Electroweak Theory

W. Hollik, MPI München

CORFU 2005 (September 2005)

- The electroweak Standard Model
- Precision tests
- Higgs bosons
- Outlook: SUSY extension of the SM

Matter fields in SM

 $SU(2) \times U(1)$ gauge symmetry weak charges: weak isospin I_W weak hypercharge Y_W

left-handed fermions are SU(2) doublets $(I_W = 1/2)$

$$\begin{pmatrix} \nu_{e} \\ e \end{pmatrix}_{L}, \ \begin{pmatrix} \nu_{\mu} \\ \mu \end{pmatrix}_{L}, \ \begin{pmatrix} \nu_{\tau} \\ \tau \end{pmatrix}_{L}, \ \begin{pmatrix} u \\ d \end{pmatrix}_{L}, \ \begin{pmatrix} c \\ s \end{pmatrix}_{L}, \ \begin{pmatrix} t \\ b \end{pmatrix}_{L}$$

right-handed fermions are SU(2) singlets ($I_W = 0$)

$$\mathbf{e}_{\mathsf{R}},\,\mu_{\mathsf{R}},\,\tau_{\mathsf{R}},\,\mathbf{u}_{\mathsf{R}},\,\mathbf{d}_{\mathsf{R}},\,\mathbf{c}_{\mathsf{R}},\,\mathbf{s}_{\mathsf{R}},\,\mathbf{t}_{\mathsf{R}},\,\mathbf{b}_{\mathsf{R}}$$

minimal model: no right-handed neutrino $\nu_{\rm R}$ by convention

 ν_{R} can easily be added

electric charge is fixed by Gell-Mann–Nishijima relation: $Q = I_{W}^{3} + \frac{Y_{W}}{2}$

different representations for left-handed and right-handed fermions ⇔ violation of P and C invariance

Gauge fields

Isotriplet W^a_{μ} (a = 1, 2, 3) and isosinglet B_{μ} $W^{\pm}_{\mu} = (W^1_{\mu} \mp i W^2_{\mu})/\sqrt{2}$ $\begin{pmatrix} Z_{\mu} \\ A_{\mu} \end{pmatrix} = \begin{pmatrix} \cos \theta_W & \sin \theta_W \\ -\sin \theta_W & \cos \theta_W \end{pmatrix} \begin{pmatrix} W^3_{\mu} \\ B_{\mu} \end{pmatrix}$

field strength tensors

$$W^{a}_{\mu\nu} = \partial_{\mu}W^{a}_{\nu} - \partial_{\nu}W^{a}_{\mu} + g \epsilon_{abc} W^{b}_{\mu}W^{c}_{\nu}$$
$$B_{\mu\nu} = \partial_{\mu}B_{\nu} - \partial_{\nu}B_{\mu}$$

Lagrangian

$$\mathcal{L}_G = -\frac{1}{4} W^a_{\mu\nu} W^{\mu\nu,a} - \frac{1}{4} B_{\mu\nu} B^{\mu\nu}$$

Interaction with fermions

through covariant derivative

$$D_{\mu} = \partial_{\mu} - i g I_a W^a_{\mu} + i g' \frac{Y}{2} B_{\mu}$$

for left and right-handed fermion fields

$$\begin{split} \bar{\psi}^L D_\mu \gamma^\mu \psi^L + \bar{\psi}^R D_\mu \gamma^\mu \psi^R = \\ \bar{\psi}^L \partial_\mu \gamma^\mu \psi^L + \bar{\psi}^R \partial_\mu \gamma^\mu \psi^R + \text{ interaction terms} \end{split}$$

$$g = \frac{e}{s_{\theta}}, \quad s_{\theta} = \sin \theta_W, \quad c_{\theta} = \cos \theta_W$$

$$a_{f} = I_{3}^{f}$$
$$v_{f} = I_{3}^{f} - 2Q_{f}s_{\theta}^{2}$$

Problem:

gauge fields Z, W^+ , W^- are massive explicit mass terms \Leftrightarrow gauge invariance broken

⇒ Higgs mechanism

scalar field postulated, gauge-invariant mass terms from coupling to Higgs field

Higgs sector of the Standard Model:

scalar SU(2) doublet:
$$\Phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix}$$

