Introduction to Topological Superconductivity

Panagiotis Kotetes

NTUA – Lectures on Theoretical Physics 2018

COPENHAGEN

Introduction to Topological Superconductivity

Panagiotis Kotetes

NTUA – Lectures on Theoretical Physics 2018

Assoc. Prof. @ the Institute of Theoretical Physics Chinese Academy of Sciences Beijing

Overview

- Motivation Why look for topological superconductivity?
- Short intro to superconductors (SCs): spin-singlet vs spin-triplet
- Spinful p-wave SCs and the spinless limit: Kitaev's chain
- Majorana fermion quasiparticles and quantum computing
- 4π -periodic Majorana-Josephson effect
- Symmetry and topological classification of phases of matter
- Artificial and effective (intrinsic) p-wave superconductors
- Conclusions and outlook

- Neither bosons nor fermions, allowed in two spatial dimensions -

Effectively 2D systems in the presence of interactions

- Neither bosons nor fermions, allowed in two spatial dimensions -

Effectively 2D systems in the presence of interactions

Fractional quantum Hall systems and topological superconductors

Superposition of quantum states

Candidate qubits:

Electron spin, photon polarization, atomic levels, superconducting devices

Superposition of quantum states

Quantum computing:

- 1. Single-qubit operations
- 2. Joint-qubit operations

- 1. Single-qubit operations
- 2. Joint-qubit operations

Candidate qubits:

Electron spin, photon polarization, atomic levels, superconducting devices

The Quantum-Computer Promise

The Quantum-Computer Status

Davide Castelvecchi Nature news 2017

Quantum computers ready to leap out of the lab

The Quantum-Computer Status

Trapped ions

Monroe Maryland @ IonQ

Superconducting qubits

Martinis UCSB @ Google Schoelkopf Yale @ Quantum Circuits Rigetti and IBM

Majorana qubits

Marcus and Kouwenhoven @ Microsoft

Topological vs conventional qubits

- Conventional qubits are vulnerable to noise and decoherence
 - **1.** Superconducting qubits suffer from noise e.g. 1/f
 - **2.** Spin qubits in quantum dots couple to nuclear spins
- Topological qubits are *in principle* immune to decoherence & noise

Topological vs conventional qubits

- Conventional qubits are vulnerable to noise and decoherence
 - **1.** Superconducting qubits suffer from noise e.g. 1/f
 - **2.** Spin qubits in quantum dots couple to nuclear spins
- Topological qubits are *in principle* immune to decoherence & noise
- Topological qubits rely on many-body ground-state degeneracies

Kitaev, Annals of Phys. (2003) and Nayak et al., Rev. Mod. Phys. (2008)

$$\begin{pmatrix} |0\rangle \\ |1\rangle \end{pmatrix} \Big|_{t>0} = \widehat{U}(t) \begin{pmatrix} |0\rangle \\ |1\rangle \end{pmatrix} \Big|_{t=0}$$

Single qubit Evolution operator

TQC and Anyon Braiding

$$\left(\begin{array}{c} |0\rangle \\ |1\rangle \end{array}\right)\Big|_{t>0} = \widehat{U}(t) \left(\begin{array}{c} |0\rangle \\ |1\rangle \end{array}\right)\Big|_{t=0}$$

Ground state degeneracy due to zero-energy quasiparticles

TQC and Anyon Braiding

$$\left(\begin{array}{c} |0\rangle \\ |1\rangle \end{array}\right)\Big|_{t>0} = \widehat{U}(t) \left(\begin{array}{c} |0\rangle \\ |1\rangle \end{array}\right)\Big|_{t=0}$$

Ground state degeneracy due to zero-energy quasiparticles

Topological quantum computing only if quasiparticles are anyons

Non-Abelian exchange statistics

Spatial exchange

Majorana fermion quasiparticles

TQC and Anyon Braiding

$$\left(\begin{array}{c} |0\rangle \\ |1\rangle \end{array}\right)\Big|_{t>0} = \widehat{U}(t) \left(\begin{array}{c} |0\rangle \\ |1\rangle \end{array}\right)\Big|_{t=0}$$

