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Out-of-equilibrium quantum statistical physics

> Many scientific discoveries of those that
have changed human civilisation over the
last century are built upon our progress in
understanding the statistical physics of
matter and quantum systems.

> Yet our understanding has until recently
remained limited to systems at thermal
equilibrium or close to it, which is rarely the
case in physical reality.

> However during the last decade or so the
physics community has witnessed an
explosion of research activity in out-of-
equilibrium quantum physics, opening up
countless possibilities for novel applications.




Motivation

Equilibration in quantum systems is a
fundamental and long-standing question of
statistical mechanics

Reach the ultimate limits of classical
thermodynamics expectations and unveil
novel quantum effects at macroscopic level

Recent progress in experimental (ultra-cold
atoms) and numerical (tDMRG, MPS)
techniques for study of quantum many-
body dynamics

Applications to quantum technologies:
quantum thermal engines,

quantum information processing &
computing




Equilibration




Quantum Quenches

Well-posed theoretical and experimental problem:
Consider an isolated and thermodynamically large quantum system, prepared in an

initial state that is the ground state of some arbitrary Hamiltonian, then let to evolve
under a different Hamiltonian

—1Ht

H()|\I/()> =0 |\Ijo> e—)?

Calabrese Cardy, PRL (2006)
Questions:

> Long time behaviour?

> Does the system tend to equilibrium!?

> If yes, is equilibrium thermal?

> If not, what type of equilibrium is it?

> How much and what type of information about initial state survives at long times?




Quantum Newton’s Craddle

> Experiment:
A system of |d non-relativistic bosons with point-like interactions in a harmonic trap
prepared in out of equilibrium initial state:
- does not relax even after many collisions,
- exhibits non-thermal momentum distribution.

> Lack of thermalisation due to integrability (Lieb-Liniger model)?
Kinoshita et al., Nature (2006)
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Quantum Newton’s Craddle

> Experiment:
A system of |d non-relativistic bosons with point-like interactions in a harmonic trap
prepared in out of equilibrium initial state:
- does not relax even after many collisions,
- exhibits non-thermal momentum distribution.

> Lack of thermalisation due to integrability (Lieb-Liniger model)?
Or dimensionality? Kinoshita et al., Nature (2006)
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GGE

Integrable models:
Possess infinite number of local conserved quantities

Conjecture:

“Integrable models equilibrate to a Generalised Gibbs Ensemble that is a maximum entropy
ensemble determined by all constraints coming from the infinite conserved quantities.”

Rigol, Dunjko, Yurovsky, Olshanii, PRL (2007)

Gibbs ensemble: Generalised Gibbs ensemble:
pce < exp(—BH) PGGE X €Xp (— > AnIn>
n=1
temperature fixed by the :> Lagrange multipliers fixed by the
constraint of energy constraints of all extra conserved
conservation quantities

Tr(pGEH) — <\P0’H‘\IJO> Tr(pGGEIn) = <\110’In‘\110>




Experimental Observation of GGE

> splitting 1d ultracold atom

A quasi-condenstate in two
P
coupled subsystems —
; low-energy physics described
] by sine-Gordon model
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Experimental Observation of GGE

A full distribution functions
slow cooling /‘é\ fast cooling :Sn\
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Schweigler et al., Nature (2017)




Experimental Observation of GGE

> observation of deviations from Gaussianity

\
(Wick’s theorem) in thermal states - i) cleesmedied CoNnEERg oo
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Experimental Observation of GGE

time
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Langen et al., Science (2015)

>  Quench from gapped to gapless non-interacting phase
> Observation of dynamics of correlations
> Non-thermal steady state: more than one temperature needed to describe steady state

> Agreement between experimental data and theoretical predictions based on a
Generalised Gibbs Ensemble
Rigol, Dunjko, Yurovsky, Olshanii, PRL (2007)




Quantum Transport




Inhomogeneous Quenches

>  Problem:
Consider an extended quantum system, prepared in a spatially inhomogeneous (step-
like) initial state and let to evolve unitarily under a homogeneous Hamiltonian (e.g. a
system initially split in two halves at different temperature, then abruptly joined
together).

> Objective:
Derive asymptotic values of local observables at large times and distances from the
origin (e.g. energy/density current).

