 Casimir

t(1) = P+P− .



The non-diagonal elements: T̄12 = −2Y−, T̄21 = −2Y+, where

Y± =

N∑
i=1

JiP
±
i + 2

∑
i<j

JiP
±
j ,

The N co-product of Y ±

For N = 2

∆(Y ±) = Y ± ⊗ I + I⊗ Y ±+2J ⊗ P±

Non trivial co-product, another hint of extended (deformed) algebra.

⇒ Y (±), J belong to a broader deformed algebra: the contracted sl2 twisted

Yangian.

The co-products do not satisfy sl2 algebra. One “particle” expansion stops at order

1
λ2 so the relevant exchange relations emanating from FRT are truncated. Consider-

ing the N “particle” representation the expansion involves higher orders, and thus the

associated exchange relations become more involved.



The Ec
2 extended algebra

AIM: obtain the centrally extended E2 algebra via a boundary breaking sym-

metry mechanism from sl2 ⊗ u(1)

Review the gln algebra:

[Jij, Jkl] = δilJkj − δjkJil , i = 1, 2, . . . , n .

generated by

J+(i) = J i+1 i , J−(i) = J i i+1 , e(i) = J ii .

Define s(k) = e(k) − e(k+1), then

[J+(k), J−(l)] = δkls
(k) , [s(k), J±(l)] = ±(2δkl − δk l+1 − δk l−1)J

±(l)

∑n
i=1 e(i) belongs to the center of the algebra.



Recall the generic L operator: L(λ) = I + i
λP.

Focus on gl3,

P =




e(1) J−(1) Λ+

J+(1) e(2) J−(2)

Λ− J+(2) e(3)


 , where Λ± = ±[J±(1), J±(2)] .

We choose as K (de Vega, Gonzalez-Ruiz ’93)

K(λ) = k = diag(1, 1, −1)

and expand the tensor rep of the RA T(λ)

T0(λ) = L0N(λ) . . . L01(λ) k L−1
01 (−λ) . . . L−1

0N(−λ) ,



The first couple terms of the expansion:

T(0) = i
N∑

i=1

(
P0ik + kP0i

)
,

T(1) = −
∑
i>j

P0i P0j k − k
∑
i<j

P0i P0j −
N∑

i,j=1

P0i k P0j − k

N∑
i=1

P2
0i , . . .

Let us first set k = I, transfer matrix is gl3 symmetric (Doikou, Nepomechie

’98). Trace of T(k) → Casimir operators, e.g. N = 1, k = 1:

C = tr{P2} = (e(1))2 + (e(2))2 + (e(3))2 + J−(1)J+(1) + J−(2)J+(2) + Λ−Λ+

+ J+(1)J−(1) + J+(2)J−(2) + Λ+Λ− .

GENERIC statement for higher rank algebras.



Come back to the situation where k = diag(1, 1, −1), breaks the symme-

try gl3 → sl2 ⊗ u(1). In general, suitable k, gln → gll ⊗ gln−l (Doikou,

Nepomechie ’98).

Focus on N = 1 situation, after expanding

T(0) = 2i




e(1) J−(1) 0

J+(1) e(2) 0

0 0 −e(3)


 . . .

sl2 ⊗ u(1) algebra.

After taking the trace:

t(0) ∝ c− 2e(3),

t(1) ∝ (e(1))2 + (e(2))2 − (e(3))2 + J−(1)J+(1) + J+(1)J−(1) ,

c = e(1) +e(2) central element of sl2. t(1) is quadratic Casimir of sl2⊗u(1).



For notational convenience, we set

s(1) ≡ 2J , e(3) ≡ 2J̃ , J−(1) ≡ −J− , J+(1) ≡ J+ .

Then one finds

t(0) ∝ J̃ , t(1) ∝ J2 − 1

2
{J+, J−}−J̃2 − cJ̃

sl2 ⊗ u(1) Casimir.

The charges may be written as

I(0) = J̃ , I (1) = J2 − 1

2
{J+, J−} − J̃2



The contraction

Saletan type contraction (Sfetsos ’94):

J± =
1√
2ε

P± , J =
1

2

(
T +

F

ε

)
, J̃ = −F

2ε
, ε → 0 .