Ground state degeneracy due to zero-energy quasiparticles

Self-conjugate solutions of the Dirac equation

$$\gamma_E = \gamma^{\dagger}_{-E}$$

Ettore Majorana 1937

Neutrino is the major Majorana-particle candidate

Self-conjugate solutions of the Dirac equation

$$\gamma_E = \gamma^{\dagger}_{-E}$$

Ettore Majorana 1937

Neutrino is the major Majorana-particle candidate

Self-conjugate solutions of the Dirac equation

$$\gamma_E = \gamma_{-E}^{\dagger}$$

Ettore Majorana 1937

Hypothesis' test experiment

Ordinary vs Neutrinoless double beta decay

Neutrino is the major Majorana-particle candidate

Self-conjugate solutions of the Dirac equation

$$\gamma_E = \gamma_{-E}^{\dagger}$$

Ettore Majorana 1937

Hypothesis' test experiment

Ordinary double beta decay

Neutrino is the major Majorana-particle candidate

Self-conjugate solutions of the Dirac equation

$$\gamma_E = \gamma_{-E}^{\dagger}$$

Ettore Majorana 1937

Hypothesis' test experiment

Neutrinoless double beta decay

$$\gamma_s = \gamma_s^{\dagger} \qquad \{\gamma_s, \gamma_{s'}\} = \delta_{s,s'} \qquad 2\gamma_s^2 = 1$$

Ettore Majorana 1937

$$\gamma_s = \gamma_s^\dagger$$

 $\{\gamma_s, \gamma_{s'}\} = \delta_{s,s'} \qquad 2\gamma_s^2 = 1$

$$a_0 = \frac{\gamma_1 + i\gamma_2}{\sqrt{2}} \qquad a_0^2 = 0$$

 $a_0^{\dagger} \left| 0 \right\rangle = \left| 1 \right\rangle$

Non-locality & protection

Ettore Majorana 1937

 $\{\gamma_s, \gamma_{s'}\} = \delta_{s,s'} \qquad 2\gamma_s^2 = 1$

 $a_0 = \frac{\gamma_1 + i\gamma_2}{\sqrt{2}}$ $a_0^2 = 0$

Non-locality & protection

Ettore Majorana 1937

 γ_1

 $a_0^{\dagger} \left| 0 \right\rangle = \left| 1 \right\rangle$

 $\begin{array}{c} \overbrace{\gamma_2} \\ \gamma_2 \end{array} \quad \begin{array}{c} \text{Braiding} \rightarrow \begin{array}{c} \text{Phase} \\ \text{gate} \end{array} \quad \begin{array}{c} |0\rangle \rightarrow e^{+i\pi/4} \left| 0 \right\rangle \\ |1\rangle \rightarrow e^{-i\pi/4} \left| 1 \right\rangle \end{array} \end{array}$

 $\gamma_s = \gamma_s^{\dagger} \qquad \{\gamma_s, \gamma_{s'}\} = \delta_{s,s'} \qquad 2\gamma_s^2 = 1$

$$a_0 = \frac{\gamma_1 + i\gamma_2}{\sqrt{2}} \qquad a_0^2 = 0$$

Non-locality & protection

Ettore Majorana 1937

 γ_1

$$a_0^{\dagger} \left| 0 \right\rangle = \left| 1 \right\rangle$$

$$\begin{array}{c} \overbrace{a_{0}}\\ 1\end{array} \quad \text{Braiding} \rightarrow \begin{array}{c} \text{Phase}\\ \text{gate} \end{array} \quad \begin{array}{c} |0\rangle \rightarrow e^{+i\pi/4} |0\rangle \\ |1\rangle \rightarrow e^{-i\pi/4} |1\rangle \end{array}$$

MF topological quantum computing is non-universal!