>  Questions:
- Is transport ballistic? diffusive! other?
- Relation to conductivity problem

N PG,

e_IBLH+(Bh)LSz e_BRH+(Bh)RSz

--@ @ @ @
J
figure from: Piroli De Nardis Collura Bertini Fagotti (2017)
-



Transport Experiment

> Expansion of initially localised ultracold bosons in homogeneous ID optical lattices

(1) Integrable: Ballistic Expansion
(2) Non-integrable: Diffusive Expansion
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Ronzheimer et al. PRL (2017)



https://arxiv.org/find/cond-mat/1/au:+Ronzheimer_J/0/1/0/all/0/1
https://arxiv.org/find/cond-mat/1/au:+Ronzheimer_J/0/1/0/all/0/1

Non-Equilibrium Steady State

> Long time asymptotics of local observables: Non-Equilibrium Steady State (NESS)

lim lim (O({r;}:1)) = Tr{pNESSO{TZ } ZpNESS W W[O{r:})|T)

t—o0 TDL
where } }
po X e—BLHOL R e—BRHOR nL(k) I’lR(k)
IONESS X e_BLH—> ® e_BRH<— + /
> Initial state: k k
product state in coordinate space (left/right) l

> Final state:
product state in momentum space
(left/right moving modes)

Spohn, Lebowitz (1977); Ruelle (2000); Tasaki (2000);
Araki, Ho (2000);Aschbacher, Pillet (2003);

Bernard, Doyon (2012); + Viti, De Luca (2013- );

+ Dubail, Stephan (2015- ),

Sabetta, Misguich, Collura, Karevski, Kormos... k




Generalised Hydrodynamics

> Integrable models:
infinite set of conservation laws expressed as hydrodynamic continuity equations

> Equivalent to classical quasiparticles, moving ballistically and scattering elastically with
each other (analogous to Boltzmann or kinetic equation).

> Collisions result in dressing of group velocity:
cumulative effect of phase shifts due to collisions with other particles

Castro-Alvaredo, Doyon, Yoshimura (2016)
Bertini, Collura, De Nardis, Fagotti (2016)




Models & Methods




Models: QFT

Quantum Field Theory

1 1
> Massless free boson HOFB=/<§7T2—|—§(833¢)2> dx
H L 1 2 1 8 2 1 2 12 d

> Massive free boson mEF'B — §7T ‘|‘§( = ®) —|—§m L

(Klein-Gordon)

_ 1 5, 1 o 1 59 1.4

> q)4 H¢4 —/(577 +§(5x¢) —I-?m qb —I—z)\qb dx
»  sine-Gord 1 5, 1 M’

sine-Gordon Hao = [ (577 + 500 + 55 (1~ cos 59) ) da




Models: spin chains / lattice models

Spin chains
> lIsing

Hrprsing = —J Y (S555, 1 + hS})

Hyrising = —JZ SrSr i1+ heSE+ hySE)
> XX/ XY

Hxx =-JY (SESe . +SYSh, |+ hS;)

Hxy =—J) [(1+7)S5SE, + (1—7)SYSY,, + hSy)
> XXZ / Heisenberg / XYZ

Hxxz=-J)Y (S5Sk, +SYSY \+ AS;S:,, + hS})
Hxxx = —JZ SESE L+ SYSY . L+ SS5. . + hSE)

Hxyz = — Z (JuSESE |+ JySYSY . + J.SZSE 4 + hS?)

n



Models: spin chains / lattice models

Lattice models

> Free hopping fermions

Hpp1 = Z (C;-Cj_|_1 + h.c. + ,unj) : n; = C;-Cj
J
> Free hopping fermions + non-diagonal

Hrpo = Z (C;-Cj_|_1 + Wc;-cj-ﬂ + h.c. + ,unj)
J
> Interacting fermions

H;.: = Z (C}Cj_|_1 + h.c. + TiTj41 + ,unj)
J




Models: quantum gases / liquids

Quantum liquids

>

>

>

Free non-relativistic Bose / Fermi gas
Hr = / (890\I/T8m\1!) dz , m =

Interacting Bose gas

N —

Hin: = / (0,¥79,¥) dz + // V(e — 20T (2)¥(2) T (") (") deda’
Bose gas with point interactions (Lieb-Liniger model)

