Contracted and expanded quantum algebraic structures

Anastasia Doikou ${ }^{1}$
University of Patras, Department of Engineering Sciences

Corfu, 2009

[^0]
Motivations

- Resolve a quite old misconception regarding the expansion of E_{2} to $s l_{2}$ (Gilmore 'r/4). This is explained via the representation theory of quadratic quantum algebras arising in quantum integrable systems (quantum spin chains).
- Moreover using the quadratic (boundary) algebras we are able to obtain centrally extended algebras. More precisely, we exploit the symmetry breaking mechanism due to the presence of suitable boundaries to extract the centrally extended algebras. Note, centrally extended algebras arise within AdS/CFT (Beisert '08).
- This process provides the most natural and straightforward means to obtain higher Casimir operators associated to any Lie or deformed Lie algebra. Focus here on particular prototype examples $g l_{3}, U_{q}\left(g l_{3}\right) \rightarrow E_{2}^{c}$ and $U_{q}\left(E_{2}^{c}\right)$

A simple observation

Consider the E_{2} algebra (also from $s l_{2}$ via Inonü-Wigner contraction) defined by generators $J, P^{ \pm}$and exchange relations

$$
\left[J, P^{ \pm}\right]= \pm P^{ \pm}, \quad\left[P^{+}, P^{-}\right]=0
$$

with quadratic Casimir: $C=P^{+} P^{-}$.
Define now $Y^{ \pm}=J P^{ \pm}$then $Y^{ \pm}, J$ satisfy (Gilmore '74):

$$
\left[J, Y^{ \pm}\right]= \pm Y^{ \pm}, \quad\left[Y^{+}, Y^{-}\right]=-2 J P^{+} P^{-}
$$

Already a 'hint' of $s l_{2}$

Define $\tilde{Y}^{ \pm}=\frac{Y^{ \pm}}{\sqrt{P^{+} P^{-}}}$then 'recover' the $s l_{2}$ exchange relations

$$
\left[J, \tilde{Y}^{ \pm}\right]= \pm \tilde{Y}^{ \pm}, \quad\left[\tilde{Y}^{+}, \tilde{Y}^{-}\right]=-2 J
$$

'Naively' one may say the E_{2} is expanded to $s l_{2}$, but not true!

Check compatibility of representations: only the unit works suggesting that something is wrong. Moreover, check co products of $s l_{2}$ again inconsistencies arise! Search for a broader (quadratic) algebra $\tilde{Y}^{ \pm}, J$ part of this. Quantum algebras arise in quantum integrable systems.

Quantum algebras: a brief review

Introduce the fundamental object in quantum integrability, YBE (Baxter '72)

$$
R_{12}\left(\lambda_{1}-\lambda_{2}\right) R_{13}\left(\lambda_{1}\right) R_{23}\left(\lambda_{2}\right)=R_{23}\left(\lambda_{2}\right) R_{13}\left(\lambda_{1}\right) R_{12}\left(\lambda_{1}-\lambda_{2}\right)
$$

The equation acts on $V \otimes V \otimes V, R$ acts on $V \otimes V$ and $R_{12}=R \otimes \mathbb{I}$, $R_{23}=\mathbb{I} \otimes R$. Consider a tensor product sequence then the notation:

$$
A_{n}=\mathbb{I} \otimes \ldots \mathbb{I} \otimes \underbrace{A}_{n} \otimes \mathbb{I} \ldots \mathbb{I}
$$

The R-matrix physically describes the scattering of low lying excitations arising in quantum integrable systems.

An example, solution of the Yangian $\mathcal{Y}\left(g l_{n}\right)$ (Yang '6才)

$$
R(\lambda)=\mathbb{I}+\frac{i}{\lambda} \mathcal{P}
$$

$\mathcal{P}(a \otimes b)=(b \otimes a)$. The $g l_{n}$ case:

$$
\mathcal{P}=\sum_{i . j=1}^{n} e_{i j} \otimes e_{j i}
$$

where $\left(e_{i j}\right)_{k l}=\delta_{i k} \delta_{j l}$. Both spaces represented by the fundamental rep of $g l_{n}$. For $s l_{2}$ in particular:

$$
\mathcal{P}=\left(\begin{array}{ccc}
1 & & \\
& & 1 \\
& 1 & \\
& & 1
\end{array}\right)=\frac{1}{2}\left(\sigma^{x} \otimes \sigma^{x}+\sigma^{y} \otimes \sigma^{y}+\sigma^{z} \otimes \sigma^{z}+\mathbb{I}\right)
$$

$\sigma^{x, y, z}$ the usual 2×2 Pauli matrices.