Then one obtains the Ec
2 algebra:

[P+, P−] = −2F , [T, P±] = ±P± ,

F exact central element of the algebra. After contracting and keeping the

leading order contribution in 1
ε :

I(0) = F , I (1) = TF − 1

2
{P+, P−} .



The Uq(E
c
2) algebra

the Uq(sln) with the Chevalley–Serre generators ei , fi , q±
si
2 , i =

1, 2, . . . , n− 1 , obey (Jimbo ’86)

[
q±

si
2 , q±

sj
2

]
= 0 q

si
2 ej = q

1
2aijej q

si
2 q

si
2 fj = q−

1
2aijfj q

si
2 ,

[
ei, fj

]
= δij

qsi − q−si

q − q−1
, i, j = 1, 2, . . . , n− 1 .

aij elements of the Cartan matrix of sln.

Let q±si = q±(εi−εi+1). The Uq(gln) algebra is derived by adding to Uq(sln) the ele-

ments q±εi i = 1, . . . , n: q
∑n

i=1 εi belongs to the center.

Uq(gln) equipped with ∆ : Uq(gln) → Uq(gln)⊗ Uq(gln),

∆(y) = q−
si
2 ⊗ y + y ⊗ q

si
2 , y ∈ {ei, fi} , ∆(q±

εi
2 ) = q±

εi
2 ⊗ q±

εi
2 .



Uq(ĝln) R-matrix (Jimbo ’87)

R(λ) = a(λ)

n∑
i=1

eii ⊗ eii + b(λ)

n∑

i6=j=1

eii ⊗ ejj + c
n∑

i6=j=1

e−sgn(i−j)λeij ⊗ eji ,

R ∈ End((Cn)⊗2) and

a(λ) = sinh µ(λ + i) , b(λ) = sinh µλ , c = sinh iµ , q = eiµ .

The associated L operator

L(λ) = eµλL+ − e−µλL− ,

L+ =
∑
i6j

êij ⊗ tij , L− =
∑
i>j

êij ⊗ t−ij .



The most natural and simplest way to obtain Casimir operators of q deformed
algebras.

Choose K = diag(eµλ, eµλ, e−µλ) then the asymptotics of the RA (in general Uq(gln →
Uq(gll)⊗ Uq(gln−l)) (Doikou, Nepomechie ’98))

K+ = L+ K+ L̂+ =∼ K+ =




q2ε1 + t12t̂21 t12q
ε2 0

qε2 t̂21 q2ε2 0
0 0 0


 ,

tii = qεi , t12 = (q − q−1)q−1/2q
ε1+ε2

2 f1 , t̂21 ≡ (q − q−1)q−1/2q
ε1+ε2

2 e1 .

Also implement:

e1 ≡ J+ , f1 ≡ −J− , ε1 − ε2 ≡ 2J , ε1 + ε2 = −2J̃ .

J̃ is central element of Uq(sl2). The asymptotics → quadratic Casimir

t+ ∝ q−2J̃
(
q2J+1 + q−2J−1 − (q − q−1)2J−J+

)
,



The contraction

Saletan-type contraction after q = eεη → Uq(E
c
2) algebra

[T, P±] = ±2P± , [P+, P−] = −2Fη , Fη =
sinh(ηF )

η
,

Fη exact central element of the algebra. The associated co-products

∆(P±) = e−
ηF
2 ⊗ P± + P± ⊗ q

ηF
2 ,

∆(e±ηF ) = e±ηF ⊗ e±ηF ,

∆(T ) = I⊗ T + T ⊗ I .

The non-trivial quadratic Casimir

C = eηF
(
2 cosh(ηF ) + 2η2ε(TFη − 1

2
{P+, P−})

)
.



Comments

• Extension to the generic case especially associated to super algebras. Con-

sider the boundary symmetry breaking G ⊗ H where G and H are generic

algebras (H ⊂ G)

• This is also useful in deriving the universal R matrix associated to the

the Yangian of E2, Ec
2 and Uq(E

c
2).

• Can we use this generic context in order to uncover the full underlying

algebraic structure within AdS/CFT, that is to extract by the methodology

proposed the associated centrally extended algebra gl(2|2)?