Superconductivity

Based on the Meissner effect

Levitating magnet

Superconductor

Zero resistance below a critical temperature

Kamerlingh Onnes 1911 in Hg

Bardeen – Cooper – Schrieffer theory 1957

Bardeen – Cooper – Schrieffer theory 1957

Effective attractive interaction for electrons near the Fermi level

Bardeen – Cooper – Schrieffer theory 1957

Effective attractive interaction for electrons near the Fermi level

$$\mathcal{V} = -g \sum_{\boldsymbol{k},\boldsymbol{k}'} \psi^{\dagger}_{\boldsymbol{k}\uparrow} \psi^{\dagger}_{-\boldsymbol{k}\downarrow} \psi_{-\boldsymbol{k}'\downarrow} \psi_{\boldsymbol{k}'\uparrow}$$

Spin-singlet Cooper pair $\langle \psi_{{m k}\uparrow}\psi_{-{m k}\downarrow}\rangle
eq 0$

Only the particle number modulo 2 - aka fermion parity - is conserved

Additional symmetries are completely or partially broken

Additional symmetries are completely or partially broken

Spin-singlet Cooper pair

$$\langle f_{\boldsymbol{k}}\psi_{\boldsymbol{k}\uparrow}\psi_{-\boldsymbol{k}\downarrow}\rangle\neq 0$$

Heavy fermions & High-Tc Cu- or Fe-based: $f_{k} \sim \cos k_{x} \pm \cos k_{y}$
Unconventional superconductivity

Additional symmetries are completely or partially broken

Spin-singlet Cooper pair $\langle f_{k}\psi_{k\uparrow}\psi_{-k\downarrow}\rangle \neq 0$

Heavy fermions & High-Tc Cu- or Fe-based: $f_{m k} \sim \cos k_x \pm \cos k_y$

Spin-triplet Cooper pair $\langle f_{k\alpha\beta}\psi_{k\alpha}\psi_{-k\beta}\rangle \neq 0$

Ruthenates, Organic superconductors & Bechgård salts, UGe2

Unconventional superconductivity

Additional symmetries are completely or partially broken

Spin-singlet Cooper pair $\langle f_{k}\psi_{k\uparrow}\psi_{-k\downarrow}\rangle \neq 0$

Heavy fermions & High-Tc Cu- or Fe-based: $f_{k} \sim \cos k_x \pm \cos k_y$

Spin-triplet Cooper pair $\langle f_{k\alpha\beta}\psi_{k\alpha}\psi_{-k\beta}\rangle \neq 0$

Ruthenates, Organic superconductors & Bechgård salts, UGe2

Different Cooper-pair glue

Collective excitations, e.g., (anti)ferromagnetic spin fluctuations

Assume the general case of a four-fermion interaction:

$$\mathcal{V} = -\frac{1}{2} \sum_{a,b,c,d} V_{abcd} \psi_a^{\dagger} \psi_b^{\dagger} \psi_c \psi_d \qquad V_{bacd} = V_{abdc} = -V_{abcd}$$

Assume the general case of a four-fermion interaction:

$$\mathcal{V} = -\frac{1}{2} \sum_{a,b,c,d} V_{abcd} \psi_a^{\dagger} \psi_b^{\dagger} \psi_c \psi_d \qquad V_{bacd} = V_{abdc} = -V_{abcd}$$

Apply mean-field theory \rightarrow

Assume the general case of a four-fermion interaction:

$$\mathcal{V} = -\frac{1}{2} \sum_{a,b,c,d} V_{abcd} \psi_a^{\dagger} \psi_b^{\dagger} \psi_c \psi_d \qquad V_{bacd} = V_{abdc} = -V_{abcd}$$

Apply mean-field theory \rightarrow

 $\Delta_{ab} = -\sum V_{abcd} < \psi_c \psi_d >$

a,b,c,d

Cooper pair order parameter:

$$\Delta_{ba} = -\Delta_{ab}$$

Thus we obtain:

$$\mathcal{V} \approx \frac{1}{2} \sum_{a,b,c,d} \Delta_{ab}^* (V^{-1})_{abcd} \Delta_{dc} + \frac{1}{2} \sum_{a,b} \left(\psi_a^{\dagger} \Delta_{ab} \psi_b^{\dagger} + \psi_a \Delta_{ba}^* \psi_b \right)$$

with: $\sum_{c,d} V_{abcd} (V^{-1})_{dckl} = \delta_{al} \delta_{bk}$
Add free fermion Hamiltonian: $\mathcal{H}_0 = \sum_{a,b} \psi_a^{\dagger} H_{0,ab} \psi_b$ with:
 $H_{0,ab}^* = H_{0,ba}$