Given a solution of the YBE (Faddeev, Reschetikhin, Takhtajan 80's) \rightarrow defining relations of quantum algebras. Consider $L \in \operatorname{End}(V) \otimes \mathcal{A}$ (quantum Lax operator):

$$
R_{12}\left(\lambda_{1}-\lambda_{2}\right) L_{1 j}\left(\lambda_{1}\right) L_{2 j}\left(\lambda_{2}\right)=L_{2 j}\left(\lambda_{2}\right) L_{1 j}\left(\lambda_{1}\right) R_{12}\left(\lambda_{1}-\lambda_{2}\right)
$$

Traditionally the indices 1,2 denote the 'auxiliary' space the index i the 'quantum'.
Example the $\mathcal{Y}\left(g l_{n}\right) L$-matrix

$$
L(\lambda)=\mathbb{I}+\frac{i}{\lambda} \mathbb{P}, \quad \mathbb{P}=\sum_{i, j} e_{i j} \otimes \mathbb{P}_{i j}
$$

$\mathbb{P}_{i j}$ elements of $g l_{n}$ satisfying:

$$
\left[\mathbb{P}_{i j}, \mathbb{P}_{k l}\right]=\delta_{i l} \mathbb{P}_{k j}-\delta_{j k} \mathbb{P}_{i l}, \quad i=1,2, \ldots, n
$$

This allows the construction of tensorial representations of the FRT algebra (QISM, St. Petersburg group 80's):

$$
T_{0}(\lambda)=L_{0 N}\left(\lambda-\theta_{N}\right) L_{0 N-1}\left(\lambda-\theta_{N-1}\right) \ldots L_{02}\left(\lambda-\theta_{2}\right) L_{01}\left(\lambda-\theta_{1}\right)
$$

$T(\lambda) \in \operatorname{End}(\mathbb{V}) \otimes \mathcal{A}^{\otimes N}$. θ_{i} are free complex parameters. Using FRT one may show that

$$
\left[\operatorname{tr}_{0} T_{0}(\lambda), \operatorname{tr}_{0} T_{0}(\mu)\right]=0
$$

Integrability condition
$t(\lambda)=\operatorname{tr} T(\lambda) \in \mathcal{A}^{\otimes N}$ system. $\mathcal{A} \hookrightarrow V$ the tensorial representation acquires the meaning of the monodromy matrix of a quantum spin chain and and $\operatorname{tr} T$, the transfer matrix. building periodic spin chains!

Example: XXX Hamiltonian

$L \hookrightarrow R$ one obtains local Hamiltonian from the transfer matrix (Heisenberg model solved (Bethe '31))

$$
\left.H \propto \frac{d t(\lambda)}{d \lambda}\right|_{\lambda=0} \propto-\frac{1}{2} \sum_{i=1}^{N}\left(\sigma_{i}^{x} \sigma_{i+1}^{x}+\sigma_{i}^{y} \sigma_{i+1}^{y}+\sigma_{i}^{z} \sigma_{i+1}^{z}\right)
$$

periodic b.c. $\vec{\sigma}_{1}=\vec{\sigma}_{N+1}$

Fundamental question: how integrable boundary conditions are incorporated in this context? Answer next!

The reflection algebra

Reflection equation (Cherednik, Sklyanin 80's)

$$
\begin{aligned}
& R_{12}\left(\lambda_{1}-\lambda_{2}\right) \mathbb{K}_{1}\left(\lambda_{1}\right) R_{21}\left(\lambda_{1}+\lambda_{2}\right) \mathbb{K}_{2}\left(\lambda_{2}\right)= \\
& \mathbb{K}_{2}\left(\lambda_{2}\right) R_{12}\left(\lambda_{1}+\lambda_{2}\right) \mathbb{K}_{1}\left(\lambda_{1}\right) R_{21}\left(\lambda_{1}-\lambda_{2}\right)
\end{aligned}
$$

\mathbb{K} reflection matrix, physically describes the interactions of the excitation with the end of the chain.

