# Quantum Chromodynamics 

Carlo Ewerz

Università di Milano \& INFN



Corfu Summer Institute 2004

## Evolution of quark distribution

- Consider enhancement of higher-order contributions due to multiple small-angle parton emission, for example in deep inelastic scattering (DIS)

- Incoming quark from target hadron, initially with low virtual mass-squared $-t_{0}$ and carrying a fraction $x_{0}$ of hadron's momentum, moves to more virtual masses and lower momentum fractions by successive small-angle emissions, and is finally struck by photon of virtual mass-squared $q^{2}=-Q^{2}$.
- Cross section will depend on $Q^{2}$ and on momentum fraction distribution of partons seen by virtual photon at this scale, $D\left(x, Q^{2}\right)$.
- To derive evolution equation for $Q^{2}$-dependence of $D\left(x, Q^{2}\right)$, first introduce pictorial representation of evolution (also useful for Monte Carlo simulation).

- Represent sequence of branchings by path in $(t, x)$-space. Each branching is a step downwards in $x$, at a value of $t$ equal to (minus) the virtual mass-squared after the branching.
- At $t=t_{0}$, paths have distribution of starting points $D\left(x_{0}, t_{0}\right)$ characteristic of target hadron at that scale. Then distribution $D(x, t)$ of partons at scale $t$ is just the $x$-distribution of paths at that scale.
- Consider change in the parton distribution $D(x, t)$ when $t$ is increased to $t+\delta t$. This is number of paths arriving in element $(\delta t, \delta x)$ minus number leaving that element, divided by $\delta x$.
- Number arriving is branching probability times parton density integrated over all higher momenta $x^{\prime}=x / z$,

$$
\begin{aligned}
\delta D_{\text {in }}(x, t) & =\frac{\delta t}{t} \int_{x}^{1} d x^{\prime} d z \frac{\alpha_{s}}{2 \pi} \hat{P}(z) D\left(x^{\prime}, t\right) \delta\left(x-z x^{\prime}\right) \\
& =\frac{\delta t}{t} \int_{0}^{1} \frac{d z}{z} \frac{\alpha_{s}}{2 \pi} \hat{P}(z) D(x / z, t)
\end{aligned}
$$

- For the number leaving element, must integrate over lower momenta $x^{\prime}=z x$ :

$$
\begin{aligned}
\delta D_{\text {out }}(x, t) & =\frac{\delta t}{t} D(x, t) \int_{0}^{x} d x^{\prime} d z \frac{\alpha_{s}}{2 \pi} \hat{P}(z) \delta\left(x^{\prime}-z x\right) \\
& =\frac{\delta t}{t} D(x, t) \int_{0}^{1} d z \frac{\alpha_{s}}{2 \pi} \hat{P}(z)
\end{aligned}
$$

- Change in population of element is

$$
\begin{aligned}
\delta D(x, t) & =\delta D_{\text {in }}-\delta D_{\text {out }} \\
& =\frac{\delta t}{t} \int_{0}^{1} d z \frac{\alpha_{s}}{2 \pi} \hat{P}(z)\left[\frac{1}{z} D(x / z, t)-D(x, t)\right] .
\end{aligned}
$$

- Introduce plus-prescription with definition

$$
\int_{0}^{1} d z f(z) g(z)_{+}=\int_{0}^{1} d z[f(z)-f(1)] g(z)
$$

Using this we can define regularized splitting function

$$
P(z)=\hat{P}(z)_{+},
$$

and obtain Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equation:

$$
t \frac{\partial}{\partial t} D(x, t)=\int_{x}^{1} \frac{d z}{z} \frac{\alpha_{s}}{2 \pi} P(z) D(x / z, t)
$$

- Here $D(x, t)$ represents parton momentum fraction distribution inside incoming hadron probed at scale $t$. In timelike branching, it represents instead hadron momentum fraction distribution produced by an outgoing parton. Boundary conditions and direction of evolution are different, but evolution equation remains the same.