Higgs potential:

$$V(\phi) = \mu^2 \left| \Phi^{\dagger} \Phi \right| + \lambda \left| \Phi^{\dagger} \Phi \right|^2, \quad \lambda > 0$$

 $\mu^2 < 0$: spontaneous symmetry breaking

minimum of the potential at $\langle \Phi \rangle = \frac{1}{\sqrt{2}} \sqrt{\frac{-\mu^2}{\lambda}} \equiv \frac{v}{\sqrt{2}}$

Gauge-invariant interaction with gauge fields:

$$\mathcal{L}_{\mathsf{Higgs}} = (D_{\mu}\Phi)^{\dagger} (D^{\mu}\Phi) - V(\Phi)$$

 \Rightarrow mass terms

Unitary gauge:

$$\Phi = \left(\begin{array}{c} 0\\ v+H \end{array}\right)$$

 $VV\Phi\Phi$ coupling:

3 components of Higgs doublet \longrightarrow longitudinal components of W^{\pm} , Z

H: elementary scalar field, Higgs boson

Fermion mass terms: Yukawa couplings

 $m_f = v \, g_f$ free parameters

Mass of the Higgs boson: self-interaction

⇒ Higgs couplings proportional to masses of the particles

Interactions of the Higgs boson

Quark mixing and CP-violation

The weak eigenstates (d', s', b') of quarks differ from the mass eigenstates d, s, b:

$$egin{pmatrix} d' \ s' \ b' \end{pmatrix} = egin{pmatrix} V_{ud} & V_{us} & V_{ub} \ V_{cd} & V_{cs} & V_{cb} \ V_{td} & V_{ts} & V_{tb} \end{pmatrix} egin{pmatrix} d \ s \ b \end{pmatrix} \equiv V_{\mathsf{CKM}} egin{pmatrix} d \ s \ b \ b \end{pmatrix}.$$

 V_{CKM} : unitary transformation, Cabibbo-Kobayashi-Maskawa (CKM) matrix

GIM Mechanism:

unitarity of CKM-matrix \Rightarrow no flavor changing neutral current transitions at tree level

 $b \to s \gamma, \, \ldots$ are loop-induced in SM \Rightarrow high sensitivity to new physics effects

$$V_{CKM}^{\dagger}V_{CKM} = 1$$

 \Rightarrow parameterized by 3 angles + 1 phase
gives rise to *CP*-violation in SM

 \Rightarrow weak interaction violates $\mathcal{C},~\mathcal{P}$ and \mathcal{CP}

Physical parameters of the Standard Model

- gauge sector (2 parameters) elementary charge eweak mixing angle θ_W , $\cos \theta_W = \frac{M_W}{M_7}$
- Higgs sector (2 parameters)

Higgs-boson mass $M_{\rm H}$ W-boson mass $M_{\rm W}$

• fermion sector (9+4 parameters) fermion masses m_{e}, m_{μ}, m_{τ} $m_{u} m_{d}, m_{c}, m_{s}, m_{t}, m_{b}$ quark-mixing matrix (V_{ij}) $\theta_{12}, \theta_{23}, \theta_{13}, \delta_{CP}$ if right-handed neutrino is included in addition neutrino masses $m_{\nu_{e}}, m_{\nu_{\mu}}, m_{\nu_{\tau}}$ lepton-mixing matrix $\theta_{12}^{l}, \theta_{23}^{l}, \theta_{13}^{l}, \delta_{CP}^{l}$ $\Rightarrow 12+8$ parameters

 \Rightarrow most parameters originate from fermion sector

Gauge-invariant Lagrangian:

 $\mathcal{L}_{\mathsf{EW}}(\underline{g_2, g_1, v}, \mathcal{N}, \underline{g_f}) + \mathcal{L}_{\mathsf{QCD}}(\alpha_{\mathsf{S}})$ $\underbrace{M_{\mathsf{W}}, M_{\mathsf{Z}}, \alpha, M_{\mathsf{H}}, m_f}$

gauge invariance ⇒ **theory is renormalizable** [G. 't Hooft '71] Nobel price '99 [G. 't Hooft, M. Veltman '72]