Operatorial rep of the reflection algebra (Sklyanin '84)

$$
\mathbb{K}(\lambda)=L(\lambda-\Theta) K(\lambda) L^{-1}(-\lambda-\Theta)
$$

K c-number solution of $\mathrm{RE} . \mathbb{K} \in \operatorname{End}(V) \otimes \mathcal{R} ; \mathcal{R}$ the reflection algebra

Tensorial rep of the reflection algebra \rightarrow open spin chain systems

$$
\mathbb{T}_{0}(\lambda)=T_{0}(\lambda) K_{0}(\lambda) T_{0}^{-1}(-\lambda)
$$

Define also the open transfer matrix:

$$
t(\lambda)=\operatorname{Tr}_{0}\left\{K_{0}^{+}(\lambda) \mathbb{T}_{0}(\lambda)\right\}
$$

K^{+}also a c-number solution of RE , henceforth $K^{+} \propto \mathbb{I}$.

Use RE to show the integrability condition

$$
[t(\lambda), t(\mu)]=0
$$

Family of commuting operators \rightarrow integrability.

After the brief review we come back to our problem: inconsistencies from the E_{2} 'expansion' to $s l_{2}$. Focus on rep of a 'modified' RE (twisted Yangian)

$$
\begin{aligned}
& \mathbb{K}(\lambda)=L\left(\lambda-\frac{i}{2}\right) \hat{L}\left(\lambda+\frac{i}{2}\right), \\
& \hat{L}(\lambda)=V L^{t}(-\lambda-i) V
\end{aligned}
$$

\mathbb{K} satisfies the quadratic algebra (twisted Yangian). Focus on the $s l_{2}$ case then:

$$
\begin{array}{ll}
L\left(\lambda-\frac{i}{2}\right)=\mathbb{I}+\frac{i}{\lambda} \mathbb{P}, & \mathbb{P}=\left(\begin{array}{cc}
J & -J^{-} \\
J^{+} & -J
\end{array}\right) \\
\hat{L}\left(\lambda+\frac{i}{2}\right)=\mathbb{I}+\frac{i}{\lambda} \hat{\mathbb{P}}, & \hat{\mathbb{P}}=\left(\begin{array}{cc}
J+1 & J^{-} \\
-J^{+} & -J+1
\end{array}\right)
\end{array}
$$

$J, J^{ \pm}$generators of $s l_{2}$:

$$
\left[J, J^{ \pm}\right]= \pm J^{ \pm}, \quad\left[J^{+}, J^{-}\right]=-2 J .
$$

Expand \mathbb{K} it in powers of $\frac{1}{\lambda}$:

$$
\mathbb{K}(\lambda)=\mathbb{I}+\frac{1}{\lambda} \mathbb{K}^{(0)}+\frac{1}{\lambda^{2}} \mathbb{K}^{(1)},
$$

where

$$
\begin{aligned}
& \mathbb{K}^{(0)}=i\left(\begin{array}{cc}
2 J+1 & 0 \\
0 & -2 J+1
\end{array}\right), \\
& \mathbb{K}^{(1)}=\left(\begin{array}{cc}
-J^{2}-\frac{1}{2}\left\{J^{+}, J^{-}\right\}-2 J & -2 J J^{-} \\
& -2 J J^{+}
\end{array}\right. \\
& \\
&
\end{aligned}
$$

Taking the trace we end up:
$\bar{t}(\lambda)=\operatorname{tr}\{\mathbb{K}(\lambda)\}=\mathbb{I}+\frac{i}{\lambda}+\frac{t^{(1)}}{\lambda^{2}}, \quad$ where $\quad t^{(1)} \propto J^{2}+\frac{1}{2}\left\{J^{+}, J^{-}\right\}$.
$t^{(1)}$ structurally $\mathrm{n} s u_{2}$ like Casimir. t is $u(1)$ symmetric.

Define $\mathbb{K}_{12}^{(1)}=-2 Y^{-}, \quad \mathbb{K}_{21}^{(1)}=-2 Y^{+}$. After performing the Inonü-Wigner contraction

$$
J^{ \pm} \rightarrow \frac{1}{\epsilon} P^{ \pm}, \quad \epsilon \rightarrow 0
$$

we end up

$$
Y^{ \pm}=J P^{ \pm},
$$

precisely as in Gilomre's 'expansion'.
J and $Y^{ \pm}$are elements of an extended algebra, i.e. the contracted $s l_{2}$ twisted Yangian, with exchange relations dictated by the quadratic equation reflection equ. This will be more transparent in the following when constructing the N-tensor representation of the twisted Yangian.