## Quark and gluon distributions

- For several different types of partons, must take into account different processes by which parton of type $i$ can enter or leave the element $(\delta t, \delta x)$. This leads to coupled DGLAP evolution equations of form

$$
t \frac{\partial}{\partial t} D_{i}(x, t)=\sum_{j} \int_{x}^{1} \frac{d z}{z} \frac{\alpha_{s}}{2 \pi} P_{i j}(z) D_{j}(x / z, t)
$$

- Quark ( $i=q$ ) can enter element via either $q \rightarrow q g$ or $g \rightarrow q \bar{q}$, but can only leave via $q \rightarrow q g$. Thus plus-prescription applies only to $q \rightarrow q g$ part, giving

$$
\begin{aligned}
P_{q q}(z) & =\hat{P}_{q q}(z)_{+}=C_{F}\left(\frac{1+z^{2}}{1-z}\right)_{+} \\
P_{q g}(z) & =\hat{P}_{q g}(z)=T_{R}\left[z^{2}+(1-z)^{2}\right]
\end{aligned}
$$

- Gluon can arrive either from $g \rightarrow g g$ (2 contributions) or from $q \rightarrow q g$ (or $\bar{q} \rightarrow \bar{q} g$ ). Thus number arriving is

$$
\begin{aligned}
\delta D_{g, \text { in }}= & \frac{\delta t}{t} \int_{0}^{1} d z \frac{\alpha_{s}}{2 \pi}\left\{\hat{P}_{g g}(z)\left[\frac{D_{g}(x / z, t)}{z}+\frac{D_{g}(x /(1-z), t)}{1-z}\right]\right. \\
& \left.+\frac{\hat{P}_{q q}(z)}{1-z}\left[D_{q}\left(\frac{x}{1-z}, t\right)+D_{\bar{q}}\left(\frac{x}{1-z}, t\right)\right]\right\} \\
= & \frac{\delta t}{t} \int_{0}^{1} \frac{d z}{z} \frac{\alpha_{s}}{2 \pi}\left\{2 \hat{P}_{g g}(z) D_{g}\left(\frac{x}{z}, t\right)+\hat{P}_{q q}(1-z)\left[D_{q}\left(\frac{x}{z}, t\right)+D_{\bar{q}}\left(\frac{x}{z}, t\right)\right]\right\},
\end{aligned}
$$

- Gluon can leave by splitting into either $g g$ or $q \bar{q}$, so that

$$
\delta D_{g, \text { out }}=\frac{\delta t}{t} D_{g}(x, t) \int_{0}^{1} d z \frac{\alpha_{s}}{2 \pi}\left[\hat{P}_{g g}(z)+N_{f} \hat{P}_{q g}(z) d z\right] .
$$

- After some manipulation we find

$$
\begin{aligned}
P_{g g}(z) & =2 C_{A}\left[\left(\frac{z}{1-z}+\frac{1}{2} z(1-z)\right)_{+}+\frac{1-z}{z}+\frac{1}{2} z(1-z)\right]-\frac{2}{3} N_{f} T_{R} \delta(1-z) \\
P_{g q}(z) & =P_{g \bar{q}}(z)=\hat{P}_{q q}(1-z)=C_{F} \frac{1+(1-z)^{2}}{z}
\end{aligned}
$$

- Using definition of the plus-prescription, can show that $P_{q q}$ and $P_{g g}$ can be written in more common forms

$$
\begin{aligned}
P_{q q}(z) & =C_{F}\left[\frac{1+z^{2}}{(1-z)_{+}}+\frac{3}{2} \delta(1-z)\right] \\
P_{g g}(z) & =2 C_{A}\left[\frac{z}{(1-z)_{+}}+\frac{1-z}{z}+z(1-z)\right]+\frac{1}{6}\left(11 C_{A}-4 N_{f} T_{R}\right) \delta(1-z) .
\end{aligned}
$$

## Solution by moments

- Given $D_{i}(x, t)$ at some scale $t=t_{0}$, factorized structure of DGLAP equation means we can compute its form at any other scale.
- One strategy for doing this is to take moments (Mellin transforms) with respect to $x$ :

$$
\tilde{D}_{i}(N, t)=\int_{0}^{1} d x x^{N-1} D_{i}(x, t)
$$

Inverse Mellin transform is

$$
D_{i}(x, t)=\frac{1}{2 \pi i} \int_{C} d N x^{-N} \tilde{D}_{i}(N, t)
$$

where contour $C$ is parallel to imaginary axis to right of all singularities of integrand.

