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I Define Chern-Simons theory with boundary by adding new
boundary degrees of freedom.

I Define ABJM theory with boundary by adding new boundary
degrees of freedom – Interpret as effective action for multiple
self-dual strings in M5.

I Derive D3 NC Geometry from matrix string action – Requiring
modified Nahm eqn. as b.c. with B-field.

I Derive M5 Quantum Geometry from BLG action – Requiring
modified Basu-Harvey eqn. as b.c. with C -field.



Outline

I Define Chern-Simons theory with boundary by adding new
boundary degrees of freedom.

I Define ABJM theory with boundary by adding new boundary
degrees of freedom – Interpret as effective action for multiple
self-dual strings in M5.

I Derive D3 NC Geometry from matrix string action – Requiring
modified Nahm eqn. as b.c. with B-field.

I Derive M5 Quantum Geometry from BLG action – Requiring
modified Basu-Harvey eqn. as b.c. with C -field.



Motivation

In string theory, open strings play a fundamental role, particularly
in defining D-branes and describing field theories. Specifically, a
fundamental string with a boundary end on D-branes. Quantising
the string with boundary give the DBI action. If we include a
constant NSNS B-field, quantisation of open strings gives
non-commutative field theories on D-branes.
String/branes ending on other branes give a geometric
interpretation of field theory states. E.g. for a D3-brane:

Particle States ↔ Endpoints of strings
Electric ↔ F1

Magnetic ↔ D1



Nahm Equation
The ADHMN construction give BPS monopole solutions by solving
the Nahm equation

∂σφ
i ∼ εijk

[
φj , φk

]

D3D3

D1

D1

S2

Monopole

σ



Basu-Harvey Equation
I M2 on M5 describes D = 6 self-dual string solitons.
I Quantisation of M2 with boundary gives M5 WV action?
I ADHMN construction should generalise, with Nahm equation

being replaced by the Basu-Harvey equation:

∂σφ
i ∼ εijkl

[
φj , φk , φl

]

M5 M5

M2

M2

S3

Self-dual string



BLG and ABJM Theories

These are proposed low-energy descriptions of multiple M2-branes,
c.f. non-Abelian SYM for D-branes.

BLG (Bagger & Lambert and Gustavsson) constructed a
D = 2 + 1 N = 8 SCFT with the Basu-Harvey equation arising as
a BPS equation – requires a 3-algebra.

I Expected to describe WV theory of multiple M2-branes.

I Symmetries and Basu-Harvey equation manifest.

I Only one suitable 3-algebra – 2 M2 on C 4/Z2.

ABJM (Aharony, Bergman, Jafferis & Maldecena) constructed a
D = 2 + 1 N = 6 SCFT which is a Chern-Simons + Matter
theory, which does not require a 3-algebra.

I N M2 on C 4/Zk for U(N)× U(N) & CS level (k ,−k).

I N = 8 expected but not manifest for k = 1, 2.

I Basu-Harvey eqn. & Fuzzy S3? – multiple D2-brane theory?
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Chern-Simons Action
Consider a Chern-Simons theory with gauge group G on a
3-dimensional manifold M

SCS =
k

4π

∫
M
ω3(A) =

k

4π

∫
M

Tr(AdA +
2

3
A3),

where A3 denotes A ∧ A ∧ A etc and A = dxµAµ is a Lie algebra
valued one-form. When M is closed, the theory is gauge invariant
and topological.
Under an infinitesimal gauge transformation

δαA = dα + [A, α], δαF = [F , α],

the Chern-Simons form transforms as

δαω3(A) = dω1
2(A;α).

where
ω1

2(A;α) = Tr(αdA).



Chern-Simons with Boundary

Since δαω3(A) is exact, in the presence of a boundary ∂M, the
gauge variation of SCS gives a boundary term. So it seems that a
boundary breaks the gauge symmetry.
To study the theory we must first fully define it when there is a
boundary. There are two ways to do this:

I Specify boundary conditions for A.

I Introduce new boundary degrees of freedom.



Chern-Simons with Boundary

Since δαω3(A) is exact, in the presence of a boundary ∂M, the
gauge variation of SCS gives a boundary term. So it seems that a
boundary breaks the gauge symmetry.
To study the theory we must first fully define it when there is a
boundary. There are two ways to do this:

I Specify boundary conditions for A.

I Introduce new boundary degrees of freedom.