The N-particle construction

Define the N-tensor representation of the twisted Yangian

$$
\overline{\mathbb{T}}_{0}(\lambda)=L_{0 N}\left(\lambda-\frac{i}{2}\right) \ldots L_{01}\left(\lambda-\frac{i}{2}\right) \hat{L}_{01}\left(\lambda+\frac{i}{2}\right) \ldots \hat{L}_{0 N}\left(\lambda+\frac{i}{2}\right) .
$$

Expansion in powers of $\frac{1}{\lambda}$ leads to

$$
\mathbb{T}(\lambda)=\mathbb{I}+\sum_{k=1}^{2 N} \frac{\mathbb{T}^{(k-1)}}{\lambda^{k}},
$$

with

$$
\begin{aligned}
\mathbb{T}_{0}^{(0)} & =\sum_{i=1}^{N}\left(\mathbb{P}_{0 i}+\hat{\mathbb{P}}_{0 i}\right), \\
\mathbb{T}_{0}^{(1)} & =-\left(\sum_{i>j} \mathbb{P}_{0 i} \mathbb{P}_{0 j}+\sum_{i<j} \hat{\mathbb{P}}_{0 i} \hat{\mathbb{P}}_{0 j}+\sum_{i, j} \mathbb{P}_{0 i} \hat{\mathbb{P}}_{0 j}\right) \ldots
\end{aligned}
$$

The first non-trivial conserved quantity

$$
t^{(1)} \propto \sum_{i=1}^{N}\left(J_{i}^{2}+\frac{1}{2}\left\{J_{i}^{+}, J_{i}^{-}\right\}\right)+4 \sum_{i<j} J_{i} J_{j} .
$$

After I-W contraction

$$
t^{(1)}=\sum_{i=1}^{N} P_{i}^{+} P_{i}^{-} .
$$

For $N=1$ one obtains the expected E_{2} Casimir

$$
t^{(1)}=P^{+} P^{-} .
$$

The non-diagonal elements: $\overline{\mathbb{T}}_{12}=-2 \mathbb{Y}^{-}, \overline{\mathbb{T}}_{21}=-2 \mathbb{Y}^{+}$, where

$$
\mathbb{Y}^{ \pm}=\sum_{i=1}^{N} J_{i} P_{i}^{ \pm}+2 \sum_{i<j} J_{i} P_{j}^{ \pm},
$$

The N co-product of $Y^{ \pm}$
For $N=2$

$$
\Delta\left(Y^{ \pm}\right)=Y^{ \pm} \otimes \mathbb{I}+\mathbb{I} \otimes Y^{ \pm}+2 J \otimes P^{ \pm}
$$

Non trivial co-product, another hint of extended (deformed) algebra. $\Rightarrow Y^{(\pm)}$, J belong to a broader deformed algebra: the contracted $s l_{2}$ twisted Yangian.

The co-products do not satisfy $s l_{2}$ algebra. One "particle" expansion stops at order $\frac{1}{\lambda^{2}}$ so the relevant exchange relations emanating from FRT are truncated. Considering the N "particle" representation the expansion involves higher orders, and thus the associated exchange relations become more involved.

The E_{2}^{c} extended algebra

AIM: obtain the centrally extended E_{2} algebra via a boundary breaking symmetry mechanism from $s l_{2} \otimes u(1)$

Review the $g l_{n}$ algebra:

$$
\left[J_{i j}, J_{k l}\right]=\delta_{i l} J_{k j}-\delta_{j k} J_{i l}, \quad i=1,2, \ldots, n .
$$

generated by

$$
J^{+(i)}=J^{i+1 i}, \quad J^{-(i)}=J^{i+i+1}, \quad e^{(i)}=J^{i i} .
$$

Define $s^{(k)}=e^{(k)}-e^{(k+1)}$, then
$\left[J^{+(k)}, J^{-(l)}\right]=\delta_{k l} S^{(k)}, \quad\left[s^{(k)}, J^{ \pm(l)}\right]= \pm\left(2 \delta_{k l}-\delta_{k l+1}-\delta_{k l-1}\right) J^{ \pm(l)}$
$\sum_{i=1}^{n} e^{(i)}$ belongs to the center of the algebra.

