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Out-of-equilibrium quantum statistical physics

‣ Many scientific discoveries of those that 
have changed human civilisation over the 
last century are built upon our progress in 
understanding the statistical physics of 
matter and quantum systems.

‣ Yet our understanding has until recently 
remained limited to systems at thermal 
equilibrium or close to it, which is rarely the 
case in physical reality. 

‣ However during the last decade or so the 
physics community has witnessed an 
explosion of research activity in out-of-
equilibrium quantum physics, opening up 
countless possibilities for novel applications. 



Motivation

‣ Equilibration in quantum systems is a 
fundamental and long-standing question of 
statistical mechanics

‣ Reach the ultimate limits of classical 
thermodynamics expectations and unveil 
novel quantum effects at macroscopic level

‣ Recent progress in experimental (ultra-cold 
atoms) and numerical (tDMRG, MPS) 
techniques for study of quantum many-
body dynamics

‣ Applications to quantum technologies:
quantum thermal engines,
quantum information processing & 
computing



Equilibration



Quantum Quenches

‣ Well-posed theoretical and experimental problem:
Consider an isolated and thermodynamically large quantum system, prepared in an 
initial state that is the ground state of some arbitrary Hamiltonian, then let to evolve 
under a different Hamiltonian

‣ Questions:

‣ Long time behaviour?
‣ Does the system tend to equilibrium?
‣ If yes, is equilibrium thermal?
‣ If not, what type of equilibrium is it?
‣ How much and what type of information about initial state survives at long times?

Calabrese Cardy,  PRL (2006)



Quantum Newton’s Craddle

‣ Experiment:
A system of 1d non-relativistic bosons with point-like interactions in a harmonic trap 
prepared in out of equilibrium initial state:
- does not relax even after many collisions,
- exhibits non-thermal momentum distribution.

‣ Lack of thermalisation due to integrability (Lieb-Liniger model)? 
Kinoshita et al., Nature (2006)



Quantum Newton’s Craddle

‣ Experiment:
A system of 1d non-relativistic bosons with point-like interactions in a harmonic trap 
prepared in out of equilibrium initial state:
- does not relax even after many collisions,
- exhibits non-thermal momentum distribution.

‣ Lack of thermalisation due to integrability (Lieb-Liniger model)? 
Or dimensionality? Kinoshita et al., Nature (2006)



GGE

‣ Integrable models: 
Possess infinite number of local conserved quantities

‣ Conjecture:

“Integrable models equilibrate to a Generalised Gibbs Ensemble that is a maximum entropy 
ensemble determined by all constraints coming from the infinite conserved quantities.”

Generalised Gibbs ensemble:

Lagrange multipliers fixed by the 
constraints of all extra conserved 

quantities

Gibbs ensemble:

temperature fixed by the 
constraint of energy 

conservation

Rigol, Dunjko, Yurovsky, Olshanii, PRL (2007)



Experimental Observation of GGE

‣ splitting 1d ultracold atom 
quasi-condenstate in two 
coupled subsystems → 
low-energy physics described 
by sine-Gordon model
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‣ interference patterns + 
averaging over many repetitions  
→ direct measurement of multi-
point correlation functions of 
phase field

Schweigler et al., Nature (2017)



Experimental Observation of GGE

Schweigler et al., Nature (2017)

‣ observation of soliton configurations 
(2π phase difference between
left / right boundaries)
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Experimental Observation of GGE

Schweigler et al., Nature (2017)
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‣ observation of deviations from Gaussianity 
(Wick’s theorem) in thermal states

‣ identification of 3 regimes:
‣ effectively free massless
‣ strongly interacting 
‣ effectively free massive



Experimental Observation of GGE
time

‣ Quench from gapped to gapless non-interacting phase
‣ Observation of dynamics of correlations 
‣ Non-thermal steady state: more than one temperature needed to describe steady state
‣ Agreement between experimental data and theoretical predictions based on a 

Generalised Gibbs Ensemble

Langen et al., Science (2015)
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Rigol, Dunjko, Yurovsky, Olshanii, PRL (2007)



Quantum Transport



Inhomogeneous Quenches

‣ Problem: 
Consider an extended quantum system, prepared in a spatially inhomogeneous (step-
like) initial state and let to evolve unitarily under a homogeneous Hamiltonian (e.g. a 
system initially split in two halves at different temperature, then abruptly joined 
together).

‣ Objective: 
Derive asymptotic values of local observables at large times and distances from the 
origin (e.g. energy/density current).