Chern-Simons with Boundary

Since δαω3(A) is exact, in the presence of a boundary ∂M, the
gauge variation of SCS gives a boundary term. So it seems that a
boundary breaks the gauge symmetry.
To study the theory we must first fully define it when there is a
boundary. There are two ways to do this:

I Specify boundary conditions for A.

I Introduce new boundary degrees of freedom.



Imposing boundary conditions

Consider an arbitrary infinitesimal variation of A, the variation of
the Chern-Simons action gives

δSCS =
k

2π

∫
M

Tr(δA F ) +
k

4π

∫
∂M

Tr (δA A).

The bulk term gives the equation of motion F = 0.
For the boundary term to vanish we must impose a boundary
condition on A and only allow variations which preserve this
boundary condition.
Different inequivalent classes define different theories.

I A0 = 0

I A0 ± A1 = 0

I A1 = 0



Boundary Chern-Simons → WZW

Let’s consider explicitly a boundary at x2 = 0 and choose the
boundary condition A0 = 0. Then

SCS =
k

2π

∫
M

Tr(εijFijA0 −
1

2
εijAi Ȧj),

after integration by parts, using the boundary condition.
We see that A0 is a Lagrange multiplier, imposing the constraint
F12 = 0. Therefore

Ai = U−1∂iU for i = 1, 2

for U ∈ G . Substituting back into the above action we find

S = − k

8π

∫
∂M

Tr
(
U−1∂0UU−1∂1U

)
− k

12π

∫
M

Tr
(
U−1dU

)3
.

Note that a “chiral kinetic term” is obtained for U.



Similar results for other boundary conditions, but kinetic term gets
modified.

I A0 = 0 or A1 = 0 give chiral kinetic term, but with opposite
signs

I A0 ± A1 = 0 give conventional kinetic term, again with
opposite signs.

So, choosing appropriate boundary conditions for A, we arrive at
the well-known WZW action

SWZW [U] = − k

8π

∫
∂M

Tr(U−1∂µU)2 − k

12π

∫
M

Tr
(
U−1dU

)3
,

This action describes the dynamics for the field U living on the
boundary ∂M.



Comments

I No non-trivial Jacobian for change of variables A→ U so
actions quantum equivalent.

I Boundary conditions break gauge symmetry, but WZW action
has new chiral G × G symmetry

U → Ω(z)UΩ̃(z̄)

where z = x0 + ix1 and Ω, Ω̃ ∈ G .
This is a Kac-Moody symmetry with chiral currents

J =
k

π
U−1∂U, J̄ =

k

π
∂̄UU−1

I Boundary breaks topological invariance of Chern-Simons, but
WZW action retains boundary conformal invariance.



Boundary Degrees of Freedom

We can also introduce new physical degrees of freedom at the
boundary. We can try to preserve bulk symmetries such as gauge
invariance.
Consider a finite gauge transformation

Ag := g−1Ag + g−1dg .

Since dω3(A) = TrF 2(A), the integrand in

δSCS =
k

4π

∫
M

[ω3(Ag )− ω3(A)]

is closed and so δSCS is a boundary term plus a bulk topological
term – an integer multiple of 2π with given coefficient.



Boundary Action – Gauge Invariance

Let’s introduce boundary degrees of freedom g with action

SBdry :=
k

4π

∫
M

[ω3(Ag )− ω3(A)] ,

Under a gauge transformation with parameter h,

Ag → (Ag )h = Ahg .

Therefore the total action

ST := SCS + SBdry =
k

4π

∫
M
ω3(Ag )

will be gauge invariant under the combined transformation

A→ Ah , g → h−1g .



Boundary Action – Boundary Conformal Invariance
The resulting action is not unique – we can add any further
gauge-invariant boundary terms. Since the original action was
topological, we can at least try to preserve conformal invariance on
the boundary.
Now, if we set the gauge field A = 0 we are left with

SBdry [A = 0] = − k

12π

∫
M

Tr
(
g−1dg

)3
which is only classically conformally invariant. However, we can
introduce a boundary kinetic term for g , resulting in the
well-known WZW CFT

SWZW [g ] = − k

8π

∫
∂M

Tr(g−1∂µg)2 − k

12π

∫
M

Tr
(
g−1dg

)3
.

Note, the beta-function vanishes for the above ratio of coefficients,
and also for either choice of sign for the kinetic term. This means
we can choose the correct sign for the kinetic term whether k is
positive or negative.