- After Mellin transformation, convolution in DGLAP equation becomes simply a product:

$$
t \frac{\partial}{\partial t} \tilde{D}_{i}(x, t)=\sum_{j} \gamma_{i j}\left(N, \alpha_{s}\right) \tilde{D}_{j}(N, t)
$$

where anomalous dimensions $\gamma_{i j}$ are given by moments of splitting functions:

$$
\begin{aligned}
\gamma_{i j}\left(N, \alpha_{s}\right) & =\sum_{n=0}^{\infty} \gamma_{i j}^{(n)}(N)\left(\frac{\alpha_{s}}{2 \pi}\right)^{n+1} \\
\gamma_{i j}^{(0)}(N) & =\tilde{P}_{i j}(N)=\int_{0}^{1} d z z^{N-1} P_{i j}(z)
\end{aligned}
$$

- From above expressions for $P_{i j}(z)$ we find

$$
\begin{aligned}
& \gamma_{q q}^{(0)}(N)=C_{F}\left[-\frac{1}{2}+\frac{1}{N(N+1)}-2 \sum_{k=2}^{N} \frac{1}{k}\right] \\
& \gamma_{q g}^{(0)}(N)=T_{R}\left[\frac{\left(2+N+N^{2}\right)}{N(N+1)(N+2)}\right] \\
& \gamma_{g q}^{(0)}(N)=C_{F}\left[\frac{\left(2+N+N^{2}\right)}{N\left(N^{2}-1\right)}\right] \\
& \gamma_{g q}^{(0)}(N)=2 C_{A}\left[-\frac{1}{12}+\frac{1}{N(N-1)}+\frac{1}{(N+1)(N+2)}-\sum_{k=2}^{N} \frac{1}{k}\right]-\frac{2}{3} N_{f} T_{R}
\end{aligned}
$$

- Consider combination of parton distributions which is flavour non-singlet, e.g. $D_{V}=$ $D_{q_{i}}-D_{\bar{q}_{i}}$ or $D_{q_{i}}-D_{q_{j}}$. Then mixing with the flavour-singlet gluons drops out and solution for fixed $\alpha_{s}$ is

$$
\tilde{D}_{V}(N, t)=\tilde{D}_{V}\left(N, t_{0}\right)\left(\frac{t}{t_{0}}\right)^{\gamma_{q q}\left(N, \alpha_{s}\right)}
$$

- We see that dimensionless function $D_{V}$, instead of being scale-independent function of $x$ as expected from dimensional analysis, has scaling violation: its moments vary like powers of scale $t$ (hence the name anomalous dimensions).
- For running coupling $\alpha_{s}(t)$, scaling violation is power-behaved in $\ln t$ rather than $t$. Using leading-order formula $\alpha_{s}(t)=1 / b \ln \left(t / \Lambda^{2}\right)$, we find

$$
\tilde{D}_{V}(N, t)=\tilde{D}_{V}\left(N, t_{0}\right)\left(\frac{\alpha_{s}\left(t_{0}\right)}{\alpha_{s}(t)}\right)^{d_{q q}(N)}
$$

where $d_{q q}(N)=\gamma_{q q}^{(0)}(N) / 2 \pi b$.

- Flavour-singlet distribution and quantitative predictions will be discussed later.


## Deep inelastic scattering

- Consider lepton-proton scattering via exchange of virtual photon:

- Standard variables are:

$$
\begin{aligned}
x & =\frac{-q^{2}}{2 p \cdot q}=\frac{Q^{2}}{2 M\left(E-E^{\prime}\right)} \\
y & =\frac{q \cdot p}{k \cdot p}=1-\frac{E^{\prime}}{E}
\end{aligned}
$$

where $Q^{2}=-q^{2}>0, M^{2}=p^{2}$ and energies refer to target rest frame.

- Elastic scattering has $(p+q)^{2}=M^{2}$, i.e. $x=1$. Hence deep inelastic scattering (DIS) means $Q^{2} \gg M^{2}$ and $x<1$.
- Structure functions $F_{i}\left(x, Q^{2}\right)$ parametrise target structure as 'seen' by virtual photon. Defined in terms of cross section

$$
\begin{aligned}
\frac{d^{2} \sigma}{d x d y}= & \frac{8 \pi \alpha^{2} M E}{Q^{4}}\left[\left(\frac{1+(1-y)^{2}}{2}\right) 2 x F_{1}\right. \\
& \left.+(1-y)\left(F_{2}-2 x F_{1}\right)-(M / 2 E) x y F_{2}\right]
\end{aligned}
$$