‣ Questions:
- Is transport ballistic? diffusive? other?
- Relation to conductivity problem

t
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figure from:  Piroli De Nardis Collura Bertini Fagotti (2017)



Transport Experiment

‣ Expansion of initially localised ultracold bosons in homogeneous 1D optical lattices

(1) Integrable: Ballistic Expansion
(2) Non-integrable: Diffusive Expansion

Ronzheimer et al. PRL (2017)

Expansion dynamics of interacting bosons in homogeneous lattices

in one and two dimensions

J. P. Ronzheimer,1, 2 M. Schreiber,1, 2 S. Braun,1, 2 S. S. Hodgman,1, 2 S. Langer,3, 4

I. P. McCulloch,5 F. Heidrich-Meisner,3, 6 I. Bloch,1, 2 and U. Schneider1, 2

1Department of Physics, Ludwig-Maximilians-Universität München, 80799 München, Germany
2Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany

3Department of Physics and Arnold Sommerfeld Center for Theoretical Physics,
Ludwig-Maximilians-Universität München, 80333 München, Germany

4Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
5Centre for Engineered Quantum Systems, School of Mathematics and Physics,

The University of Queensland, St. Lucia, QLD 4072, Australia
6Friedrich-Alexander Universität Erlangen-Nürnberg,

Institut für Theoretische Physik II, 91058 Erlangen, Germany
(Dated: February 1, 2013)

We experimentally and numerically investigate the expansion of initially localized ultracold bosons
in homogeneous one- and two-dimensional optical lattices. We find that both dimensionality and
interaction strength crucially influence these non-equilibrium dynamics. While the atoms expand
ballistically in all integrable limits, deviations from these limits dramatically suppress the expansion
and lead to the appearance of almost bimodal cloud shapes, indicating di�usive dynamics in the
center surrounded by ballistic wings. For strongly interacting bosons, we observe a dimensional
crossover of the dynamics from ballistic in the one-dimensional hard-core case to di�usive in two
dimensions, as well as a similar crossover when higher occupancies are introduced into the system.

Non-equilibrium dynamics of strongly correlated
many-body systems pose one of the most challenging
problems for theoretical physics [1]. Especially in one di-
mension, many fundamental questions concerning trans-
port properties and relaxation dynamics in isolated sys-
tems remain under active debate. These problems have
attracted a renewed interest in recent years due to the
advent of ultracold atomic gases. The ability to control
various system parameters in real time has not only al-
lowed quantum simulations of equilibrium properties of
interacting many-body systems [2], but has also enabled
experimental studies of quantum quenches [3–7] and par-
ticle transport [8–12] in clean, well-controlled, and iso-
lated systems. Here, we study the combined e�ects of in-
teractions and dimensionality on the expansion dynamics
of bosonic atoms in optical lattices.

While interactions generally lead to di�usive trans-
port in higher dimensions, the situation is more involved
in one dimension (1D), where the phase space available
for scattering can be severely limited. This was demon-
strated, for example, by the experimental realization of
a quantum Newton’s cradle [5], showing that not all 1D
Bose gases thermalize (see also [13]). An intriguing phe-
nomenon in 1D is the existence of an exact mapping [14]
from hard-core bosons on a lattice or a Tonks-Girardeau
gas [15, 16] to non-interacting spinless fermions, demon-
strating the integrability of these systems. Furthermore,
this mapping establishes that the time evolution of the
density distribution is identical for hard-core bosons and
non-interacting fermions. As a consequence, hard-core
bosons in 1D expand ballistically and, asymptotically,
undergo a dynamical fermionization during the expan-
sion [17, 18]. In a transient regime, even initial 1D
Mott insulators with unity filling are predicted to be-
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Figure 1. (Color) Experimental sequence and time evolu-
tion during the expansion. (a) Sketch of the experimental
sequence. (b)-(d) Experimental time evolution of line den-
sity profiles during a 1D expansion for various interaction
strengths (each line is individually normalized). (e)-(g) Corre-
sponding t-DMRG calculations for eight atoms, plotted using
cubic interpolation.

come coherent during the expansion and to dynamically
form long-lived quasi-condensates at finite momenta [19–
21]. In the presence of doubly occupied lattice sites
(doublons) or even higher occupancies, the above map-
ping is not applicable. The dynamics then become more
involved and can include intriguing quantum distilla-
tion e�ects, namely a demixing of doublons and single
atoms [22, 23].