Gauge and Boundary Conformal Invariance

Restoring the gauge field A we can maintain both gauge and
conformal invariance by replacing ∂µ → Dµ = ∂µ + Aµ giving the
boundary action

SBdry = − k

8π

∫
∂M

Tr(g−1Dµg)2 +
k

4π

∫
M

[ω3(Ag )− ω3(A)]

= SWZW [g ] +
k

4π

∫
∂M

∂+gg−1A− −
k

8π

∫
∂M

A2
µ,

where ∂± := ∂0 ± ∂1. This is a (non-standard) gauged WZW
action.
Finally, the total action is

ST = − k

8π

∫
∂M

Tr(g−1Dµg)2 +
k

4π

∫
M
ω3(Ag ).



Boundary Equations of Motion
We can derive the boundary equations of motion by collecting the
boundary contributions from variations of A and g – including
from integration by parts in the bulk.
Varying A, we find the boundary term

− k

4π

∫
∂M

Tr
(
Ag

+δA
g
−
)
.

Therefore we obtain from δA the boundary equation

Ag
+ = 0→ A+ = −(∂+g)g−1.

Next the variation of g , using Ag
+ = 0, gives the boundary term

− k

2π

∫
∂M

Tr
(
F gg−1δg

)
= − k

2π

∫
∂M

Tr
(
g−1F δg

)
.

Therefore we find from δg that F01 = 0 on the boundary.
The two boundary equations give

Aµ = −(∂µg)g−1, µ = 0, 1.



Complete Equations of Motion

The bulk equations of motion result in F = 0 as usual. Therefore
A is pure gauge. We can now interpret the boundary equation of
motion as a boundary condition for the bulk gauge field, and so we
have

A = −dg g−1

in M where g is an arbitrary extension of the boundary field g into
M.
We see that the on-shell degrees of freedom are given by the
boundary field g . We can also see a direct relation to the method
of imposing boundary conditions.



Comparing the two approaches
It can be shown that A+ appears linearly (without derivative of it)
in ST ,

ST = SWZW [g ] +
k

4π

∫
∂M

Tr ∂+gg−1A− +
k

4π

∫
M

Tr A+F2−

+
k

8π

∫
M

Tr (A2∂+A− − A−∂+A2)

so is a (bulk) Lagrange multiplier, imposing the constraint F2− = 0
in M. Solving this constraint by writing

A2 = λ−1∂2λ , A− = λ−1∂−λ,

ST = SWZW [g ]+SWZW [λ]+
k

4π

∫
∂M

Tr
(
∂+gg−1λ−1∂−λ

)
= SWZW [λg ],

where we have used the Polyakov-Wiegmann identity in the last
step.
Therefore with the identification U = λg , we finally arrive at the
same action as obtained by the boundary condition approach.



Comments

I Boundary conditions break the gauge symmetry.

I Boundary degrees of freedom g preserve the gauge symmetry.

I After integrating out Lagrange multiplier A+, action depends
only on gauge invariant U = λg ; g → h−1g and λ→ λh.

For more general actions, will not have a Lagrange multiplier, e.g.
matter covariant kinetic terms quadratic in gauge potential.

I Boundary condition approach not convenient.

I Boundary degrees of freedom approach generalises easily.

I Gauge symmetry will remain – no trivial gauge invariant
description of degrees of freedom.
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ABJM
The bosonic part of the action for the ABJM theory is given by

SABJM = SCS + SC ,

SCS =
k

4π

∫
M
ω3(A(1))− k

4π

∫
M
ω3(A(2))

SC = −
∫

M
Tr
(
DMC †I DMC I

)
− 4π2

3k2

∫
M

TrVBulk(C )

VBulk(C ) = C IC †I C JC †JCKC †K + C †I C IC †JC JC †KCK

+4C IC †JCKC †I C JC †K − 6C IC †JC JC †I CKC †K

A(1) and A(2) are gauge potentials for U(N)× U(N) gauge group.
Matter fields C I (I = 1, 2, 3, 4) are bifundamental (N, N̄).

Covariant derivative acts as DMC I = ∂MC I + A
(1)
M C I − C IA

(2)
M .

In the absence of a boundary, the action is gauge invariant under:

A(i) → A(i)h(i)
, C I → (h(1))−1C Ih(2).



ABJM with Boundary
As for the Chern-Simons action, a boundary breaks symmetries of
the ABJM action.
To maintain gauge and boundary conformal invariance, we can add
boundary terms of the form described previously for each of the
gauge fields A(1) and A(2). The required boundary actions are

SBdry1 = − k

8π

∫
∂M

Tr
(
g−1D(1)

µ g
)2

+
k

4π

∫
M

(
ω3(A(1)g )− ω2(A(1))

)
and

SBdry2 = − k

8π

∫
∂M

Tr
(
ĝ−1D(2)

µ ĝ
)2
− k

4π

∫
M

(
ω3(A(2)ĝ )− ω2(A(2))

)
.