 \Rightarrow quantum field theory: quantum effects calculable

expansion in coupling constant:

lowest order, classical limit

quantum corrections: loop diagrams

via loop corrections: all particles of the model enter

Electroweak precision tests

a theoretical concept becomes precision physics

• LEP1/SLC: $e^+e^- \rightarrow Z \rightarrow f\bar{f}$ LEP1: $\sim 4 \times 10^6$ events/experiment 4 experiments (1989 - 1995)

• LEP2:
$$e^+e^- \rightarrow W^+W^-$$

 $\mathcal{O}(10^4)$ W pairs (1996 - 2000)

- Tevatron: $q\bar{q}' \rightarrow W \rightarrow l\nu, q\bar{q}'$ (pp) $q\bar{q}' \rightarrow t\bar{t}, t \rightarrow W^+b \rightarrow \dots$
- low-energy experiments (μ decay, νN scattering, ν e scattering, atomic parity violation, ...)

exp. results

M_{Z} [GeV]	$= 91.1875 \pm 0.0021$	0.002%
Γ _Z [GeV]	$= 2.4952 \pm 0.0023$	0.09%
$\sin^2 heta_{ ext{eff}}^{ ext{lept}}$	$= 0.23148 \pm 0.00017$	0.07%
M_{W} [GeV]	$= 80.410 \pm 0.032$	0.04%
$m_{\sf t}~[{\sf GeV}]$	$= 172.7 \pm 2.9$	1.7%
$G_{F} \; [GeV^{-2}]$	$] = 1.16637(1)10^{-5}$	0.001%

Comparison of electro-weak precision observables with theory:

Sensitivity to loop corrections

sensitivity to internal particles (X)

 \downarrow

Loop contributions

quantum corrections, of $\mathcal{O}(1\%)$

contain all details of the theory

top quark

• Higgs boson

gauge-boson self-couplings

⇒ allow for indirect experimental tests of not directly accessible quantities Example of loop integral:

 \Rightarrow integral diverges for large q

- \Rightarrow theory in this form not physically meaningful
- \Rightarrow further concept needed: renormalization

Renormalizable theories: infinities can consistently be absorbed into parameters of theory Two step procedure:

Regularization:

theory modified such that expressions become mathematically meaningful

 \Rightarrow "regulator" introduced, removed at the end

e.g. cut-off in loop integral

$$\int_0^\infty d^4q \ \to \int_0^{\Lambda} d^4q; \quad \Lambda \to \infty \text{ at the end}$$

technically more convenient: dimensional regularization

 $\int d^4q \quad \rightarrow \int d^Dq, \quad D = 4 - \varepsilon; \quad D \rightarrow 4 \text{ at the end}$

Renormalization:

original "bare" parameters replaced by renormalized parameters + counterterms

reparameterization:

Renormalizable theory: divergencies compensated by counterterms

Renormalization:

- absorption of divergencies
- determination of physical meaning of parameters order by order in perturbation theory

Example:

mass renormalization, $m_0^2 = m^2 + \delta m^2$

Physical mass: pole of propagator

inverse propagator up to 1-loop order:

on-shell renormalization: $\delta m^2 = \operatorname{Re} \Sigma(m^2)$

charge renormalization: $e + \delta e$

 δe for $q^2 = 0$ (real photons) involves

photon vacuum polarization

$$\Pi^{\gamma}(M_Z^2) - \Pi^{\gamma}(0) \equiv \Delta \alpha$$
$$\alpha(M_Z) = \frac{\alpha}{1 - \Delta \alpha} \quad \text{effective charge}$$

$$\Delta \alpha_{\text{had}} = -\frac{\alpha}{3\pi} M_Z^2 \operatorname{Re} \int_{4m_\pi^2}^{\infty} ds' \frac{R_{\text{had}}(s')}{s'(s' - M_Z^2 - i\epsilon})$$

$M_W - M_Z$ correlation

Definition of Fermi constant G_F via muon lifetime:

$$\tau_{\mu}^{-1} = \frac{G_F^2 m_{\mu}^5}{192\pi^3} F\left(\frac{m_e^2}{m_{\mu}^2}\right) \left(1 + \frac{3}{5} \frac{m_{\mu}^2}{M_W^2}\right) (1 + \Delta q)$$

