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Evolution of quark distribution

• Consider enhancement of higher-order contributions due to multiple small-angle

parton emission, for example in deep inelastic scattering (DIS)

• Incoming quark from target hadron, initially with low virtual mass-squared −t0 and

carrying a fraction x0 of hadron’s momentum, moves to more virtual masses and

lower momentum fractions by successive small-angle emissions, and is finally struck

by photon of virtual mass-squared q2 = −Q2.

• Cross section will depend on Q2 and on momentum fraction distribution of partons

seen by virtual photon at this scale, D(x,Q2).

• To derive evolution equation for Q2-dependence of D(x, Q2), first introduce pictorial

representation of evolution (also useful for Monte Carlo simulation).



• Represent sequence of branchings by path in (t, x)-space. Each branching is a step

downwards in x, at a value of t equal to (minus) the virtual mass-squared after the

branching.

• At t = t0, paths have distribution of starting points D(x0, t0) characteristic of target

hadron at that scale. Then distribution D(x, t) of partons at scale t is just the

x-distribution of paths at that scale.

• Consider change in the parton distribution D(x, t) when t is increased to t+ δt. This

is number of paths arriving in element (δt, δx) minus number leaving that element,

divided by δx.



• Number arriving is branching probability times parton density integrated over all

higher momenta x′ = x/z,

δD in(x, t) =
δt

t

∫ 1

x

dx′ dz
αs

2π
P̂ (z)D(x′, t) δ(x − zx′)

=
δt

t

∫ 1

0

dz

z

αs

2π
P̂ (z)D(x/z, t)

• For the number leaving element, must integrate over lower momenta x′ = zx:

δD out(x, t) =
δt

t
D(x, t)

∫ x

0

dx′ dz
αs

2π
P̂ (z) δ(x′ − zx)

=
δt

t
D(x, t)

∫ 1

0

dz
αs

2π
P̂ (z)

• Change in population of element is

δD(x, t) = δD in − δD out

=
δt

t

∫ 1

0

dz
αs

2π
P̂ (z)

[

1

z
D(x/z, t) − D(x, t)

]

.



• Introduce plus-prescription with definition

∫ 1

0

dz f(z) g(z)+ =

∫ 1

0

dz [f(z) − f(1)] g(z) .

Using this we can define regularized splitting function

P (z) = P̂ (z)+ ,

and obtain Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equation:

t
∂

∂t
D(x, t) =

∫ 1

x

dz

z

αs

2π
P (z)D(x/z, t) .

• Here D(x, t) represents parton momentum fraction distribution inside incoming

hadron probed at scale t. In timelike branching, it represents instead hadron

momentum fraction distribution produced by an outgoing parton. Boundary

conditions and direction of evolution are different, but evolution equation remains

the same.



Quark and gluon distributions

• For several different types of partons, must take into account different processes by

which parton of type i can enter or leave the element (δt, δx). This leads to coupled

DGLAP evolution equations of form

t
∂

∂t
Di(x, t) =

∑

j

∫ 1

x

dz

z

αs

2π
Pij(z)Dj(x/z, t) .

• Quark (i = q) can enter element via either q → qg or g → qq̄, but can only leave via

q → qg. Thus plus-prescription applies only to q → qg part, giving

Pqq(z) = P̂qq(z)+ = CF

(

1 + z2

1 − z

)

+

Pqg(z) = P̂qg(z) = TR [z2 + (1 − z)2]



• Gluon can arrive either from g → gg (2 contributions) or from q → qg (or q̄ → q̄g).

Thus number arriving is

δDg, in =
δt

t

∫ 1

0

dz
αs

2π

{

P̂gg(z)

[

Dg(x/z, t)

z
+

Dg(x/(1 − z), t)

1 − z

]

+
P̂qq(z)

1 − z

[

Dq

(

x

1 − z
, t

)

+ Dq̄

(

x

1 − z
, t

)

]}

=
δt

t

∫ 1

0

dz

z

αs

2π

{

2P̂gg(z)Dg

(x

z
, t

)

+ P̂qq(1 − z)
[

Dq

(x

z
, t

)

+ Dq̄

(x

z
, t

)]}

,

• Gluon can leave by splitting into either gg or qq̄, so that

δDg, out =
δt

t
Dg(x, t)

∫ 1

0

dz
αs

2π

[

P̂gg(z) + Nf P̂qg(z) dz
]

.



