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Extremal Black Holes, Einstein-Maxwell

Extremal black hole solution in D ≥ 4 dimensions

ds2 = −H−2(~x)dt2 + H
2

D−3 (~x)d~x2

where H(~x) is a harmonic function.
Spherical symmetry, single-centered solution

H(~x) = H(r) = 1 +
q

rD−3

Multi-centered solution

H(~x) = 1 +

N
∑

a=1

q(a)

|~x − ~xa|D−3

Extremality: Mass = total charge

M =

N
∑

a=1

q(a)

(I have assumed q(a) > 0)
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Extremal Black Holes, Supergravity

Field content:

5d supergravity multiplet {e α
µ , . . . , Aµ, . . .}

5d vector multiplets {Ax
µ, . . . , φx , . . .}. Label x = 1, . . . , n

Special real geometry (aka very special (real) geometry): all
couplings encoded in a prepotential (cubic polynomial).

Extremal, multi-centered solutions:

ds2 = −e2σ̃(~x)dt2 + e−σ̃(~x)d~x2

Metric (i.e. σ̃), scalars φx , and gauge fields Aµ, Ax
µ, can be expressed

algebraically in terms of n + 1 harmonic functions HI(~x), I = 0, . . . , n.
(‘Generalized stabilization equations’).

Near horizon behaviour determined by the charges (‘attractor
mechanism’).
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Work Plan

Objective: construct multi-centered solutions without imposing
supersymmetry.

Strategy: reduce equations of motion to decoupled harmonic
equations. Use dimensional reduction over time. Do not impose
spherical symmetry (in contrast to methods based on first order
gradient flow equations).

Use ‘Einstein-Maxwell-Scalar’-type action which contains vector
multiplet action as a subclass but do not assume from the start
that the couplings are encoded by special real geometry. Rather
insist that multi-centered solutions exist and can be expressed
algebraically in terms of harmonic functions.
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(Some) References

Talk based on T.M. and K. Waite, arXiv:0906.3451 .
Related: V. Cortés and T.M. JHEP 0907 (2009) 066
(Euclidean Supergravity and para-complex geometry).

Attractor mechanism (via Kiling spinors): S. Ferrara, R.
Kallosh and A. Strominger, Phys. Rev. D 52
(1995) 5412. , . . .

Generalized stabilisation equations: K. Behrndt, D. Lüst
and W. Sabra, Nucl. Phys. B 510 (1998) 264 , G.
Cardoso, B. de Wit, J. Käppeli and T.M. JHEP
0012 (2000) 019 .

Attractor mechanism w/o Killing spinors, non-BPS extremal black
holes: S. Ferrara, G. Gibbons and R. Kallosh,
Nucl. Phys. B 500 (1997) 75, K. Goldstein, N.
Iizuka, R. Jena and S. Trivedi, Phys. Rev. D
72 (2005) 124021, ...
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(Some) References (cont’d)

First order gradient flow equations: ..., A. Ceresole and
G. Dall’Agata, JHEP 0703 (2007) 110, G. Cardoso,
A. Ceresole, G. Dall’Agata, J. Oberreuter and J.
Perz, JHEP 10 (2007) 063, J. Perz, P. Smyth, T.
Van Riet and B. Vercnocke, JHEP 0903 (2009) 150,
...

5d vector multiplets, special real geometry: M. Gunaydin, G.
Sierra and P. Townsend, Nucl. Phys. B 242
(1984) 244 , . . .
BPS black holes in 5d supergravity: A. Chamseddine and W.
Sabra, Phys. Lett. B 426 (1998), Phys. Lett.
B 460 (1999) 63.

Temporal reduction: G. Neugebauer and D. Kramer, Ann.
Phys. (Leipzig) 24 (1969) 253 , P. Breitenlohner,
D. Maison and G. Gibbons, Comm. Math. Phys.
120 (1988) 253 , . . .
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Dimensional reduction over time

Four-dimensional Euclidean theory:

S =
1
2

∫

d4x
√

|g(4)|
(

R(4) − NIJ(σ)(∂mσI∂mσJ−∂mbI∂mbJ) + · · ·
)

Dictionary
ds2

(5) = −e2σ̃dt2 + e−σ̃ds2
(4)

σ̃, φx → σI

Aµ, Ax
µ → bI

n + 1 gauge symmetries → n + 1 shift symmetries bI → bI + CI .
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General remarks

Solutions to sigma model EOM =

Harmonic Map : space-(time) → scalar manifold

Single centered extremal solutions ≃ Harmonic map onto null
geodesic curves in the scalar manifold.

General extremal solutions ≃ Harmonic map onto totally isotropic,
totally geodesic submanifold.

Terminology: Finite action Euclidean solution = Instanton or
(-1)-brane. (In fact, solutions will resemble D-instanton and other
instanton solutions of supergravity/string theory.)
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Multi-centered solutions for pedestrians

Compare Kaluza-Klein ansatz to extremal black hole ansatz

ds2
(5) = −e2σ̃(~x)dt2 + e−σ̃(~x)ds2

(4)

Extremal black holes have flat ds2
(4) = δmndxmdxn. 4d scalar EOM

(assuming flat 4d metric):

∂m(NIJ (σ)∂mσJ) −
1
2

∂INJK (σ)(∂mσJ∂mσK − ∂mbJ∂mbK ) = 0

∂m(NIJ(σ)∂mbJ) = 0

Second equation = conservation of charges qI (4d: axionic or
instanton charge, 5d: electric charge).
Equations simplify if we set ∂mσI = ±∂mbI.
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Extremal instanton solutions

Extremal instantons: ∂mσI = ±∂mbI.

Geometrical interpretation: solutions flows along null directions in
scalar manifold (totally isotropic submanifold).