 Δq : QED corrections in Fermi Model, included in definition

SM prediction:

$$\frac{G_F}{\sqrt{2}} = \frac{\pi\alpha}{M_W^2 \left(1 - M_W^2 / M_Z^2\right)} \left(1 + \Delta r\right)$$

 Δr : quantum correction, $\Delta r = \Delta r(m_t, M_H, ...)$ complete at 1-loop and 2-loop order

 $\rightarrow M_W = M_W(\alpha, G_F, M_Z, m_t, M_H)$

Z-boson resonance

LEP1: $\sim 16\cdot 10^6$ events (1989–1995)

resonance cross-section

(approximate Breit-Wigner) $s = E_{CMS}^2$

$$\sigma_f(s) = 12\pi \frac{s}{M_Z^2} \frac{\Gamma(Z \to e^+e^-) \Gamma(Z \to f\bar{f})}{(s - M_Z^2)^2 + s^2(\Gamma_Z)^2/M_Z^2}$$

Z-boson width

$$\Gamma_{Z} = \underbrace{\Gamma(e^{-}e^{+}) + \Gamma(\mu^{-}\mu^{+}) + \Gamma(\tau^{-}\tau^{+})}_{\text{leptonic}} \\ + \underbrace{\sum_{q} \Gamma(q\bar{q}) + \underbrace{N_{\nu}\Gamma(\nu\bar{\nu})}_{\text{invisible}}}_{\text{hadronic}}$$

- Line shape $\Rightarrow M_Z, \Gamma_Z$
- peak cross section $\Rightarrow \Gamma(Z \rightarrow l^+ l^-), \Gamma(Z \rightarrow hadrons)$

Z-boson observables can be expressed in terms of

• effective Z boson couplings:

$$g_V^f \to g_V^f + \Delta g_V^f, \qquad g_A^f \to g_A^f + \Delta g_A^f$$

with higher order contributions in $\Delta g^f_{V,A}$

• effective ew mixing angle (for f = e):

$$\sin^2 heta_{\mathrm{eff}} = rac{1}{4} \left(1 - \mathrm{Re} rac{g_V^e}{g_A^e}
ight)$$

complete at 1-loop order, 2-loop fermionic contributions

LEP Electroweak Working Group [Summer 2005]

LEP Electroweak Working Group

Global fit [M. Grünewald, EPS Lisbon 2005]

	Measurement	Fit	$ O^{\text{meas}} - O^{\text{fit}} / \sigma^{\text{meas}}$
$\Delta \alpha_{had}^{(5)}(m_Z)$	0.02758 ± 0.00035	0.02768	
m _z [GeV]	91.1875 ± 0.0021	91.1874	
Γ _z [GeV]	2.4952 ± 0.0023	2.4962	-
$\sigma_{\sf had}^0$ [nb]	41.540 ± 0.037	41.479	
R _I	20.767 ± 0.025	20.741	
A ^{0,I} _{fb}	0.01714 ± 0.00095	0.01645	
A _I (P _τ)	0.1465 ± 0.0032	0.1481	-
R _b	0.21629 ± 0.00066	0.21573	
R _c	0.1721 ± 0.0030	0.1723	
A ^{0,b} _{fb}	0.0992 ± 0.0016	0.1038	
A ^{0,c} _{fb}	0.0707 ± 0.0035	0.0742	
A _b	0.923 ± 0.020	0.935	
A _c	0.670 ± 0.027	0.668	
A _l (SLD)	0.1513 ± 0.0021	0.1481	
$sin^2\theta_{\text{eff}}^{\text{lept}}(Q_{\text{fb}})$	0.2324 ± 0.0012	0.2314	
m _w [GeV]	80.425 ± 0.034	80.383	
Г _w [GeV]	2.133 ± 0.069	2.092	
m _t [GeV]	174.3 ± 3.4	175.1	

Preliminary

 $M_{\rm H} < 186 \; {\rm GeV} \quad (95\% {\rm C.L.})$

renormalized probability for $M_{\rm H} > 114~{\rm GeV}$ to 100%:

$$M_{\rm H} < 219 \; {\rm GeV} \quad (95\% {\rm C.L.})$$

LEP2: $O(10^4)$ events (1996-2000)

study of W-pair production allows

- precise measurement of M_W $\Delta M_W \approx 40 \text{ MeV}, \ \Delta M_W/M_W \approx 0.05\%$
- measurement of triple-gauge-boson couplings total cross-section