• After some manipulation we find

Pgg(z) = 2CA

[

(

z

1 − z
+ 1

2z(1 − z)

)

+

+
1 − z

z
+ 1

2z(1 − z)

]

−
2

3
NfTR δ(1 − z) ,

Pgq(z) = Pgq̄(z) = P̂qq(1 − z) = CF

1 + (1 − z)2

z
.

• Using definition of the plus-prescription, can show that Pqq and Pgg can be written

in more common forms

Pqq(z) = CF

[

1 + z2

(1 − z)+
+

3

2
δ(1 − z)

]

Pgg(z) = 2CA

[

z

(1 − z)+
+

1 − z

z
+ z(1 − z)

]

+
1

6
(11CA − 4NfTR) δ(1 − z) .



Solution by moments

• Given Di(x, t) at some scale t = t0, factorized structure of DGLAP equation means

we can compute its form at any other scale.

• One strategy for doing this is to take moments (Mellin transforms) with respect to

x:

D̃i(N, t) =

∫ 1

0

dx xN−1 Di(x, t) .

Inverse Mellin transform is

Di(x, t) =
1

2πi

∫

C

dN x−N D̃i(N, t) ,

where contour C is parallel to imaginary axis to right of all singularities of integrand.

• After Mellin transformation, convolution in DGLAP equation becomes simply a

product:

t
∂

∂t
D̃i(x, t) =

∑

j

γij(N, αs)D̃j(N, t)



where anomalous dimensions γij are given by moments of splitting functions:

γij(N, αs) =
∞
∑

n=0

γ
(n)
ij (N)

(αs

2π

)n+1

γ
(0)
ij (N) = P̃ij(N) =

∫ 1

0

dz zN−1 Pij(z)

• From above expressions for Pij(z) we find

γ(0)
qq (N) = CF

[

−
1

2
+

1

N(N + 1)
− 2

N
∑

k=2

1

k

]

γ(0)
qg (N) = TR

[

(2 + N + N2)

N(N + 1)(N + 2)

]

γ(0)
gq (N) = CF

[

(2 + N + N2)

N(N2 − 1)

]

γ(0)
gg (N) = 2CA

[

−
1

12
+

1

N(N − 1)
+

1

(N + 1)(N + 2)
−

N
∑

k=2

1

k

]

−
2

3
NfTR .



• Consider combination of parton distributions which is flavour non-singlet, e.g. DV =

Dqi
− Dq̄i

or Dqi
− Dqj

. Then mixing with the flavour-singlet gluons drops out and

solution for fixed αs is

D̃V (N, t) = D̃V (N, t0)

(

t

t0

)γqq(N,αs)

• We see that dimensionless function DV , instead of being scale-independent function

of x as expected from dimensional analysis, has scaling violation: its moments vary

like powers of scale t (hence the name anomalous dimensions).

• For running coupling αs(t), scaling violation is power-behaved in ln t rather than t.

Using leading-order formula αs(t) = 1/b ln(t/Λ2), we find

D̃V (N, t) = D̃V (N, t0)

(

αs(t0)

αs(t)

)dqq(N)

where dqq(N) = γ
(0)
qq (N)/2πb.

• Flavour-singlet distribution and quantitative predictions will be discussed later.



Deep inelastic scattering

• Consider lepton-proton scattering via exchange of virtual photon:

• Standard variables are:

x =
−q2

2p · q
=

Q2

2M(E − E′)

y =
q · p

k · p
= 1 −

E′

E

where Q2 = −q2 > 0, M2 = p2 and energies refer to target rest frame.



• Elastic scattering has (p + q)2 = M2, i.e. x = 1. Hence deep inelastic scattering

(DIS) means Q2 � M2 and x < 1.

• Structure functions Fi(x,Q2) parametrise target structure as ‘seen’ by virtual photon.

Defined in terms of cross section

d2σ

dxdy
=

8πα2ME

Q4

[(

1 + (1 − y)2

2

)

2xF1

+(1 − y)(F2 − 2xF1) − (M/2E)xyF2

]

.

• Bjorken limit is Q2, p · q → ∞ with x fixed. In this limit structure functions obey

approximate Bjorken scaling law, i.e. depend only on dimensionless variable x:

Fi(x, Q2) −→ Fi(x).



• Figure shows F2 structure function for proton target. Although Q2 varies by two

orders of magnitude, in first approximation data lie on universal curve.