Note that although the bulk Chern-Simons terms for A(1) and A(2)

differ by a relative sign, as previously mentioned, preserving
boundary conformal invariance, we can independently choose the
sign of the boundary kinetic terms. Hence we have a well defined
quantum field theory, for the boundary fields g and ĝ , for k > 0.



ABJM with Boundary

Note that the presence of a boundary does not spoil the
symmetries of the matter action SC , so we do not need to
introduce any further boundary degrees of freedom. Nevertheless
we can consider a possible boundary interaction term VBdry for the
matter fields C I ,

−
∫
∂M

VBdry (C ).

I The form of VBdry is constrained by gauge and conformal
invariance – must be quartic in C I .

I Boundary supersymmetry should fix VBdry but we can find
unique form consistent with bulk BPS equations.



Boundary Potential
Reproducing both bulk D-term

k

2π
D2Z

I + Z I (Z †Z −WW †)− (ZZ † −W †W )Z I = 0

and F-term

k

4π
D2Z

I − εIJεKLW
†KZ †JW †L = 0, C I ∼ {Z I ,W I†}

BPS equations as boundary equations is uniquely achieved by the
quartic boundary potential

VBdry := VD + VF

where

VD =
π

k
Tr[(ZZ † −W †W )2 − (Z †Z −WW †)2],

VF = −2π

k
Tr[εIJε

KLZ IWKZ JWL] + h.c .



Boundary ABJM Equations of Motion

As for the Chern-Simons theory, we find on the boundary

A(1)
µ = −(∂µg)g−1 and A(2)

µ = −(∂µĝ)ĝ−1 , µ = 0, 1.

together with
D2C

I = −δVBdry/δC
†
I

However, the bulk equations of motion are not F = 0 but

k

2π
F (1) = ∗C IDC †I − h.c .

k

2π
F (2) = ∗DC †I C I − h.c .

so we cannot simply solve for the gauge potentials.



Self-Dual String Action

Can now derive self-dual string action from cylindrical membranes
between two M5-branes with separation L. In terms of the M2
tension T3 and string tension T2 = T3L, with b.c. W = 0, and
after some rescaling we find

SSDS = −T2

∫
d2x

[
(DZ)2 + T 2

3 VM(Z) +
T 2

3

T2
VBdry (Z)

]
+2S

(−)
WZW [g ] +

k

2π

∫
d2x ∂+gg−1A

(1)
− −

k

4π

∫
d2x A(1)

µ
2

+2S
(+)
WZW [ĝ ]− k

2π

∫
d2x ∂−ĝ ĝ−1A

(2)
+ −

k

4π

∫
d2x A(2)

µ
2.



Conclusions & Outlook

I CS + Boundary → WZW: Boundary conditions or new
boundary fields.

I New boundary fields is a general method which can be used
for ABJM.

I Derive full SUSY boundary theory.

I Couple to background fields, including M5-brane 2-form
potential.

I Application to self-dual string solitons in M5.

I Relevance to fundamental M5-brane theory degrees of
freedom?
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Non-commutative D3-brane theory
Consider a D3-brane (0123) with a constant NSNS B-field
B12 = B. Quantising open strings leads to non-commutative
geometry on D3 WV. Specifically we have an open string metric

G = diag(−1, 1 + B2, 1 + B2, 1)

and non-commutativity parameter θ12 = B/(1 + B2)

[X 1,X 2] = θ12.

The multiple D1 action (non-Abelian DBI) has a modified Nahm
equation as BPS equation:

∂σX
i = iεij [X j ,X 3], i , j = 1, 2,

∂σX
3 = i(1 + B2)

(
[X 1,X 2] + iθ

)
where θ is exactly the expected non-commutativity parameter θ12.



Modified Nahm Equation
Modified Nahm equation correctly describes geometry of D1/D3
squashed fuzzy S2 funnel at angle α for B = tanα.

D3

D1

D1

Squashed S2

α

σ



Nahm Equation as D1 Boundary Condition

We can also derive this modified Nahm equation as a boundary
condition for the matrix D-string action. Without a B-field we
have the boundary condition

∂σX
i =

1

2
εijkFjk=

i

2
εijk [X j ,X k ]

where F is a matrix sampling the U(1) field strength on the
D3-brane at the string endpoints, and the second equality is a
matching condition since the smooth configuration can be
described by either the D3 or multiple D1 actions.
Introducing a B-field modifies the BPS equation and gives the
expected modified Nahm equation.