 $\Delta \sigma_{WW} / \sigma_{WW} \sim 1\%$ triple-gauge-boson couplings $\sim 3\%$

anomalous gauge couplings

generalization of gauge boson self couplings ($F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$, $Z_{\mu\nu}$, $W^{\pm}_{\mu\nu}$ analogously)

$$\mathcal{L}_{WW\gamma/Z} = e \left[(\partial_{\mu}W_{\nu}^{+} - \partial_{\nu}W_{\mu}^{+}) W^{-\mu}A^{\nu} + \kappa_{\gamma} W_{\mu}^{+}W_{\nu}^{-} F^{\mu\nu} + \frac{\lambda_{\gamma}}{M_{W}^{2}} W_{\rho\mu}^{+}W_{\nu}^{-\mu} F^{\rho\nu} + \text{h.c.} \right] + e \cot \theta_{W} \left[(\partial_{\mu}W_{\nu}^{+} - \partial_{\nu}W_{\mu}^{+}) W^{-\mu}Z^{\nu} + \kappa_{Z} W_{\mu}^{+}W_{\nu}^{-} Z^{\mu\nu} + \frac{\lambda_{Z}}{M_{W}^{2}} W_{\rho\mu}^{+}W_{\nu}^{-\mu} Z^{\rho\nu} + \text{h.c.} \right]$$

Standard Model:

$$\kappa_{\gamma} = \kappa_Z = 1, \quad \lambda_{\gamma} = \lambda_Z = 0$$

contributions of non-abelian couplings relevance of gauge invariance

LEP Electroweak Working Group

Figure 11.2: The 68% and 95% confidence level contours for the three two-parameter fits to the charged TGCs $g_1^{\rm Z}$ - λ_{γ} , $g_1^{\rm Z}$ - κ_{γ} and λ_{γ} - κ_{γ} . The fitted coupling value is indicated with a cross; the Standard Model value for each fit is in the centre of the grid. The contours include the contribution from systematic uncertainties.

Anomalous g-factor of the muon

- Dirac theory: g = 2
- QED, 1-loop order: $g = 2 + \frac{\alpha}{\pi}$
- Standard Model prediction
 QED part: 4-loop (5-loop estimate)
 Electroweak part: 2-loop
- Experiment 2004: Brookhaven E821 $a_{\mu} = \frac{g-2}{2} = 11659208(6) \cdot 10^{-10}$

above the SM prediction

Theory versus experiment

 e^+e^- data based prediction: 2.7 σ below exp. value

au data based prediction: 0.7 σ below exp. value

uncertainty mainly from hadronic vacuum polarization

Summary of precision tests

- Electroweak precision physics
 - \Rightarrow Sensitivity to quantum effects of the theory
 - ⇒ test consistency of the model constraints on unknown parameters
- Precision tests of the SM
 - \Rightarrow light Higgs preferred, $M_{
 m H} \lesssim 200~{
 m GeV}$
 - preference for light Higgs is not an artefact of observables deviating by $\approx 3\sigma$ from SM prediction
- Prospects for next generation of colliders: improved accuracy of precision observables $M_{\rm W}$, $\sin^2 \theta_{\rm eff}$, $m_{\rm h}$, ... and input parameters $m_{\rm t}$, ...

 \Rightarrow Highly sensitive test of electroweak theory

(expected) experimental precision

error for	LEP/Tev	Tev/LHC	LC	GigaZ
M_W [MeV]	33	15	15	7
$\sin^2 heta_{ m eff}$	0.00017	0.00021		0.000013
$m_{\sf top}$ [GeV]	4.3	2	0.2	0.13
M_{Higgs} [GeV]	_	0.1	0.05	0.05

together with

 $\delta M_Z = 2.1 \text{ MeV}$ (LEP)

 $\delta G_{\rm F}/G_{\rm F} = 1 \cdot 10^{-5}$ (μ lifetime)