• Bjorken scaling implies that virtual photon is scattered by pointlike constituents

(partons) — otherwise structure functions would depend on ratio Q/Q0, with 1/Q0

a length scale characterizing size of constituents.



• Parton model of DIS is formulated in a frame where target proton is moving very

fast — infinite momentum frame.

? Suppose that, in this frame, photon scatters from pointlike quark with fraction ξ of

proton’s momentum. Since (ξp+q)2 = m2
q � Q2, we must have ξ = Q2/2p·q = x.

? In terms of Mandelstam variables ŝ, t̂, û, spin-averaged matrix element squared for

massless eq → eq scattering (related by crossing to e+e− → qq̄) is

∑

|M|2 = 2e2
qe

4 ŝ
2 + û2

t̂2

where
∑

denotes average (sum) over initial (final) colours and spins.

? In terms of DIS variables, t̂ = −Q2, û = ŝ(y − 1) and ŝ = Q2/xy. Differential

cross section is then

d2σ̂

dxdQ2
=

4πα2

Q4
[1 + (1 − y)2]

1

2
e2
qδ(x − ξ).



? From structure function definition (neglecting M)

d2σ

dxdQ2
=

4πα2

Q4

{

[1 + (1 − y)2]F1 +
(1 − y)

x
(F2 − 2xF1)

}

.

? Hence structure functions for scattering from parton with momentum fraction ξ is

F̂2 = xe2
qδ(x − ξ) = 2xF̂1 .

? Suppose probability that quark q carries momentum fraction between ξ and ξ + dξ

is q(ξ) dξ. Then

F2(x) =
∑

q

∫ 1

0

dξ q(ξ) xe2
qδ(x − ξ)

=
∑

q

e2
qxq(x) = 2xF1(x) .

? Relationship F2 = 2xF1 (Callan-Gross relation) follows from spin-12 property of

quarks (F1 = 0 for spin-0).



• Proton consists of three valence quarks (uud), which carry its electric charge and

baryon number, and infinite sea of light qq̄ pairs.

• Probed at scale Q, sea contains all quark flavours with mq � Q. Thus at Q ∼ 1

GeV expect

F em
2 (x) '

4

9
x[u(x) + ū(x)] +

1

9
x[d(x) + d̄(x) + s(x) + s̄(x)]

where

u(x) = uV (x) + ū(x)

d(x) = dV (x) + d̄(x)

s(x) = s̄(x)

with sum rules
1

∫

0

dx uV (x) = 2 ,

∫ 1

0

dx dV (x) = 1 .



• Experimentally one finds
∑

q

∫ 1

0

dx x[q(x) + q̄(x)] ' 0.5 .

Thus quarks only carry about 50% of proton’s momentum. Rest is carried by gluons.

Although not directly measured in DIS, gluons participate in other hard scattering

processes such as large-pT jet and prompt photon production.

• Figure shows typical set of parton distributions extracted from fits to DIS data, at

Q2 = 10 GeV2.



Scaling violation

• Bjorken scaling is not exact. Structure functions decrease at large x and grow at

small x with increasing Q2. This is due to Q2 dependence of parton distributions,

considered earlier. In present notation, they satisfy DGLAP evolution equations of

form

t
∂

∂t
q(x, t) =

αs(t)

2π

∫ 1

x

dz

z
P (z)q

(x

z
, t

)

≡
αs(t)

2π
P ⊗ q

where P is q → qg splitting function.

• Taking into account other types of parton branching that can occur in addition to

q → qg, we obtain coupled evolution equations

t
∂qi

∂t
=

αs(t)

2π
[Pqq ⊗ qi + Pqg ⊗ g]

t
∂q̄i

∂t
=

αs(t)

2π
[Pqq ⊗ q̄i + Pqg ⊗ g]

t
∂g

∂t
=

αs(t)

2π

[

Pgq ⊗
∑

(qi + q̄i) + Pgg ⊗ g
]

.



• Lowest-order splitting functions derived earlier. More generally they are power series

in αs, same for deep inelastic scattering (spacelike branching) and jet fragmentation

(timelike branching) in leading order, but differing in higher orders. Consequently,

behaviour of structure functions at small x is different from that of jet fragmentation

functions.

• For the present, concentrate on larger x values (x∼>0.01), where PT expansion

converges better.