Recall the generic L operator: $L(\lambda)=\mathbb{I}+\frac{i}{\lambda} \mathbb{P}$.
Focus on gl_{3},

$$
\mathbb{P}=\left(\begin{array}{ccc}
e^{(1)} & J^{-(1)} & \Lambda^{+} \\
J^{+(1)} & e^{(2)} & J^{-(2)} \\
\Lambda^{-} & J^{+(2)} & e^{(3)}
\end{array}\right), \quad \text { where } \quad \Lambda^{ \pm}= \pm\left[J^{ \pm(1)}, J^{ \pm(2)}\right] .
$$

We choose as K (de Vega, Gonzalez-Ruiz '93)

$$
K(\lambda)=k=\operatorname{diag}(1,1,-1)
$$

and expand the tensor rep of the RA $\mathbb{T}(\lambda)$

$$
\mathbb{T}_{0}(\lambda)=L_{0 N}(\lambda) \ldots L_{01}(\lambda) k L_{01}^{-1}(-\lambda) \ldots L_{0 N}^{-1}(-\lambda),
$$

The first couple terms of the expansion:
$\mathbb{T}^{(0)}=i \sum_{i=1}^{N}\left(\mathbb{P}_{0 i} k+k \mathbb{P}_{0 i}\right)$,
$\mathbb{T}^{(1)}=-\sum_{i>j} \mathbb{P}_{0 i} \mathbb{P}_{0 j} k-k \sum_{i<j} \mathbb{P}_{0 i} \mathbb{P}_{0 j}-\sum_{i, j=1}^{N} \mathbb{P}_{0 i} k \mathbb{P}_{0 j}-k \sum_{i=1}^{N} \mathbb{P}_{0 i}^{2}, \ldots$
Let us first set $k=\mathbb{I}$, transfer matrix is $g l_{3}$ symmetric (Doikou, Nepomechie '98). Trace of $\mathbb{T}^{(k)} \rightarrow$ Casimir operators, e.g. $N=1, k=1$:

$$
\begin{aligned}
C=\operatorname{tr}\left\{\mathbb{P}^{2}\right\} & =\left(e^{(1)}\right)^{2}+\left(e^{(2)}\right)^{2}+\left(e^{(3)}\right)^{2}+J^{-(1)} J^{+(1)}+J^{-(2)} J^{+(2)}+\Lambda^{-} \Lambda^{+} \\
& +J^{+(1)} J^{-(1)}+J^{+(2)} J^{-(2)}+\Lambda^{+} \Lambda^{-} .
\end{aligned}
$$

GENERIC statement for higher rank algebras.

Come back to the situation where $k=\operatorname{diag}(1,1,-1)$, breaks the symmetry $g l_{3} \rightarrow s l_{2} \otimes u(1)$. In general, suitable $k, g l_{n} \rightarrow g l_{l} \otimes g l_{n-l}$ (Doikou, Nepomechie '98).

Focus on $N=1$ situation, after expanding

$$
\mathbb{T}^{(0)}=2 i\left(\begin{array}{ccc}
e^{(1)} & J^{-(1)} & 0 \\
J^{+(1)} & e^{(2)} & 0 \\
0 & 0 & -e^{(3)}
\end{array}\right) \ldots
$$

$s l_{2} \otimes u(1)$ algebra.
After taking the trace:

$$
\begin{aligned}
& t^{(0)} \propto c-2 e^{(3)} \\
& t^{(1)} \propto\left(e^{(1)}\right)^{2}+\left(e^{(2)}\right)^{2}-\left(e^{(3)}\right)^{2}+J^{-(1)} J^{+(1)}+J^{+(1)} J^{-(1)},
\end{aligned}
$$

$c=e^{(1)}+e^{(2)}$ central element of $s l_{2} . t^{(1)}$ is quadratic Casimir of $s l_{2} \otimes u(1)$.

For notational convenience, we set

$$
s^{(1)} \equiv 2 J, \quad e^{(3)} \equiv 2 \tilde{J}, \quad J^{-(1)} \equiv-J^{-}, \quad J^{+(1)} \equiv J^{+} .
$$

Then one finds

$$
t^{(0)} \propto \tilde{J}, \quad t^{(1)} \propto J^{2}-\frac{1}{2}\left\{J^{+}, J^{-}\right\}-\tilde{J}^{2}-c \tilde{J}
$$

$s l_{2} \otimes u(1)$ Casimir.