[Erler, Heinemeyer, Hollik, Weiglein, Zerwas]

Higgs bosons

Higgs boson is the only missing ingredient of the SM

⇒ Higgs search (& Higgs physics) is one of the main goals of collider physics

≤ 2000:	LEP: e^+e^- collider, $E_{CM}\lesssim$ 206 GeV
\geq 2001:	Tevatron, Run II: $p \overline{p}$ collider, $E_{\rm CM} \approx$ 2 TeV
\gtrsim 2007:	LHC: pp collider, $E_{CM} \approx 14 \; TeV$
> 0010; 2	

 \gtrsim 2012: ? LC: e^+e^- collider, $E_{\rm CM} \approx$ 500–1000 GeV Search for the Standard Model Higgs at LEP

Dominant production process: $e^+e^- \rightarrow ZH$

Dominant decay process: $H
ightarrow b \overline{b}$

exclusion limit (95% C.L.):

 $M_{\rm H} > 114.4~{\rm GeV}$

Theoretical bounds on Higgs boson mass from

- perturbativity
 - \rightarrow upper bound
- unitarity \rightarrow upper bound
- triviality (Landau pole) \rightarrow upper bound
- vacuum stability \rightarrow lower bound

perturbativity

Higgs decay widths into fermions:

$$\begin{array}{rcl} \Gamma(H \to f\bar{f}) &=& \Gamma_{\rm tree} \cdot K_f \\ K_f &=& 1 + (1 - {\rm loop}) + (2 - {\rm loop}) + \cdots \end{array} \end{array}$$

Higgs decay widths into vector bosons:

$$\begin{array}{rcl} \Gamma(H \rightarrow V \overline{V}) &=& \Gamma_{\text{tree}} \cdot K_V \\ K_V &=& 1 + (1 - \text{loop}) + (2 - \text{loop}) + \cdots \end{array}$$

[Ghinculov; Frinck, Kniehl, Riesselmann] (1-loop) = (2-loop) for $M_H = 930$ GeV

unitarity

scattering of longitudinally polarized W bosons: $W_L W_L \rightarrow W_L W_L$

 \Rightarrow violation of probability conservation

Extra contribution from scalar particle:

 \Rightarrow terms with bad high-energy behavior cancel for $g_{WWH} = g \, M_{\rm W} \label{eq:gWH}$

for $s >> M_W^2$, with $t = -\frac{s}{2}(1 - \cos \theta)$,

$$\mathcal{M} \approx \frac{M_H^2}{v^2} \left(2 + \frac{M_H^2}{s - M_H^2} + \frac{M_H^2}{t - M_H^2} \right)$$

partial wave expansion:

$$\mathcal{M}(s,t) = 8\pi \sum_{l=0}^{\infty} (2l+1) P_l(\cos\theta) a_l$$

unitarity condition:

 $|a_l| < 1$

project on l = 0 partial wave:

$$a_{0} = \frac{1}{16\pi} \int_{-1}^{1} d\cos\theta \,\mathcal{M}(s,t)$$

= $\frac{M_{H}^{2}}{8\pi v^{2}} \left[2 + \frac{M_{H}^{2}}{s - M_{H}^{2}} - \frac{M_{H}^{2}}{s} \log\left(1 + \frac{s}{M_{H}^{2}}\right) \right]$
 $\approx \frac{M_{H}^{2}}{4\pi v^{2}} \text{ for } s >> M_{H}^{2}$

$$a_0 < 1 \quad \rightarrow \quad M_H < 872 \, \mathrm{GeV}$$

triviality (Landau pole)

Higgs self coupling is scale dependent, $\lambda(Q)$

variation with scale Q described by RGE

$$\frac{d\lambda}{dt} = \frac{3}{4\pi^2} \lambda^2, \qquad t = \log \frac{Q^2}{v^2}$$

solution:

$$\lambda(Q) = \frac{\lambda(v)}{1 - \frac{3}{4\pi^2}\lambda(v)\log\frac{Q^2}{v^2}} \quad \text{with} \quad \lambda(v) = \frac{M_H^2}{2v^2}$$

diverges at scale $Q = \Lambda_C$ (Landau pole)

$$\Lambda_C = v \, \exp\left(\frac{4\pi^2 v^2}{3M_H^2}\right)$$

maximum Higgs mass by condition $\Lambda_C > M_H$

 \rightarrow $M_H < 800 \, \text{GeV}$

vacuum stability

top-quark Yukawa coupling

$$g_t = \frac{\sqrt{2}m_t}{v}$$

contributes to the running Higgs self coupling $\lambda(Q)$ through top loop $~~\sim~g_t^4$