• Recall solution of evolution equations for flavour non-singlet combinations V , e.g.

qi − q̄i or qi − qj. Mixing with gluons drops out and

t
∂

∂t
V (x, t) =

αs(t)

2π
Pqq ⊗ V .



Taking moments (Mellin transform)

Ṽ (N, t) =

∫ 1

0

dx xN−1 V (x, t)

we find

t
∂

∂t
Ṽ (N, t) =

αs(t)

2π
γ(0)

qq (N) Ṽ (N, t)

where γ
(0)
qq (N) is Mellin transform of P

(0)
qq . Solution is

Ṽ (N, t) = Ṽ (N, 0)

(

αs(0)

αs(t)

)dqq(N)

where dqq(N) = γ
(0)
qq (N)/2πb.

• Now dqq(1) = 0 and dqq(N) < 0 for N ≥ 2. Thus as t increases V decreases at large

x and increases at small x. Physically, this is due to increase in the phase space for

gluon emission by quarks as t increases, leading to loss of momentum. This is clearly

visible in data.
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• For flavour-singlet combination, define

Σ =
∑

i

(qi + q̄i) .

Then we obtain

t
∂Σ

∂t
=

αs(t)

2π
[Pqq ⊗ Σ + 2NfPqg ⊗ g]

t
∂g

∂t
=

αs(t)

2π
[Pgq ⊗ Σ + Pgg ⊗ g] .

• Thus flavour-singlet quark distribution Σ mixes with gluon distribution g: evolution

equation for moments has matrix form

t
∂

∂t

(

Σ̃

g̃

)

=

(

γqq 2Nfγqg

γgq γgg

)(

Σ̃

g̃

)



• Singlet anomalous dimension matrix has two real eigenvalues γ± given by

γ± = 1
2[γgg + γqq ±

√

(γgg − γqq)2 + 8Nfγgqγqg] .

• Expressing Σ̃ and g̃ as linear combinations of eigenvectors Σ̃+ and Σ̃−, we find they

evolve as superpositions of terms of above form with γ± in place of γqq.



Small x

• At small x, corresponding to N → 1, γ+ → γgg → ∞, γ− → γqq → 0. Therefore

structure functions grow rapidly at small x.
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• Higher-order corrections also become large at small x:

γ(1)
qq (N) →

40CFNfTR

9(N − 1)

γ(1)
qg (N) →

40CATR

9(N − 1)

γ(1)
gq (N) →

9CFCA − 40CFNfTR

9(N − 1)

γ(1)
gg (N) →

(12CF − 46CA)NfTR

9(N − 1)
.

• Thus we find

γ+ →
2CA

N − 1

αs

2π

[

1 +
(26CF − 23CA)Nf

18CA

αs

2π
+ . . .

]

=
2CA

N − 1

αs

2π

[

1 − 0.64Nf

αs

2π
+ . . .

]

where neglected terms are either non-singular at N = 1 or higher-order in αs. Thus

NLO correction is relatively small.



• In general one finds (Balitsky, Fadin, Kuraev, Lipatov, BFKL) that for small x

(N → 1)

γ+ →
∞
∑

n=1

n
∑

m=0

γ(n,m)

(N − 1)m

(αs

2π

)n

• In x space LO BFKL equation (or BFKL Pomeron) resums terms of the form

(

αs log
1

x

)n

• It happens that γ(2,2) (and γ(3,3)) are zero.

? This is probably why significant deviations from NLO QCD have not yet been seen in

DIS at small x, whereas they are obvious in jet fragmentation.

? Anomalous dimension at small x is much less singular than the timelike (jet

fragmentation) case, where m ≤ 2n − 1 and γ(2,3) and γ(3,5) are not zero.

Crucial difference is coherence (angular ordering), which suppresses soft gluon emission

in low-x fragmentation, but does not suppress low-x spacelike branching in DIS.



High Energy Scattering

• Interesting regime of QCD is high energy limit, s → ∞(or x → 0), with t fixed.

• At high energies there is large phase space for emission of soft gluons. Therefore

colliding hadrons evolve into a dense system of partons, now often called the color

glass condensate.

Q2

1/x ∼ s



• When partons start to overlap one expects recombination effects to become

important. This corresponds to nonlinearities in evolution equations.

• As a consequence the growth of structure functions should be tamed at small x. Can

we see the corresponding saturation effects already at present collider energies, for

example at HERA?!