Nahm Equation as F1 Boundary Condition

Without a B-field a matrix string action gives the Nahm equation
as a boundary condition, in the same way as the S-dual D1 case.
Introducing a B-field modifies the string action in a different way.
If we allow an open string metric (Gµν) = diag(−g0, g1, g2, g3)
with g0 = g3 and g1 = g2. Then

∂σX
i + B i

j∂τX
j =

i

2

gjgk

g0g1
εijk

[
X j ,X k

]



Relation to NC Geometry

We can decompose this boundary condition, and solve the τ
dependence by writing

X i (τ, σ) = X i
0(τ, σ)1 + Y i (σ)

so
∂σX

i
0 + B i

j∂τX
j
0 = 0

which is exactly the mixed boundary condition encountered when
quantising the open string in a B-field background. The result of
the quantisation is that at the boundary[

X i
0(τ, σ0),X j

0(τ, σ0)
]

= iθij

where here

θ12 = θ =
B

1 + B2



Assuming Y i and X j
0 commute we now have

∂σY
i = iεij [Y j ,Y 3], i , j = 1, 2,

∂σY
3 = i

g1

g0

(
[Y 1,Y 2] + iθ

)
which gives precisely the modified Nahm equation if
g1/g0 = 1 + B2. In fact this is consistent with the expected open
string metric where

g0 = 1 and g1 = 1 + B2



Constant 3-form C -field potential

For M2 on M5 with constant C -field so that on M5

H012 =
1

4
sinα , H345 =

1

4
tanα

the M2 makes angle α with normal to M5. Geometric
configuration of such fuzzy S3 funnel can be described by modified
Basu-Harvey equation

∂2φ
i =

i cosα

3!
εijkl [φ

j , φk , φl ]− δi2 tanα

where we have rescaled the X i as

φi =

{
(1 + tan2 α)1/2X i , for i = 3, 4, 5,

X i , for i = 2.



Modified Basu-Harvey Equation
Modified Basu-Harvey equation correctly describes geometry of
M2/M5 squashed fuzzy S3 funnel at angle α for C345 ∼ tanα.

sigma

M5 M5

M2

M2

M2

Squashed S3

Self-dual string

α



Modified Basu-Harvey Boundary Condition
After modifying the BLG theory to include coupling to C -field and
open membrane metric, and boundary coupling to 2-form potential
on M5, the boundary conditions lead to

∂2X
i + C i

jk∂0X
j ∗ ∂1X

k =
1

3!
√
−G

εijklGjjGkkGll F̃
jkl

We also allow the generalised relation

F̃ ijk = if [X i ,X j ,X k ] , f = 1 for C = 0

which leads to

∂2X
i + C i

jk∂0X
j ∗ ∂1X

k =
if

3!
√
−G

εijklGjjGkkGll [X
i ,X j ,X k ]

We now substitute

X i (τ, σ1, σ2) = X i
0(τ, σ1, σ2)1 + Y i (σ2)



Modified Basu-Harvey Boundary Condition

∂2X
i
0 + Cijk∂0X

j
0∂1X

k
0 = 0

∂2Y
2 = if (

g1

g0
)3/2

(
[X 3

0 ,X
4
0 ,X

5
0 ] + [Y 3,Y 4,Y 5]

)
∂2Y

i = if (
g1

g0
)1/2εi2jk

(
[X 2

0 ,X
j
0,X

k
0 ] + [Y 2,Y j ,Y k ]

)
, i , j , k 6= 2

This produces the modified Basu-Harvey equation if we identify
f = cosα, g1/g0 = 1 + tan2 α and

[X 2
0 ,X

j
0,X

k
0 ] = 0 , [X j

0,X
k
0 ,X

l
0] = iΘjkl

Θjkl = εjkl
C

(1 + C 2)2



Outlook

It would be useful to get more evidence for our predicted quantum
geometry. Through compactification and dualities we can relate
this system to D-branes. We would expect:

I Relation to NC geometry since C(3) → B(2)

I Possible new D-brane geometries in RR backgrounds.

There are many open questions:

I Realisation and consequences of this new quantum geometry?

I 3-bracket quantum geometry by novel open membrane
quantisation?

I 3-bracket construction of single/multiple M5-brane action?
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