Thus we obtain:

$$\mathcal{V} \approx \frac{1}{2} \sum_{a,b,c,d} \Delta_{ab}^* (V^{-1})_{abcd} \Delta_{dc} + \frac{1}{2} \sum_{a,b} \left(\psi_a^{\dagger} \Delta_{ab} \psi_b^{\dagger} + \psi_a \Delta_{ba}^* \psi_b \right)$$

with: $\sum_{c,d} V_{abcd} (V^{-1})_{dckl} = \delta_{al} \delta_{bk}$
Add free fermion Hamiltonian: $\mathcal{H}_0 = \sum_{a,b} \psi_a^{\dagger} H_{0,ab} \psi_b$ with:
 $H_{0,ab}^* = H_{0,ba}$

Obtain Bogoliubov – de Gennes Hamiltonian:

$$\mathcal{H}_{\mathrm{MF}} = \frac{1}{2} \sum_{a,b} \begin{pmatrix} \psi_{a}^{\dagger} & \psi_{a} \end{pmatrix} \begin{pmatrix} H_{0,ab} & \Delta_{ab} \\ -\Delta_{ab}^{*} & -H_{0,ab}^{*} \end{pmatrix} \begin{pmatrix} \psi_{b} \\ \psi_{b}^{\dagger} \end{pmatrix}$$
$$\mathcal{H}_{\mathrm{BdG},ab}$$

electrons
$$\mathcal{H}_{BdG} = \begin{pmatrix} H_0 & \Delta \\ -\Delta^* & -H_0^* \end{pmatrix}$$
 holes

Pauli matrices: au

$$=H_0^{\Re}\tau_z + H_0^{\Im}i\mathbf{1} + \Delta^{\Re}i\tau_y + \Delta^{\Im}i\tau_x$$

Charge-conjugation symmetry: $\Xi^{\dagger} \mathcal{H}_{BdG} \Xi = -\mathcal{H}_{BdG}$

Antiunitary operator: $\Xi = \tau_x \mathcal{K}$ \blacktriangleleft complex conjugation

electrons
$$\mathcal{H}_{\rm BdG} = \begin{pmatrix} H_0 & \Delta \\ -\Delta^* & -H_0^* \end{pmatrix} \text{ holes }$$

Pauli matrices: au

$$=H_0^{\Re}\tau_z + H_0^{\Im}i\mathbf{1} + \Delta^{\Re}i\tau_y + \Delta^{\Im}i\tau_x$$

Charge-conjugation symmetry: $\Xi^{\dagger} \mathcal{H}_{BdG} \Xi = -\mathcal{H}_{BdG}$

Antiunitary operator: $\Xi = \tau_x \mathcal{K}$ \blacktriangleleft complex conjugation

The above implies that for every solution:

$$\mathcal{H}_{BdG} \begin{pmatrix} u_{\nu} \\ v_{\nu} \end{pmatrix} = E_{\nu} \begin{pmatrix} u_{\nu} \\ v_{\nu} \end{pmatrix} \text{ there is another one satisfying:}$$
$$\mathcal{H}_{BdG} \equiv \begin{pmatrix} u_{\nu} \\ v_{\nu} \end{pmatrix} = -E_{\nu^*} \equiv \begin{pmatrix} u_{\nu} \\ v_{\nu} \end{pmatrix} \text{ with } \equiv \begin{pmatrix} u_{\nu} \\ v_{\nu} \end{pmatrix} = \begin{pmatrix} v_{\nu}^* \\ u_{\nu}^* \end{pmatrix}$$

Spin- singlet vs triplet superconductivity

Assume the electron quantum numbers: wave vector & spin

Pair density wave

Spin- singlet vs triplet superconductivity

Assume the electron quantum numbers: wave vector & spin

Pair density wave

For zero Cooper pair momentum:

$$\Delta_{\boldsymbol{k},-\boldsymbol{k}}^{\alpha\beta} = -\Delta_{-\boldsymbol{k},\boldsymbol{k}}^{\beta\alpha}$$
$$\Delta_{\boldsymbol{k}}^{\alpha\beta} = -\Delta_{-\boldsymbol{k}}^{\beta\alpha}$$