Hrr :/(ax\wax\wrc\mﬁ\p\p) dw




Model classification




Model classification

o ==

INTEGRABLE

INTERACTING
NON-INTEGRABLE




Integrable models

> Characterised by presence of infinite set of local conserved quantities
Qn = / gn(x) dz

> Multi-particle collisions can be decomposed into sequence of two-particle collisions and
the order is irrelevant (Yang-Baxter equation)

> Collisions are elastic: no production or destruction of particles




Models: QFT

Quantum Field Theory

1 1
» Massless free boson HOFB:/(§7T2+§(&C¢)2) dx
_ I o 1 o 1 o
» Massive free boson Hynrp = §7T +§(8w¢) —|—§m ¢° | do
(Klein-Gordon)
_ I o 1 o 1 oo 1104
> H¢4—/<§7T ‘|‘§(5’x¢) —I—§m 1) —I—Z)\(b dx
sine-Lsordon Hsq = 5™+ 5(0z9) +§(1—C085¢) dz




Models: spin chains / lattice models

Spin chains
> lsing

Hrpring = —J »_ (5252, + hS?)

Hirising = —JZ SESE 1+ h,SE+ hySE)
> XX/ XY

Hxx =—-J ) (SESe ., +SYSY,, +hS;)

Hxy = —JZ (L+7)85Sni1 + (1 =7)SuSh, 1 + hSr)
> XXZ / Heisenberg / XYZ

Hxxz=-J) (S5SE,, +SYSY, 1+ ASLSE, 1+ hS])
Hxxx = —JZ SESE L+ SYSY . L+ S2S5., + hSE)

Hxyz = — Z (JuSESE | + JySYSY.  + J.SZSE 4 + hSZ)

n



Models: spin chains / lattice models

Lattice models

> Free hopping fermions

HFFl = Z (C}L-Cj_|_1 + h.c. + ,u'n,j) ; n; = C}L-Cj
J
> Free hopping fermions + non-diagonal

Hrro = Z (c}cjﬂ + vc;c;+1 + h.c. + ,u'n,j)
J
> Interacting fermions

H;.: = Z (C}Cj_H + h.c. + TiTj41 + ,U,’I”Lj)
J




Models: quantum gases / liquids

Quantum liquids

> Free non-relativistic Bose / Fermi gas
Hrp = / (Gx\IfT&,;\II) dz , m =

> Interacting Bose gas

N =

Hip = / (0,970,¥) dx + // V(e — 2 (2)U(2)¥T (") (2") deda’
> Bose gas with point interactions (Lieb-Liniger model)

Hrr :/(awqﬁawqurcqﬁqﬁw) dz




Methods: analytical

> Quantum Field Theory

> Conformal Field Theory

> Integrable Field Theory

> Renormalisation Group Theory
> Bosonisation - Luttinger liquid theory (gapless phase of all |-dim models)
> Bethe Ansatz (integrable models)

> Random Matrix Theory (non-integrable models)

> Semiclassical / Kinetic / Hydrodynamic approaches (all classes)




Methods: numerical

> time-dependent Density Matrix Renormalisation Group (tDMRG)
Tensor Network / Matrix Product State methods
(I-dim spin chains / lattice models)

> Truncated Conformal Space Approach (QFT / continuous models)

> ABACUS (integrable models)

> Quantum Boltzmann Equation (all classes)




Dualities

> Boson-Fermion correspondence (fermions <> bosons)
1

vV 2Ta

> Jordan - Wigner transformation (bosons — hard-core bosons / spins — fermions)

eZwiapoxei(aé(a}) —p(x))

o (z) = U'(z) exp {m / x dx’ﬁ(x’)}

— 0

fermionisation




Dualities

Quantum Field Theory  Spin chains Lattice models Quantum liquids
> Massless free > Ising » = Free hopping > Free non-relativistic
boson - fermions Bose / Fermi gas

— *» Interagcting Bose gas
>

> Massive freelboson > XX/ XY
(KIein-Gordc~n)

Free hopping
ions + non-
diagona
> Bose gas
> ¢ interaction

» XXZ (Lieb-Linigek model)