H		
	F	
H		H

variation with scale \boldsymbol{Q} described by RGE

$$\frac{d\lambda}{dt} = \frac{3}{4\pi^2} \left(\lambda^2 - \frac{m_t^4}{v^4}\right)$$

approximate solution:

$$\lambda(Q) = \lambda(v) - \frac{3m_t^4}{2\pi^2 v^4} \log \frac{Q}{v}$$

 $\lambda(Q) < 0$ for $Q > \Lambda_C \rightarrow$ vacuum not stable

high value of Λ_C needs M_H large enough $\Lambda_C \sim 10^{16}$: $M_H > 130 \, {
m GeV}$

$$\Lambda_C \sim 10^3$$
: $M_H > 70 \, {
m GeV}$

combined effects, RGE in two-loop order:

$$\frac{d\lambda}{dt} = \frac{1}{16\pi^2} \left(12\lambda^2 - 3g_t^2 + 6\lambda g_t^2 + \cdots \right)$$

[Hambye, Riesselmann]

Higgs boson(s)

- questions to be answered:
- numbers of Higgs particles
- masses and quantum numbers (spin, partity, charges, CP, ...)
- couplings to fermions / gauge bosons
- self couplings \rightarrow Higgs potential
- needs precise determination of mass(es) and coupling constants
 - production cross sections
 - decay rates/ branching ratios
 - inclusion of higher-order effects

Production mechanisms

• gluon-gluon fusion:

$$gg \to H$$

NNLO QCD [Harlander, Kilgore]NL EW[Degrassi, Maltoni]

• WW(ZZ) fusion:

$$qq \rightarrow Hq'q'$$

NLO QCD [Figy, Oleari, Zeppenfeld]

• Higgs-strahlung processes:

 $qq' \to WH$ $q\bar{q} \to ZH$

NNLO QCD + NLO EW [Brein et al.]

• radiation from heavy quarks:

$$gg, \ q\bar{q} \to t\bar{t}H \ (b\bar{b}H$$

NLO QCD [Beenakker et al., Dawson et al.] NLO EW [Denner et al.]

Higgs production at the LHC

The Profile of the Higgs Boson

Production Processes

	500 fb $^{-1}$	500 fb $^{-1}$	$1000 \ { m fb}^{-1}$
	350 GeV	500 GeV	800 GeV
m_H = 120	74000	35000	27000
m_H = 160	52000	29000	24000
m_H = 250	5500	16500	19000

	500 fb $^{-1}$	500 fb $^{-1}$	1000 fb $^{-1}$
	350 GeV	500 GeV	800 GeV
m_H = 120	15500	37500	158000
m_H = 160	7500	25000	126000
m_H = 250	6500	8000	71000

	500 fb $^{-1}$	500 fb $^{-1}$	1000 fb $^{-1}$
	350 GeV	500 GeV	800 GeV
m_H = 120	_	90	2600
m_H = 160	_	-	1500
m_H = 250	_	-	390

	500 fb $^{-1}$	500 fb $^{-1}$	$1000 \ {\rm fb}^{-1}$
	350 GeV	500 GeV	800 GeV
m_H = 120	l	80	160
m_H = 160	-	20	120
m_H = 250	-	-	30

Higgs production at a Linear Collider

Standard Model established as a quantum field theory

- in agreement with (almost) all experiments (accuracy $\gtrsim 0.1\%)$
- quantum corrections are established
- indirect and direct determination of $m_{\rm t}$ agree
- constraints on the Higgs-boson mass
 ⇒ light Higgs boson
- triple-gauge boson self-interactions established at per-cent level

not yet directly tested

- existence of Higgs boson
- Higgs-boson self-interaction \Rightarrow Higgs potential
- Yukawa interaction