The charges may be written as

$$
I^{(0)}=\tilde{J}, \quad I^{(1)}=J^{2}-\frac{1}{2}\left\{J^{+}, J^{-}\right\}-\tilde{J}^{2}
$$

The contraction

Saletan type contraction (Sfetsos '94):

$$
J^{ \pm}=\frac{1}{\sqrt{2 \epsilon}} P^{ \pm}, \quad J=\frac{1}{2}\left(T+\frac{F}{\epsilon}\right), \quad \tilde{J}=-\frac{F}{2 \epsilon}, \quad \epsilon \rightarrow 0 .
$$

Then one obtains the E_{2}^{c} algebra:

$$
\left[P^{+}, P^{-}\right]=-2 F, \quad\left[T, P^{ \pm}\right]= \pm P^{ \pm}
$$

F exact central element of the algebra. After contracting and keeping the leading order contribution in $\frac{1}{\epsilon}$:

$$
I^{(0)}=F, \quad I^{(1)}=T F-\frac{1}{2}\left\{P^{+}, P^{-}\right\} .
$$

The $U_{q}\left(E_{2}^{c}\right)$ algebra

the $U_{q}\left(s l_{n}\right)$ with the Chevalley-Serre generators $e_{i}, f_{i}, q^{ \pm \frac{s_{i}}{2}}, i=$ $1,2, \ldots, n-1$, obey (Jimbo '86)

$$
\begin{aligned}
& {\left[q^{ \pm \frac{s_{i}}{2}}, q^{ \pm \frac{s_{j}}{2}}\right]=0 \quad q^{\frac{s_{i}}{2}} e_{j}=q^{\frac{1}{2} a_{i j}} e_{j} q^{\frac{s_{i}}{2}} \quad q^{\frac{s_{i}}{2}} f_{j}=q^{-\frac{1}{2} a_{i j}} f_{j} q^{\frac{s_{i}}{2}}} \\
& {\left[e_{i}, f_{j}\right]=\delta_{i j} \frac{q^{s_{i}}-q^{-s_{i}}}{q-q^{-1}}, \quad i, j=1,2, \ldots, n-1}
\end{aligned}
$$

$a_{i j}$ elements of the Cartan matrix of $s l_{n}$.

Let $q^{ \pm s_{i}}=q^{ \pm\left(\epsilon_{i}-\epsilon_{i+1}\right)}$. The $U_{q}\left(g l_{n}\right)$ algebra is derived by adding to $U_{q}\left(s l_{n}\right)$ the elements $q^{ \pm \epsilon_{i}} i=1, \ldots, n$: $q^{\sum_{i=1}^{n} \epsilon_{i}}$ belongs to the center.
$U_{q}\left(g l_{n}\right)$ equipped with $\Delta: U_{q}\left(g l_{n}\right) \rightarrow U_{q}\left(g l_{n}\right) \otimes U_{q}\left(g l_{n}\right)$,

$$
\Delta(y)=q^{-\frac{s_{i}}{2}} \otimes y+y \otimes q^{\frac{s_{i}}{2}}, \quad y \in\left\{e_{i}, f_{i}\right\}, \quad \Delta\left(q^{ \pm \frac{\epsilon_{i}}{2}}\right)=q^{ \pm \frac{\epsilon_{i}}{2}} \otimes q^{ \pm \frac{\epsilon_{i}}{2}}
$$

$\mathbb{U}_{q}\left(\widehat{g l_{n}}\right) R$-matrix (Jimbo ' 87)

$$
R(\lambda)=a(\lambda) \sum_{i=1}^{n} e_{i i} \otimes e_{i i}+b(\lambda) \sum_{i \neq j=1}^{n} e_{i i} \otimes e_{j j}+c \sum_{i \neq j=1}^{n} e^{-\operatorname{sgn}(i-j) \lambda} e_{i j} \otimes e_{j i},
$$

$R \in \operatorname{End}\left(\left(\mathbb{C}^{n}\right)^{\otimes 2}\right)$ and
$a(\lambda)=\sinh \mu(\lambda+i), \quad b(\lambda)=\sinh \mu \lambda, \quad c=\sinh i \mu, \quad q=e^{i \mu}$.