Spin- singlet vs triplet superconductivity

Assume the electron quantum numbers: wave vector & spin

Pair density wave

For zero Cooper pair momentum:

$$\Delta_{\boldsymbol{k},-\boldsymbol{k}}^{\alpha\beta} = -\Delta_{-\boldsymbol{k},\boldsymbol{k}}^{\beta\alpha}$$
$$\Delta_{\boldsymbol{k}}^{\alpha\beta} = -\Delta_{-\boldsymbol{k}}^{\beta\alpha}$$

Spin-singlet: $\Delta_{k}^{\uparrow\downarrow} = -\Delta_{-k}^{\downarrow\uparrow} = \Delta_{-k}^{\uparrow\downarrow} \sim \Delta_{k}i\sigma_{y} \qquad \Delta_{-k} = \Delta_{k}i\sigma_{y}$

Basic types of spin-triplet superconductivity

Helical spin-triplet superconductivity in 3D

 $\begin{array}{ll} \text{Time-reversal} & \widehat{\mathcal{T}} \\ \text{symmetry} & \end{array}$

$$\widehat{\mathcal{T}} = i\sigma_y \widehat{\mathcal{K}}$$

$$\mathcal{H}_{BdG}(\hat{\boldsymbol{p}}) = \Delta \hat{\boldsymbol{p}} \cdot \tau_x \boldsymbol{\sigma} + \left(\frac{\hat{\boldsymbol{p}}^2}{2m} - E_F\right) \tau_z$$

Akin to the massless Dirac Hamiltonian

Chiral spin-triplet superconductivity in 2D

$$\mathcal{H}_{BdG}(\hat{\boldsymbol{p}}) = \Delta \left(\hat{p}_x \tau_y + \hat{p}_y \tau_x \right) + \left(\frac{\hat{\boldsymbol{p}}^2}{2m} - E_F \right) \begin{aligned} & \tau_z \quad \text{time-reversal} \\ & \text{symmetry} \end{aligned}$$

1D p-wave superconductor in a magnetic field

Assume that: $d_k = d \sin k$

$$\begin{aligned} \mathcal{H}_{\mathrm{MF}} &= \frac{1}{2} \sum_{k} \Psi_{k}^{\dagger} \begin{pmatrix} \varepsilon_{k} - \boldsymbol{h} \cdot \boldsymbol{\sigma} & \boldsymbol{d}_{k} \cdot \boldsymbol{\sigma} \\ \boldsymbol{d}_{k}^{*} \cdot \boldsymbol{\sigma} & -\varepsilon_{k} - \boldsymbol{h} \cdot \boldsymbol{\sigma} \end{pmatrix} \Psi_{k} \\ \text{with:} \quad \Psi_{k}^{\dagger} &= \begin{pmatrix} \psi_{k\uparrow}^{\dagger} & \psi_{k\downarrow}^{\dagger} & \psi_{-k\downarrow} & -\psi_{-k\uparrow} \end{pmatrix} \end{aligned}$$

We neglect the spin-orbit coupling

1D p-wave superconductor in a magnetic field

$$\mathcal{H}_{\mathrm{MF}} = rac{1}{2} \sum_{k} \Psi_{k}^{\dagger} \begin{pmatrix} \varepsilon_{k} - \boldsymbol{h} \cdot \boldsymbol{\sigma} & \boldsymbol{d}_{k} \cdot \boldsymbol{\sigma} \\ \boldsymbol{d}_{k}^{*} \cdot \boldsymbol{\sigma} & -\varepsilon_{k} - \boldsymbol{h} \cdot \boldsymbol{\sigma} \end{pmatrix} \Psi_{k}$$

$$E_k = \pm \sqrt{\varepsilon_k^2 + h^2 + |\boldsymbol{d}_k|^2 \pm 2\sqrt{|\boldsymbol{d}_k \cdot \boldsymbol{h}|^2 + (\varepsilon_k \boldsymbol{h} - i\boldsymbol{d}_k \times \boldsymbol{d}_k^*/2)^2}}$$