Several powerful theoretical methods have been used to
study the expansion dynamics in 1D, including the time-
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Non-Equilibrium Steady State

Spohn, Lebowitz (1977); Ruelle (2000);  Tasaki (2000);  
Araki, Ho (2000); Aschbacher, Pillet (2003); 

Bernard, Doyon (2012); + Viti, De Luca (2013- ); 
+ Dubail, Stephan (2015- ), 

Sabetta, Misguich, Collura, Karevski, Kormos...
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‣ Long time asymptotics of local observables: Non-Equilibrium Steady State (NESS)

where

‣ Initial state: 
product state in coordinate space (left/right)

‣ Final state: 
product state in momentum space
(left/right moving modes)



Generalised Hydrodynamics

‣ Integrable models: 
infinite set of conservation laws expressed as hydrodynamic continuity equations

‣ Equivalent to classical quasiparticles, moving ballistically and scattering elastically with 
each other (analogous to Boltzmann or kinetic equation).

‣ Collisions result in dressing of group velocity: 
cumulative effect of phase shifts due to collisions with other particles

Castro-Alvaredo, Doyon, Yoshimura (2016)
Bertini, Collura, De Nardis, Fagotti (2016)
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Models & Methods



Models: QFT

Quantum Field Theory

‣ Massless free boson

‣ Massive free boson
(Klein-Gordon)

‣ φ4

‣ sine-Gordon



Models: spin chains / lattice models

Spin chains

‣ Ising

‣ XX / XY

‣ XXZ / Heisenberg / XYZ 



Models: spin chains / lattice models

Lattice models

‣ Free hopping fermions

‣ Free hopping fermions + non-diagonal

‣ Interacting fermions



Models: quantum gases / liquids

Quantum liquids

‣ Free non-relativistic Bose / Fermi gas 

‣ Interacting Bose gas

‣ Bose gas with point interactions (Lieb-Liniger model)



Model classification

FREE

INTERACTING



INTERACTING
NON-INTEGRABLE

INTEGRABLE

Model classification

FREE



Integrable models

‣ Characterised by presence of infinite set of local conserved quantities

‣ Multi-particle collisions can be decomposed into sequence of two-particle collisions and 
the order is irrelevant (Yang-Baxter equation)

‣ Collisions are elastic: no production or destruction of particles



Models: QFT

Quantum Field Theory

‣ Massless free boson

‣ Massive free boson
(Klein-Gordon)

‣ φ4

‣ sine-Gordon



Models: spin chains / lattice models

Spin chains

‣ Ising

‣ XX / XY

‣ XXZ / Heisenberg / XYZ 



Models: spin chains / lattice models

Lattice models

‣ Free hopping fermions

‣ Free hopping fermions + non-diagonal

‣ Interacting fermions



Models: quantum gases / liquids

Quantum liquids

‣ Free non-relativistic Bose / Fermi gas 

‣ Interacting Bose gas

‣ Bose gas with point interactions (Lieb-Liniger model)



Methods: analytical

‣ Quantum Field Theory

‣ Conformal Field Theory
‣ Integrable Field Theory
‣ Renormalisation Group Theory

‣ Bosonisation - Luttinger liquid theory (gapless phase of all 1-dim models)

‣ Bethe Ansatz (integrable models)

‣ Random Matrix Theory  (non-integrable models)

‣ Semiclassical / Kinetic / Hydrodynamic approaches (all classes)



Methods: numerical

‣ time-dependent Density Matrix Renormalisation Group (tDMRG)
Tensor Network / Matrix Product State methods
(1-dim spin chains / lattice models)

‣ Truncated Conformal Space Approach (QFT / continuous models)

‣ ABACUS (integrable models)

‣ Quantum Boltzmann Equation (all classes)



Dualities

‣ Boson-Fermion correspondence (fermions � bosons)

‣ Jordan - Wigner transformation (bosons → hard-core bosons / spins → fermions)
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Dualities

Quantum Field Theory

‣ Massless free 
boson

‣ Massive free boson
(Klein-Gordon)

‣ φ4

‣ sine-Gordon

‣ ...in gapless phase

Spin chains

‣ Ising

‣ XX / XY

‣ XXZ 
Heisenberg  
XYZ 

Lattice models

‣ Free hopping 
fermions

‣ Free hopping 
fermions + non-
diagonal

‣ Interacting fermions

Quantum liquids

‣ Free non-relativistic 
Bose / Fermi gas 

‣ Interacting Bose gas

‣ Bose gas with point 
interactions 
(Lieb-Liniger model)

‣ ...at large interaction
(Tonks-Girardeau)



End of Introduction
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Summary of 1st lecture