- Bjorken limit is $Q^{2}, p \cdot q \rightarrow \infty$ with $x$ fixed. In this limit structure functions obey approximate Bjorken scaling law, i.e. depend only on dimensionless variable $x$ :

$$
F_{i}\left(x, Q^{2}\right) \longrightarrow F_{i}(x)
$$



- Figure shows $F_{2}$ structure function for proton target. Although $Q^{2}$ varies by two orders of magnitude, in first approximation data lie on universal curve.
- Bjorken scaling implies that virtual photon is scattered by pointlike constituents (partons) - otherwise structure functions would depend on ratio $Q / Q_{0}$, with $1 / Q_{0}$ a length scale characterizing size of constituents.
- Parton model of DIS is formulated in a frame where target proton is moving very fast - infinite momentum frame.
* Suppose that, in this frame, photon scatters from pointlike quark with fraction $\xi$ of proton's momentum. Since $(\xi p+q)^{2}=m_{q}^{2} \ll Q^{2}$, we must have $\xi=Q^{2} / 2 p \cdot q=x$.
* In terms of Mandelstam variables $\hat{s}, \hat{t}, \hat{u}$, spin-averaged matrix element squared for massless $e q \rightarrow e q$ scattering (related by crossing to $e^{+} e^{-} \rightarrow q \bar{q}$ ) is

$$
\bar{\sum}|\mathcal{M}|^{2}=2 e_{q}^{2} e^{4} \frac{\hat{s}^{2}+\hat{u}^{2}}{\hat{t}^{2}}
$$

where $\bar{\sum}$ denotes average (sum) over initial (final) colours and spins.

* In terms of DIS variables, $\hat{t}=-Q^{2}, \hat{u}=\hat{s}(y-1)$ and $\hat{s}=Q^{2} / x y$. Differential cross section is then

$$
\frac{d^{2} \hat{\sigma}}{d x d Q^{2}}=\frac{4 \pi \alpha^{2}}{Q^{4}}\left[1+(1-y)^{2}\right] \frac{1}{2} e_{q}^{2} \delta(x-\xi) .
$$

* From structure function definition (neglecting $M$ )

$$
\frac{d^{2} \sigma}{d x d Q^{2}}=\frac{4 \pi \alpha^{2}}{Q^{4}}\left\{\left[1+(1-y)^{2}\right] F_{1}+\frac{(1-y)}{x}\left(F_{2}-2 x F_{1}\right)\right\}
$$

* Hence structure functions for scattering from parton with momentum fraction $\xi$ is

$$
\hat{F}_{2}=x e_{q}^{2} \delta(x-\xi)=2 x \hat{F}_{1}
$$

* Suppose probability that quark $q$ carries momentum fraction between $\xi$ and $\xi+d \xi$ is $q(\xi) d \xi$. Then

$$
\begin{aligned}
F_{2}(x) & =\sum_{q} \int_{0}^{1} d \xi q(\xi) x e_{q}^{2} \delta(x-\xi) \\
& =\sum_{q} e_{q}^{2} x q(x)=2 x F_{1}(x)
\end{aligned}
$$

* Relationship $F_{2}=2 x F_{1}$ (Callan-Gross relation) follows from spin- $\frac{1}{2}$ property of quarks ( $F_{1}=0$ for spin-0).
- Proton consists of three valence quarks (uud), which carry its electric charge and baryon number, and infinite sea of light $q \bar{q}$ pairs.
- Probed at scale $Q$, sea contains all quark flavours with $m_{q} \ll Q$. Thus at $Q \sim 1$ GeV expect

$$
F_{2}^{e m}(x) \simeq \frac{4}{9} x[u(x)+\bar{u}(x)]+\frac{1}{9} x[d(x)+\bar{d}(x)+s(x)+\bar{s}(x)]
$$

where

$$
\begin{aligned}
u(x) & =u_{V}(x)+\bar{u}(x) \\
d(x) & =d_{V}(x)+\bar{d}(x) \\
s(x) & =\bar{s}(x)
\end{aligned}
$$

with sum rules

$$
\int_{0}^{1} d x u_{V}(x)=2, \quad \int_{0}^{1} d x d_{V}(x)=1
$$

- Experimentally one finds

$$
\sum_{q} \int_{0}^{1} d x x[q(x)+\bar{q}(x)] \simeq 0.5
$$

Thus quarks only carry about $50 \%$ of proton's momentum. Rest is carried by gluons. Although not directly measured in DIS, gluons participate in other hard scattering processes such as large- $p_{T}$ jet and prompt photon production.


- Figure shows typical set of parton distributions extracted from fits to DIS data, at $Q^{2}=10 \mathrm{GeV}^{2}$.