 \Rightarrow future experiments

Open questions of the Standard Model

- Large number of free parameters, in particular in fermion sector
- origin of gauge group $SU(3) \times SU(2) \times U(1)$ with three different gauge couplings
- origin of charge quantization
- origin and number of fermion generations
- origin of mass pattern
- origin of baryon asymmetry in universe
- inclusion of gravity (\Rightarrow string theories)

Minimal Supersymmetric Standard Model (MSSM)

SM		Spin	SUSY		Spin
leptons quarks gluons EW bosons	$\ell, \ u_\ell \ q \ g \ \gamma, Z, W$	$\frac{\frac{1}{2}}{\frac{1}{2}}$ 1 1	sleptons squarks gluinos charginos	$egin{array}{ll} ilde{\ell}, \ ilde{ u}_\ell \ ilde{q} \ ilde{g} \ ilde{\chi}^\pm_{1,2} \end{array}$	$ \begin{array}{c} 0 \\ 0 \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array} $
Higgs	h, H, A, H^\pm	0	neutralinos	$ ilde{\chi}^{0^{'}}_{1,2,3,4}$	$\frac{1}{2}$

lightest SUSY particle stable $LSP = ilde{\chi}_1^0$

- masses of SUSY partners > 100 GeV (experimentally)
- lightest Higgs boson $< 135 \,\text{GeV}$ (theoretically)

SUSY Higgs sector

SM Higgs:

- $\lambda \Phi^4$ term ad hoc
- Higgs boson mass: free parameter
- no a-priori reason for a light Higgs boson
- SM (perturbatively) unstable at some high energy

SUSY Standard Model avoids these questions

minimal model: MSSM

$$H_2 = \begin{pmatrix} H_2^+ \\ v_2 + H_2^0 \end{pmatrix}, \qquad H_1 = \begin{pmatrix} v_1 + H_1^0 \\ H_1^- \end{pmatrix}$$

couples to u couples to d

- SUSY gauge interaction \rightarrow H^4 terms
- self coupling remains weak

physical Higgs bosons: h^0, H^0, A^0, H^{\pm}

2 vacuum expectation values: $\frac{v_2}{v_1} = \tan \beta$

Spectrum of Higgs bosons in the MSSM (example)

large M_A : h^0 like SM Higgs boson

 m_h^0 strongly influenced by quantum effects

Possible scenarios

- a single light Higgs boson
 - SM Higgs boson?
 - SUSY light Higgs boson? with H, A, H^{\pm} heavy (decoupling scenario) $h \sim H_{\rm SM}$
- a light Higgs boson + more (H, A, H^{\pm})
 - SUSY Higgs?
 - non-SUSY 2-Higgs-Doublet model?
- a single heavy Higgs boson ($\gg 200 \text{ GeV}$)
 - SUSY ruled out
 - -SM + (?) strong interaction?
- no Higgs boson
 - strongly interacting weak interaction new strong force $\sim\,{\rm TeV}$ scale

Global fits in the MSSM

[de Boer, Dabelstein, WH, Mösle, Schwickerath] [de Boer, Sander]

special: M_W and $a_\mu = (g-2)/2$ for muon

[Chankowski, Dabelstein, WH, Mösle, Pokorski, Rosiek] [update: Heinemeyer, Weiglein]

$$q-2$$

Feynman diagrams for MSSM 1L corrections:

- Diagrams with chargino/sneutrino exchange
- Diagrams with neutralino/smuon exchange

Enhancement factor as compared to SM:

$$\mu - ilde{\chi}_i^\pm - ilde{
u}_\mu$$
 : $\sim m_\mu$ tan eta
 $\mu - ilde{\chi}_j^0 - ilde{\mu}_a$: $\sim m_\mu$ tan eta

SM, EW 1L:
$$\frac{\alpha}{\pi} \frac{m_{\mu}^2}{M_W^2}$$

MSSM, 1L: $\frac{\alpha}{\pi} \frac{m_{\mu}^2}{M_{SUSY}^2} \times \tan \beta$

Beyond the Standard Model

further substructure	elementary fundamental fields
effects from new strong interaction	interactions remain weak
	Grand Unified Theories
new strong dynamics at high enery scale	new symmetry supersymmetry