Sigrist and Ueda RMP 1991 Hyart, Wright, Rosenow PRB 2014 Mercaldo, Cuoco and *PK* PRB 2016

Magnetization:

 $i(\boldsymbol{d} imes \boldsymbol{d}^*) \cdot \boldsymbol{h} \ arepsilon_k \sin^2 k$

 $oldsymbol{M} \sim ioldsymbol{d} imes oldsymbol{d}^*$

Landau approach @ zero temperature

The total energy of the system reads:

$$E = \frac{|\boldsymbol{d}|^2}{V} + \frac{1}{2} \sum_{\nu}^{occ} E_{k,\nu}(\boldsymbol{d}, \boldsymbol{d}^*)$$

Landau approach @ zero temperature

The total energy of the system reads:

$$E = \frac{|\boldsymbol{d}|^2}{V} + \frac{1}{2} \sum_{\nu}^{occ} E_{k,\nu}(\boldsymbol{d}, \boldsymbol{d}^*)$$

By expanding up to quartic order in the order parameters:

$$F(\boldsymbol{d}, \boldsymbol{d}^*) = \left(\frac{1}{V} - \chi_0\right) |\boldsymbol{d}|^2 + \beta |\boldsymbol{d}|^4 - \beta' |\boldsymbol{d} \times \boldsymbol{d}^*|^2$$
$$+gi(\boldsymbol{d} \times \boldsymbol{d}^*) \cdot \boldsymbol{h} + g' |\boldsymbol{d} \cdot \boldsymbol{h}|^2$$

Hyart, Wright, Rosenow PRB 2014

Landau approach @ zero temperature

The total energy of the system reads:

$$E = \frac{|\boldsymbol{d}|^2}{V} + \frac{1}{2} \sum_{\nu}^{occ} E_{k,\nu}(\boldsymbol{d}, \boldsymbol{d}^*)$$

By expanding up to quartic order in the order parameters:

$$F(\boldsymbol{d}, \boldsymbol{d}^*) = \left(\frac{1}{V} - \chi_0\right) |\boldsymbol{d}|^2 + \beta |\boldsymbol{d}|^4 - \beta' |\boldsymbol{d} \times \boldsymbol{d}^*|^2$$
$$+gi(\boldsymbol{d} \times \boldsymbol{d}^*) \cdot \boldsymbol{h} + g' |\boldsymbol{d} \cdot \boldsymbol{h}|^2$$

Hyart, Wright, Rosenow PRB 2014

The d-vector reorganizes so to maximize: $|m{h} imes m{d}|$ and $|m{d} imes m{d}^*|$ Mercaldo, Cuoco and PK PRB 2016

Spinless limit

For a strong Zeeman field along the z axis one obtains:

$$\boldsymbol{d} = d(-i, 1, 0)$$

$$\boldsymbol{d} \cdot \boldsymbol{\sigma} i \sigma_y \sim i \frac{1 + \sigma_z}{2} \to \psi_{k\uparrow}^{\dagger} \psi_{-k\uparrow}^{\dagger}$$

Equal spin-pairing state ~ previously discussed in superfluid ³He

A.Y. Kitaev, Phys.-Usp. 2001

A.Y. Kitaev, Phys.-Usp. 2001

Topologically trivial phase

Topologically non-trivial phase

Kitaev's unpaired MFs *

Spinless Kitaev chain: General case

Solve Bogoliubov – de Gennes equation:

$$\begin{pmatrix} c_{n\uparrow} \\ c_{n\uparrow}^{\dagger} \end{pmatrix} = \sum_{s}^{E_{s}\neq0} \begin{pmatrix} u_{ns} & v_{ns}^{*} \\ v_{ns} & u_{ns}^{*} \end{pmatrix} \begin{pmatrix} a_{s\uparrow} \\ a_{s\uparrow}^{\dagger} \end{pmatrix} + \sum_{s}^{E_{s}=0} \begin{pmatrix} u_{ns} \\ v_{ns} \end{pmatrix} \gamma_{s\uparrow}$$