## Scaling violation

- Bjorken scaling is not exact. Structure functions decrease at large $x$ and grow at small $x$ with increasing $Q^{2}$. This is due to $Q^{2}$ dependence of parton distributions, considered earlier. In present notation, they satisfy DGLAP evolution equations of form

$$
t \frac{\partial}{\partial t} q(x, t)=\frac{\alpha_{s}(t)}{2 \pi} \int_{x}^{1} \frac{d z}{z} P(z) q\left(\frac{x}{z}, t\right) \equiv \frac{\alpha_{s}(t)}{2 \pi} P \otimes q
$$

where $P$ is $q \rightarrow q g$ splitting function.

- Taking into account other types of parton branching that can occur in addition to $q \rightarrow q g$, we obtain coupled evolution equations

$$
\begin{aligned}
t \frac{\partial q_{i}}{\partial t} & =\frac{\alpha_{s}(t)}{2 \pi}\left[P_{q q} \otimes q_{i}+P_{q g} \otimes g\right] \\
t \frac{\partial \bar{q}_{i}}{\partial t} & =\frac{\alpha_{s}(t)}{2 \pi}\left[P_{q q} \otimes \bar{q}_{i}+P_{q g} \otimes g\right] \\
t \frac{\partial g}{\partial t} & =\frac{\alpha_{s}(t)}{2 \pi}\left[P_{g q} \otimes \sum\left(q_{i}+\bar{q}_{i}\right)+P_{g g} \otimes g\right]
\end{aligned}
$$

- Lowest-order splitting functions derived earlier. More generally they are power series in $\alpha_{s}$, same for deep inelastic scattering (spacelike branching) and jet fragmentation (timelike branching) in leading order, but differing in higher orders. Consequently, behaviour of structure functions at small $x$ is different from that of jet fragmentation functions.
- For the present, concentrate on larger $x$ values $(x \geq 0.01)$, where PT expansion converges better.
- Recall solution of evolution equations for flavour non-singlet combinations $V$, e.g. $q_{i}-\bar{q}_{i}$ or $q_{i}-q_{j}$. Mixing with gluons drops out and

$$
t \frac{\partial}{\partial t} V(x, t)=\frac{\alpha_{s}(t)}{2 \pi} P_{q q} \otimes V
$$

Taking moments (Mellin transform)

$$
\tilde{V}(N, t)=\int_{0}^{1} d x x^{N-1} V(x, t)
$$

we find

$$
t \frac{\partial}{\partial t} \tilde{V}(N, t)=\frac{\alpha_{s}(t)}{2 \pi} \gamma_{q q}^{(0)}(N) \tilde{V}(N, t)
$$

where $\gamma_{q q}^{(0)}(N)$ is Mellin transform of $P_{q q}^{(0)}$. Solution is

$$
\tilde{V}(N, t)=\tilde{V}(N, 0)\left(\frac{\alpha_{s}(0)}{\alpha_{s}(t)}\right)^{d_{q q}(N)}
$$

where $d_{q q}(N)=\gamma_{q q}^{(0)}(N) / 2 \pi b$.

- Now $d_{q q}(1)=0$ and $d_{q q}(N)<0$ for $N \geq 2$. Thus as $t$ increases $V$ decreases at large $x$ and increases at small $x$. Physically, this is due to increase in the phase space for gluon emission by quarks as $t$ increases, leading to loss of momentum. This is clearly visible in data.

- For flavour-singlet combination, define

$$
\Sigma=\sum_{i}\left(q_{i}+\bar{q}_{i}\right) .
$$

Then we obtain

$$
\begin{aligned}
t \frac{\partial \Sigma}{\partial t} & =\frac{\alpha_{s}(t)}{2 \pi}\left[P_{q q} \otimes \Sigma+2 N_{f} P_{q g} \otimes g\right] \\
t \frac{\partial g}{\partial t} & =\frac{\alpha_{s}(t)}{2 \pi}\left[P_{g q} \otimes \Sigma+P_{g g} \otimes g\right]
\end{aligned}
$$

- Thus flavour-singlet quark distribution $\Sigma$ mixes with gluon distribution $g$ : evolution equation for moments has matrix form

$$
t \frac{\partial}{\partial t}\binom{\tilde{\Sigma}}{\tilde{g}}=\left(\begin{array}{cc}
\gamma_{q q} & 2 N_{f} \gamma_{q g} \\
\gamma_{g q} & \gamma_{g g}
\end{array}\right)\binom{\tilde{\Sigma}}{\tilde{g}}
$$