Heisenberg ——> *» Interacting fermions
» sine-Gordon XYZ » ..at large interaction
(Tonks-Girardeau)

> ...in gapless phase

ith point




End of Introduction
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Outline

Summary of Ist lecture

Gaussification

proof of relaxation to GGE in the special case of Gaussian dynamics

Intro to integrability:
the Lieb-Liniger model

Intro to Bosonisation:

Luttinger liquid approximation of the Lieb-Liniger model




Summary




Quantum Quenches

Well-posed theoretical and experimental problem:
Consider an isolated and thermodynamically large quantum system, prepared in an

initial state that is the ground state of some arbitrary Hamiltonian, then let to evolve
under a different Hamiltonian

—1Ht

H()‘\If()> =0 |\If()> 6%?

Calabrese Cardy, PRL (2006)

Questions:

> Long time behaviour?

> Does the system tend to equilibrium!?

> If yes, is equilibrium thermal?

> If not, what type of equilibrium is it?

> How much and what type of information
about initial state survives at long times!?




Quantum Newton’s Craddle

> Experiment:
A system of |d non-relativistic bosons with point-like interactions in a harmonic trap
prepared in out of equilibrium initial state:
- does not relax even after many collisions,
- exhibits non-thermal momentum distribution.

> Lack of thermalisation due to integrability (Lieb-Liniger model)?
Kinoshita et al., Nature (2006)

a 05

Position (um) 04}
-500 0 500
03}
02}

0.1}

05

04

03}

02}

01}

05}

0.4 f

03}

/4

02}

0.1}

’ . 5 ;. |
U 0 - - -
-1,000  -500 0 500 1,000
Z (um)
/
0 0.5 1:0
z Normalized optical thickness




Quantum Newton’s Craddle

> Experiment:
A system of |d non-relativistic bosons with point-like interactions in a harmonic trap
prepared in out of equilibrium initial state:
- does not relax even after many collisions,
- exhibits non-thermal momentum distribution.

> Lack of thermalisation due to integrability (Lieb-Liniger model)?
Or dimensionality? Kinoshita et al., Nature (2006)
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Integrability & Equilibration

> Integrable models:

> characterised by presence of infinite set of local conserved quantities (beyond total
momentum and ener '
22 Qn = / gn(x) dz

...which means that they do not thermalize when brought out of equilibrium, but
rather expected to relax to a generalised statistical ensemble (GGE)

> elastic particle scattering

> exactly solvable by Bethe-Ansatz

> one-dimensional

> may possess non-trivial
quasi-particle excitations:
solitons & breathers

FREE
> serve as non-trivial models
of many-body dynamics: INTEGRABLE
less trivial than free models,
yet possible to analyse exactly INTERACTING

NON-INTEGRABLE




Integrability & Equilibration

Examples:

All non-interacting models

Models that can be mapped into non-interacting ones

(Ising spin chain in transverse field, XY model, hard-core boson gas)
Heisenberg model, more generally XYZ spin chain
sine/sinh-Gordon model, Thirring model

|d Bose gas with point-like interactions (Lieb-Liniger model)

FREE

INTEGRABLE

INTERACTING
NON-INTEGRABLE



Generalised Gibbs Ensemble

Conjecture:

“In integrable models local observables equilibrate to a Generalised Gibbs Ensemble that is a

maximum entropy ensemble determined by all constraints coming from the infinite number
of conserved quantities.”

Rigol, Dunjko, Yurovsky, Olshanii, PRL (2007)
J

Gibbs ensemble: Generalised Gibbs ensemble:

PGE X eXp(_BH) PGGE X €XD < Z )\nIn>
n=1
temperature fixed by > Lagrange multipliers fixed by

constraint of energy
conservation

constraints of all
conserved quantities

Tr(paeH) = (Yo|H|Vo) Tr(pacrs) = (Uo|Z,|¥o)

Very economic: number of local conserved quantities increases only polynomially with
system size (compare with exponential number of initial state’s independent
parameters)

Successfully verified analytically or numerically in large number of special cases

But: complete set of relevant charges (local & quasi-local) not known for most models