Gaussification
proof of relaxation to GGE in the special case of Gaussian dynamics

Intro to integrability: 
the Lieb-Liniger model

Intro to Bosonisation:
Luttinger liquid approximation of the Lieb-Liniger model

Outline



Summary



Quantum Quenches

‣ Well-posed theoretical and experimental problem:
Consider an isolated and thermodynamically large quantum system, prepared in an 
initial state that is the ground state of some arbitrary Hamiltonian, then let to evolve 
under a different Hamiltonian

‣ Questions:

‣ Long time behaviour?
‣ Does the system tend to equilibrium?
‣ If yes, is equilibrium thermal?
‣ If not, what type of equilibrium is it?
‣ How much and what type of information 

about initial state survives at long times?

Calabrese Cardy,  PRL (2006)



Quantum Newton’s Craddle

‣ Experiment:
A system of 1d non-relativistic bosons with point-like interactions in a harmonic trap 
prepared in out of equilibrium initial state:
- does not relax even after many collisions,
- exhibits non-thermal momentum distribution.

‣ Lack of thermalisation due to integrability (Lieb-Liniger model)? 
Kinoshita et al., Nature (2006)



Quantum Newton’s Craddle

‣ Experiment:
A system of 1d non-relativistic bosons with point-like interactions in a harmonic trap 
prepared in out of equilibrium initial state:
- does not relax even after many collisions,
- exhibits non-thermal momentum distribution.

‣ Lack of thermalisation due to integrability (Lieb-Liniger model)? 
Or dimensionality? Kinoshita et al., Nature (2006)



Integrability & Equilibration

‣ Integrable models: 

‣ characterised by presence of infinite set of local conserved quantities (beyond total 
momentum and energy)

...which means that they do not thermalize when brought out of equilibrium, but 
rather expected to relax to a generalised statistical ensemble (GGE)

‣ elastic particle scattering
‣ exactly solvable by Bethe-Ansatz
‣ one-dimensional
‣ may possess non-trivial 

quasi-particle excitations:  
solitons & breathers

‣ serve as non-trivial models 
of many-body dynamics: 
less trivial than free models, 
yet possible to analyse exactly INTERACTING

NON-INTEGRABLE

INTEGRABLE

FREE



Integrability & Equilibration

‣ Examples: 
- All non-interacting models
- Models that can be mapped into non-interacting ones 

(Ising spin chain in transverse field, XY model, hard-core boson gas)
- Heisenberg model, more generally XYZ spin chain
- sine/sinh-Gordon model, Thirring model
- 1d Bose gas with point-like interactions (Lieb-Liniger model)

INTERACTING
NON-INTEGRABLE

INTEGRABLE

FREE



Generalised Gibbs Ensemble

‣ Conjecture:
“In integrable models local observables equilibrate to a Generalised Gibbs Ensemble that is a 
maximum entropy ensemble determined by all constraints coming from the infinite number 
of conserved quantities.”

‣ Very economic: number of local conserved quantities increases only polynomially with 
system size (compare with exponential number of initial state’s independent 
parameters)

‣ Successfully verified analytically or numerically in large number of special cases
‣ But: complete set of relevant charges (local & quasi-local) not known for most models

Rigol, Dunjko, Yurovsky, Olshanii,  PRL (2007)

Generalised Gibbs ensemble:

Lagrange multipliers fixed by 
constraints of all

conserved quantities

Gibbs ensemble:

temperature fixed by
constraint of energy 

conservation



Experimental Observation of GGE
time

‣ Quench from gapped to gapless non-interacting phase
‣ Observation of dynamics of correlations 
‣ Non-thermal steady state: more than one temperature needed to describe steady state
‣ Agreement between experimental data and theoretical predictions based on a 

Generalised Gibbs Ensemble

Langen et al., Science (2015)
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Mass quench in Klein-Gordon

‣ in Fourier space: infinite set of 
independent harmonic oscillators

‣ solve in Schroedinger (using 
Bogoliubov transformation and 
squeezed states) or Heisenberg 
picture (EoM: linear harmonic 
oscillator)

‣ 2pt correlation function:

‣ Horizon effect
‣ Equilibration to a non-thermal state
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Gaussification
in interacting-to-free quantum quenches



“A quantum quench from a general interacting Hamiltonian to a non-interacting one, results in 
relaxation to a Gaussian GGE, under the conditions of clustering of initial correlations and 
delocalising dynamics.”

‣ All memory of initial non-Gaussian 
correlations (connected correlation 
functions of order > 2) erased by 
Gaussian dynamics!