- Singlet anomalous dimension matrix has two real eigenvalues $\gamma_{ \pm}$given by

$$
\gamma_{ \pm}=\frac{1}{2}\left[\gamma_{g g}+\gamma_{q q} \pm \sqrt{\left(\gamma_{g g}-\gamma_{q q}\right)^{2}+8 N_{f} \gamma_{g q} \gamma_{q g}}\right]
$$

- Expressing $\tilde{\Sigma}$ and $\tilde{g}$ as linear combinations of eigenvectors $\tilde{\Sigma}_{+}$and $\tilde{\Sigma}_{-}$, we find they evolve as superpositions of terms of above form with $\gamma_{ \pm}$in place of $\gamma_{q q}$.


## Small $x$

- At small $x$, corresponding to $N \rightarrow 1, \gamma_{+} \rightarrow \gamma_{g g} \rightarrow \infty, \gamma_{-} \rightarrow \gamma_{q q} \rightarrow 0$. Therefore structure functions grow rapidly at small $x$.

- Higher-order corrections also become large at small $x$ :

$$
\left.\begin{array}{l}
\gamma_{q q}^{(1)}(N) \rightarrow \frac{40 C_{F} N_{f} T_{R}}{9(N-1)} \\
\gamma_{q g}^{(1)}(N) \rightarrow \frac{40 C_{A} T_{R}}{9(N-1)} \\
\gamma_{g q}^{(1)}(N) \\
\gamma_{g g}^{(1)}(N)
\end{array}\right) \frac{9 C_{F} C_{A}-40 C_{F} N_{f} T_{R}}{9(N-1)} . \frac{\left(12 C_{F}-46 C_{A}\right) N_{f} T_{R}}{9(N-1)} .
$$

- Thus we find

$$
\begin{aligned}
\gamma_{+} & \rightarrow \frac{2 C_{A}}{N-1} \frac{\alpha_{s}}{2 \pi}\left[1+\frac{\left(26 C_{F}-23 C_{A}\right) N_{f}}{18 C_{A}} \frac{\alpha_{s}}{2 \pi}+\ldots\right] \\
& =\frac{2 C_{A}}{N-1} \frac{\alpha_{s}}{2 \pi}\left[1-0.64 N_{f} \frac{\alpha_{s}}{2 \pi}+\ldots\right]
\end{aligned}
$$

where neglected terms are either non-singular at $N=1$ or higher-order in $\alpha_{s}$. Thus NLO correction is relatively small.

- In general one finds (Balitsky, Fadin, Kuraev, Lipatov, BFKL) that for small $x$ $(N \rightarrow 1)$

$$
\gamma_{+} \rightarrow \sum_{n=1}^{\infty} \sum_{m=0}^{n} \frac{\gamma^{(n, m)}}{(N-1)^{m}}\left(\frac{\alpha_{s}}{2 \pi}\right)^{n}
$$

- In $x$ space LO BFKL equation (or BFKL Pomeron) resums terms of the form

$$
\left(\alpha_{s} \log \frac{1}{x}\right)^{n}
$$

- It happens that $\gamma^{(2,2)}$ (and $\gamma^{(3,3)}$ ) are zero.
* This is probably why significant deviations from NLO QCD have not yet been seen in DIS at small $x$, whereas they are obvious in jet fragmentation.
* Anomalous dimension at small $x$ is much less singular than the timelike (jet fragmentation) case, where $m \leq 2 n-1$ and $\gamma^{(2,3)}$ and $\gamma^{(3,5)}$ are not zero. Crucial difference is coherence (angular ordering), which suppresses soft gluon emission in low- $x$ fragmentation, but does not suppress low- $x$ spacelike branching in DIS.


## High Energy Scattering

- Interesting regime of QCD is high energy limit, $s \rightarrow \infty$ (or $x \rightarrow 0$ ), with $t$ fixed.
- At high energies there is large phase space for emission of soft gluons. Therefore colliding hadrons evolve into a dense system of partons, now often called the color glass condensate.

- When partons start to overlap one expects recombination effects to become important. This corresponds to nonlinearities in evolution equations.
- As a consequence the growth of structure functions should be tamed at small $x$. Can we see the corresponding saturation effects already at present collider energies, for example at HERA?!