Experimental Observation of GGE

time

——sine-Gordon, with imaging resolution

B 1.5ms 25ms 5ms 7ms
- - sine-Gordon : \
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0.52 _ !
% g
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L 04+ N
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\ Y Z,(um) \_ )
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Langen et al., Science (2015)

>  Quench from gapped to gapless non-interacting phase
> Observation of dynamics of correlations
> Non-thermal steady state: more than one temperature needed to describe steady state

> Agreement between experimental data and theoretical predictions based on a
Generalised Gibbs Ensemble




Mass quench in Klein-Gordon

Hio = [ (57 + 5(0:07 + ) ao

> in Fourier space:infinite set of
independent harmonic oscillators

> solve in Schroedinger (using
Bogoliubov transformation and
squeezed states) or Heisenberg
picture (EoM: linear harmonic
oscillator)

> 2pt correlation function:

dk E; + Eg, N E; — E5,
6

2T 4E2E0k 4E]%E0]<;

Coq(r,t) = COS 2Ekt)

> Horizon effect
> Equilibration to a non-thermal state
2 2
dk ;.. Ef + B

Cyoo(r) =
=00 (r) 5C LE? Eqy




Gaussification

in interacting-to-free quantum quenches




Gaussification

in interacting-to-free quantum quenches

“A quantum quench from a general interacting Hamiltonian to a non-interacting one, results in

relaxation to a Gaussian GGE, under the conditions of clustering of initial correlations and
delocalising dynamics.”

Cramer Eisert (2010), Gluza Krumnow Friesdorf Gogolin Eisert (2016),
Sotiriadis Calabrese (2014), Sotiriadis (2016-17), Doyon (2017)

J

> All memory of initial non-Gaussian
correlations (connected correlation
functions of order > 2) erased by
Gaussian dynamics!

> Later generalised to dynamics
under genuinely interacting
integrable spin chains




Connected Correlation Function

> Connected correlation functions (aka cumulants):

RaTEN N S N

> Gaussian states:
All connected correlation functions of order higher than 2 vanish (i.e. all higher order

correlation functions can be decomposed into combinations of 2pt functions: Wick’s

theorem)




| 2

Proof of Gaussification

| st condition

Clustering of initial correlations: et -

Initial correlations between two groups of R 4

points far from each other must factorise ," 2 o 7oAt .

> generally valid - expresses locality of \ @ o4 R - 0o N LJmtR )
interactions in pre-quench Hamiltonian

e - -

Hh—lglc, < H o(x;) H o + ]?)> = < H G')(il-fi)>< H @(417;)')>

2nd condition

Delocalising dynamics:

initially local fields spread with time under the action of post-quench Hamiltonian
> typically valid for non-interacting dynamics due to non-linear dispersion

> non-trivial - not necessarily true for all integrable systems!

Physical mechanism:

Information determining large time values of local observables originates from spatially
distant points, thus independent —

Gaussification: reminiscent of classical central limit theorem




> Diagrammatic method:
> Express time-evolved field in terms of initial fields by exact solution of Heisenberg
equations of motion (always possible for free dynamics)

at) = / dz G s(z — 2/, )0 ()

(8%
> Use cumulant expansion of initial state: extract large time decay of connected
correlations from large distance decay of initial correlations (clustering) + large time
decay of field propagators (delocalisation)

C({zi}, 1) <H¢ Tt > — ZH/dx’b Ga,.8, (z; — xfivt) <H(i)5z ($2)>
t c o1 ( c

/N 7 N
e v N




Interacting dynamics:

the Lieb-Liniger case




Lieb-Liniger Dynamics

Lieb-Liniger model:
one-dimensional system of non-relativistic bosons with point-like interactions

Hamiltonian Hir :/ (am\I,T@m\I,+C\I;T\IJT\p\1;) dz

Despite integrability, exact derivation of equilibrium state possible only for special cases
of initial states

Dynamics can be understood semiclassically through kinetic / Boltzmann-type equation

Castro-Alvaredo, Doyon, Yoshimura (2016)
Bertini, Collura, De Nardis, Fagotti (2016)




Quench Action Method

> Exact eigenstates and energy eigenvalues known by Bethe Ansatz

(@]th(N)) o Z (-1 [P] eXp ( Z)\P $z> H Ap; — Ap, —licsign(x; — xi)}
P perm.s J>1
where “rapidities” A given by Behe Ansatz equations