The associated L operator

$$
\begin{gathered}
L(\lambda)=e^{\mu \lambda} L^{+}-e^{-\mu \lambda} L^{-}, \\
L^{+}=\sum_{i \leqslant j} \hat{e}_{i j} \otimes t_{i j}, \quad L^{-}=\sum_{i \geqslant j} \hat{e}_{i j} \otimes t_{i j}^{-} .
\end{gathered}
$$

The most natural and simplest way to obtain Casimir operators of q deformed algebras.

Choose $K=\operatorname{diag}\left(e^{\mu \lambda}, e^{\mu \lambda}, e^{-\mu \lambda}\right)$ then the asymptotics of the RA (in general $U_{q}\left(g l_{n} \rightarrow\right.$ $\left.U_{q}\left(g l_{l}\right) \otimes U_{q}\left(g l_{n-l}\right)\right)($ Doikou, Nepomechie '98))

$$
\begin{gathered}
\mathbb{K}^{+}=L^{+} K^{+} \hat{L}^{+}=\sim \mathbb{K}^{+}=\left(\begin{array}{ccc}
q^{2 \epsilon_{1}}+t_{12} \hat{t}_{21} & t_{12} q^{\epsilon_{2}} & 0 \\
q^{\epsilon_{2}} \hat{t}_{21} & q^{2 \epsilon_{2}} & 0 \\
0 & 0 & 0
\end{array}\right), \\
t_{i i}=q^{\epsilon_{i}}, \quad t_{12}=\left(q-q^{-1}\right) q^{-1 / 2} q^{\frac{\epsilon_{1}+\epsilon_{2}}{2}} f_{1}, \quad \hat{t}_{21} \equiv\left(q-q^{-1}\right) q^{-1 / 2} q^{\frac{\epsilon_{1}+\epsilon_{2}}{2}} e_{1} .
\end{gathered}
$$

Also implement:

$$
e_{1} \equiv J^{+}, \quad f_{1} \equiv-J^{-}, \quad \epsilon_{1}-\epsilon_{2} \equiv 2 J, \quad \epsilon_{1}+\epsilon_{2}=-2 \tilde{J}
$$

\tilde{J} is central element of $U_{q}\left(s l_{2}\right)$. The asymptotics \rightarrow quadratic Casimir

$$
t^{+} \propto q^{-2 \tilde{J}}\left(q^{2 J+1}+q^{-2 J-1}-\left(q-q^{-1}\right)^{2} J^{-} J^{+}\right)
$$

The contraction

Saletan-type contraction after $q=e^{\epsilon \eta} \rightarrow U_{q}\left(E_{2}^{c}\right)$ algebra

$$
\left[T, P^{ \pm}\right]= \pm 2 P^{ \pm}, \quad\left[P^{+}, P^{-}\right]=-2 F_{\eta}, \quad F_{\eta}=\frac{\sinh (\eta F)}{\eta},
$$

F_{η} exact central element of the algebra. The associated co-products

$$
\begin{aligned}
& \Delta\left(P^{ \pm}\right)=e^{-\frac{\eta F}{2}} \otimes P^{ \pm}+P^{ \pm} \otimes q^{\frac{\eta F}{2}}, \\
& \Delta\left(e^{ \pm \eta F}\right)=e^{ \pm \eta F} \otimes e^{ \pm \eta F}, \\
& \Delta(T)=\mathbb{I} \otimes T+T \otimes \mathbb{I} .
\end{aligned}
$$

The non-trivial quadratic Casimir

$$
C=e^{\eta F}\left(2 \cosh (\eta F)+2 \eta^{2} \epsilon\left(T F_{\eta}-\frac{1}{2}\left\{P^{+}, P^{-}\right\}\right)\right) .
$$

Comments

- Extension to the generic case especially associated to super algebras. Consider the boundary symmetry breaking $\mathrm{G} \otimes \mathrm{H}$ where G and H are generic algebras $(\mathrm{H} \subset \mathrm{G})$
- This is also useful in deriving the universal R matrix associated to the the Yangian of E_{2}, E_{2}^{c} and $U_{q}\left(E_{2}^{c}\right)$.
- Can we use this generic context in order to uncover the full underlying algebraic structure within AdS/CFT, that is to extract by the methodology proposed the associated centrally extended algebra $g l(2 \mid 2)$?

[^0]: ${ }^{1}$ Work in collaboration with K. Sfetsos