‣ Later generalised to dynamics 
under genuinely interacting 
integrable spin chains

Gaussification
in interacting-to-free quantum quenches

Initial State:
Clustering of Correlations

Dynamics:
Delocalisation

↓

+

Cramer Eisert (2010), Gluza Krumnow Friesdorf Gogolin Eisert (2016),
Sotiriadis Calabrese (2014), Sotiriadis (2016-17), Doyon (2017)

Gaussian 
relaxation



‣ Connected correlation functions (aka cumulants):

‣ Gaussian states:
All connected correlation functions of order higher than 2 vanish (i.e. all higher order 
correlation functions can be decomposed into combinations of 2pt functions: Wick’s 
theorem)

Connected Correlation Function



‣ 1st condition
Clustering of initial correlations:
Initial correlations between two groups of 
points far from each other must factorise
‣ generally valid - expresses locality of 

interactions in pre-quench Hamiltonian

‣ 2nd condition
Delocalising dynamics:
initially local fields spread with time under the action of post-quench Hamiltonian
‣ typically valid for non-interacting dynamics due to non-linear dispersion
‣ non-trivial - not necessarily true for all integrable systems!

‣ Physical mechanism:
Information determining large time values of local observables originates from spatially 
distant points, thus independent → 
Gaussification: reminiscent of classical central limit theorem

Proof of Gaussification



‣ Diagrammatic method:
‣ Express time-evolved field in terms of initial fields by exact solution of Heisenberg 

equations of motion (always possible for free dynamics)

‣ Use cumulant expansion of initial state: extract large time decay of connected 
correlations from large distance decay of initial correlations (clustering) + large time 
decay of field propagators (delocalisation)

Method

{
{

{



Interacting dynamics: 
the Lieb-Liniger case



‣ Lieb-Liniger model: 
one-dimensional system of non-relativistic bosons with point-like interactions

‣ Hamiltonian

‣ Despite integrability, exact derivation of equilibrium state possible only for special cases 
of initial states

‣ Dynamics can be understood semiclassically through kinetic / Boltzmann-type equation

Lieb-Liniger Dynamics

Castro-Alvaredo, Doyon, Yoshimura (2016)
Bertini, Collura, De Nardis, Fagotti (2016)
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‣ Exact eigenstates and energy eigenvalues known by Bethe Ansatz

where “rapidities” λ given by Behe Ansatz equations

‣ Time evolution after a quench

‣ Problem 1: overlaps of initial state in post-quench eigenstates not known
no general solution

Quench Action Method



‣ Problem 2: summation over exponentially many energy eigenstates

‣ Quench Action method:
- in thermodynamic limit, write sums as functional integrals over macrostates 
characterised by rapidity densities ρ(λ)

- find macrostate that maximises the action: best representation of initial state
- steady state is given by this saddle-point macrostate

Quench Action Method

Caux Essler (2013)



Bosonisation: 
mapping interacting models to free



! One-dimensional interacting Bose gas

! Introduce density/phase fields                                       and 
with commutation relations

! Keeping only quadratic terms in the gradients

standard Luttinger model = massless free boson CFT

! Local fields correspond to derivatives of bosonisation fields (and vertex operators):
density/current

[ Haldane (1981) ]

Bosonization in Lieb-Liniger model



Bosonization glossary

original bosons
bosonisation 

density/phase fields
bosonisation 

density/phase fields
fermionic 

quasiparticle field
fermionic 

quasiparticle field

contact interaction

free

linear 
dispersion

free

linear 
dispersion

long-range interaction

free

non-linear 
dispersion

free
non-linear 
dispersionkinetic term

(next to leading order)

non-
free

chiral 
interaction

free
non-linear 
dispersion

nonlinear dispersion

non-
free

non-chiral 
interaction

non-
free perturbative

interaction



! Equations of motion: wave equation

! Solution: d’Alembert formula

! Large time asymptotics of correlations of local observables (field derivatives)

! Large time connected correlations decompose into two contributions from left and right 
asymptotics of initial correlations, but don’t vanish generally

Bosonization Dynamics



2-pt

3-pt

4-pt

Memory of all initial correlations preserved up to infinite times: 
no Gaussification

Bosonization Dynamics



! Equations of motion

! Solution

! Propagator still exhibits light-cone form
but also dispersive spreading → 
decays with time uniformly in space

Nonlinear Dispersion effects

Initial clustering + Uniform decay of propagator with time → Gaussification



Thank you for your attention