) al )\i—)\j—ic
exp (i\; L) | | ) T —1
¢ J

j=1

> Time evolution after a quench

(QleTH O Q) = N " (Q|E')(E'|O|E)(E|Q)e F=F)!
E,E’

> Problem |:overlaps of initial state in post-quench eigenstates not known
no general solution




Quench Action Method

> Problem 2: summation over exponentially many energy eigenstates
E.E’

>  Quench Action method:
- in thermodynamic limit, write sums as functional integrals over macrostates

characterised by rapidity densities o(\)

e H1R) = R IENEI)e

/Dp ) |p(A e tEp]t Jlog(p|)+S]p]

- find macrostate that maximises the action: best representation of initial state
- steady state is given by this saddle-point macrostate

lim (Qlet" ™ 0e™ Q) = (®,]|O|D,)

t—00
Caux Essler (2013)




Bosonisation:

mapping interacting models to free




Bosonization in Lieb-Liniger model

. One-dimensional interacting Bose gas

A A

H= / dx 0,V ()0, (z) + / dadr' V(x — 2 )T (2)U(2)UT (") (2)
1

*  Introduce density/phase fields ¥'(z) = \/5(2)e*® and  j(z) = po + —0,0(x)
. . . A~ N A~ N 7T
with commutation relations 0,0(x), d(x")] = —[0(2), 0p p(2")] = imd(x — )
. Keeping only quadratic terms in the gradients
: ~ [a 9.8) +— (8,60)
Hup =5 [ do | K (0:9) + (0:9)
L 2T * [ ?) + K ]
standard Luttinger model = massless free boson CFT [ Haldane (1981) ]
. Local fields correspond to derivatives of bosonisation fields (and vertex operators):
density/current

) = 1 () b(x) = po + —0.0(x)

j(@) = =i (V@) (@) - 0,81 (2)¥(2)) = —21/p() (0ud(2)) V(@) ~ ~2p00.0(x)



Bosonization glossary

H;, = % dx [K ((%gg)Q - % (833@)2} — % Z /daz (393@0)2
o==

bosonisation fermionic
original bosons density/phase fields quasiparticle field
contact interaction linear linear
dispersion dispersion
free P P
long-range interaction non-linear free
dispersion non-linear
kinetic term dispersion
(next to leading order) chiral
interaction
non-
free
nonlinear dispersion non-chiral rf]roene_ perturbative
Interaction interaction




Bosonization Dynamics

H;, = 21; dx [K ((%gg)z - % (833@)2] — % Z /daz (893@0)2
o==

Equations of motion: wave equation
06 = v02d
Solution: d’Alembert formula

T+vt
Ha.t) = 3 (So—ot.0) +d@+000)) + 50 [ d' B6(',0)

2V -

Large time asymptotics of correlations of local observables (field derivatives)

0. p(x,t) Z 0P (T + ovt, 0)

O'_

Large time connected correlations decompose into two contributions from left and right
asymptotics of initial correlations, but don’t vanish generally
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Bosonization Dynamics

t
T_,CC 1 T2 T3 T4

L ] *R R ]
7 N 2 NN 2N
’ N/ N v A Y
’ Y I 4 N2 N A Y
’ ’ A N\ A A
’ ’ /7 N 2 N N N

’ ’ ’ 7 N N N N

Memory of all initial correlations preserved up to infinite times:
no Gaussification



Nonlinear Dispersion effects

Haisp = 5/dw[ a2¢)2+%(x ] %Z/daz ps)”

. Equations of motion
Orps(x,t) = £ (V0P (m,t) + BOP 4+ (z,1))
. Solution

A

Opd(x, 1) = /dx’ (@G(x — 2 )0y (2, 0) + 0,G(x — 2, )8, (2, O))

dk ;..sinw(k)t Tt z
G(CE,t) — ﬁek w(k) X A\
w(k) = |k| (v+ BK*) = v|k| f (k) > 2

. Propagator still exhibits light-cone form R .
but also dispersive spreading —
decays with time uniformly in space ~ 113

Initial clustering + Uniform decay of propagator with time — Gaussification



Thank you for your attention