Physical interpretation: equivalent to Tmn = 0, which is needed to
solve the Einstein equation with g(4)

mn = δmn.

Solution saturate a Bogomol’nyi type bound and lifts to an
extremal black hole solution.

Remark: generalized relation ∂mσI = RI
J∂mbJ can be imposed if the

scalar metric has additional isometries.
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Harmonic functions

Remaining equations

∂m(NIJ(σ)∂mσJ) = 0

reduce to harmonic equations ∆σI = 0 if we can find dual coordinates
σI such that

NIJ(σ)∂mσJ = ∂mσI .

Without assumptions on the solution (i.e. no spherical symmetry), this
requires the integrability condition

∂[INJ]K = 0 ⇔ ∂INJK completely symmetric ⇔ ΓJK |Icompletely symmetric

which is solved locally by

NIJ(σ) =
∂2V(σ)

∂σI∂σJ

i.e. the scalar metric NIJ(σ) must be Hessian, with Hesse potential
V(σ).
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Harmonic functions (cont’d)

Geometrical interpretation: σI are affine coordinates on a flat totally
geodesic, totally isotropic submanifold. (Flatness ⇒ harmonic map
equation becomes linear.)
Note that

σI =
∂V

∂σI

so that the solution (i.e. σI) can be expressed algebraically in terms of
harmomic functions:

∂V

∂σI = HI(~x) .

Explicit expressions for the σI can only be obtained if the Hesse
potential V(σ) is sufficiently simple.
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Lifting to 5d

We have assumed that the 4d Euclidean action
∫

d4x
√

|g(4)|

(

1
2

R(4) −
1
2

NIJ(σ)(∂mσI∂mσJ − ∂mbI∂mbJ) + · · ·

)

came from a 5d Einstein-Maxwell type action
∫

d5x
√

|g(5)|

(

1
2

R(5) −
1
2

Nxy (φ)∂mφx∂mφy −
1
4

NIJ(φ)F I
µνF J|µν + · · ·

)

4d scalars σI ↔ 5d scalars φx plus KK scalar σ̃.
A consistent lift is obtained for logarithmic Hesse potentials

V(σ) = −
1
p

log V̂(σ) ,

where the prepotenial V̂(σ) is a homogeneous function of degree p.
The case p = 3 corresponds to 5d supergravity and special real
geometry.
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5d Solutions

The 5d theory is more conveniently described using ‘homogeneous
coordinates’
∫

d5x
√

|g(5)|

(

1
2

R(5) −
1
2

NIJ(h)∂mhI∂mhJ −
1
4

NIJ(h)F I
µνF J|µν + · · ·

)

V̂=1

where

φx x = 1, . . . , n ↔ hI , I = 0, . . . , n + 1 , subject to V̂(h) = 1 .

Relation between 5d and 4d scalars:

σI = eσ̃hI . Note: V̂(h) = 1 ⇒ V̂(σ) = epσ̃ .

Express solution (scalars and metric) in terms of harmonic functions

e−σ̃ ∂V̂(h)

∂hI = HI(~x)

Thomas Mohaupt (University of Liverpool) Black Holes, Instantons and Harmonic Functions Corfu, September 2009 14 / 20



Attractor behaviour and entropy

Asymptotics at a center located at r = 0 (display single-centered case
for convenience):

HI ≈
qI

r2 , e−σ̃ ≈
Z∗

r2

determined by ‘attractor equations’

Z∗
∂V̂(h)

∂hI

∣

∣

∣

∣

∣

∗

= qI

Z∗ generalizes the central charge:

Z∗ =
1
p

qIh
I
∗

and determines the entropy:

SBH =
A
4

=
π2

2
Z 3/2
∗ .
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Wormholes

The hypersurface t = const.

ds2
(5)

∣

∣

∣

dt=0
= e−σ̃δmndxmdxn

is a semi-infinite wormhole with neck of size ∝ A. Charges can be
tuned to obtain degenerate solutions with A = 0.
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ADM mass

ADM mass:

MADM = −
3
2

∮

d3Σm∂me−σ̃ = −
3
2

∮

d3Σm∂mV̂(σ)1/p

= Const. Z∞ = Const. qIh
I
∞

BPS-like formula!
Displayed single-centered case, but is additive in centers.
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Instanton action

Naively, the instanton action is zero

Sinst =
1
2

∫

d4x
(

NIJ(σ)(∂mσI∂mσJ − ∂mbI∂mbJ)
)

∂σI=±∂bI
= 0

Addition of boundary term can be motivated (i) via (positive definite)
dual action S̃(σI , BI

mn) and (ii) instanton amplitudes:

S[σI , bI] = S[σI , bI]bulk +

∮

dΣmbINIJ(σ)∂mbJ

⇒ Sinst = Const. σI
∞qI

Another ‘BPS-type’ formula!
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Black hole mass and instanton action

Observation:
MADM = Sinst .

Might have been expected: 0-brane tension = mass → (−1)-brane
tension = action. (We have set the volume of the internal dimension to
unity.) However, as we have seen the instanton action is a bit subtle.

This observation provides additional motivation for adding boundary
term to the sigma model action. Positivity of the instanton action and
saturation of a Bogomol’nyi bound for extremal instanton solutions
then follow from the positivity of the ADM mass.
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Outlook

Our approach (temporal reduction, but no other symmetries,
harmonic maps instead of 1st order ‘Killing spinor-type’ flow
equations) could be extended to other types of solutions: 4d black
holes vs 3d instantons (dyonic), 5d: Taub-NUT charge, strings and
rings, non-extremal solutions, . . .

Generalized versions of special geometry, relations between
‘geometry of couplings’ and physical properties.
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