Spinless Kitaev chain: General case

Ground-state: two-fold degenerate: $\gamma_{1,2\uparrow}$

 $|2t_{\uparrow}| > |\mu_{\uparrow}|$

Degenerate ground state

$$a_s |0\rangle = 0$$
 $|0\rangle = a_0 \prod_s^{E_s \neq 0} a_s |vac\rangle$

Degenerate ground state

Degenerate ground state

Degenerate ground state and braiding

$$|0\rangle = \frac{1 + c_1^{\dagger} c_2^{\dagger}}{\sqrt{2}} |\operatorname{vac}\rangle \qquad |1\rangle = a_0^{\dagger} |0\rangle = \frac{c_1^{\dagger} + c_2^{\dagger}}{\sqrt{2}} |\operatorname{vac}\rangle$$
$$\widehat{U}^{\dagger} \begin{pmatrix} \gamma_1 \\ \tilde{\gamma}_2 \end{pmatrix} \widehat{U} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \gamma_1 \\ \tilde{\gamma}_2 \end{pmatrix}$$

Degenerate ground state and braiding

$$|0\rangle = \frac{1 + c_1^{\dagger} c_2^{\dagger}}{\sqrt{2}} |\operatorname{vac}\rangle \qquad |1\rangle = a_0^{\dagger} |0\rangle = \frac{c_1^{\dagger} + c_2^{\dagger}}{\sqrt{2}} |\operatorname{vac}\rangle$$
$$\widehat{U}^{\dagger} \begin{pmatrix} \gamma_1 \\ \tilde{\gamma}_2 \end{pmatrix} \widehat{U} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \gamma_1 \\ \tilde{\gamma}_2 \end{pmatrix}$$

Similar to a rotation matrix:

$$\mathcal{R}^{\theta}_{\hat{\boldsymbol{n}}} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}$$

$$\{\gamma_1, \tilde{\gamma}_2\} = 0$$
 $(\sqrt{2}\gamma_1)^2 = (\sqrt{2}\tilde{\gamma}_2)^2 = 1$

$$\{\sigma_x, \sigma_y\} = 0 \qquad \qquad \sigma_{x,y}^2 = 1$$

Braiding operator

$$[\widehat{\mathcal{R}}_{\hat{z}}^{\pi/2}]^{\dagger} \begin{pmatrix} \sigma_x \\ \sigma_y \end{pmatrix} \widehat{\mathcal{R}}_{\hat{z}}^{\pi/2} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \sigma_x \\ \sigma_y \end{pmatrix}$$

Similar to a rotation matrix:

$$\widehat{\mathcal{R}}_{\hat{\boldsymbol{z}}}^{\pi/2} = \begin{pmatrix} \cos(\pi/2) & -\sin(\pi/2) \\ \sin(\pi/2) & \cos(\pi/2) \end{pmatrix}$$

Braiding operator

$$[\widehat{\mathcal{R}}_{\hat{z}}^{\pi/2}]^{\dagger} \begin{pmatrix} \sigma_x \\ \sigma_y \end{pmatrix} \widehat{\mathcal{R}}_{\hat{z}}^{\pi/2} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \sigma_x \\ \sigma_y \end{pmatrix}$$

Similar to a rotation matrix: $\widehat{\mathcal{R}}_{\hat{z}}^{\pi/2} = \begin{pmatrix} \cos(\pi/2) & -\sin(\pi/2) \\ \sin(\pi/2) & \cos(\pi/2) \end{pmatrix}$

$$\widehat{\mathcal{R}}_{\hat{z}}^{\theta} = e^{-i\theta S_z/\hbar} = e^{-i\theta\sigma_z/2} \qquad \widehat{\mathcal{R}}_{\hat{z}}^{\pi/2} = e^{-i\pi\sigma_z/4}$$
$$\sigma_z = -i\sigma_x\sigma_y \equiv -i2\gamma_1\tilde{\gamma}_2 = -(a_0^{\dagger}a_0 - a_0a_0^{\dagger})$$

Braiding operator

$$[\widehat{\mathcal{R}}_{\hat{z}}^{\pi/2}]^{\dagger} \begin{pmatrix} \sigma_x \\ \sigma_y \end{pmatrix} \widehat{\mathcal{R}}_{\hat{z}}^{\pi/2} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \sigma_x \\ \sigma_y \end{pmatrix}$$

Similar to a rotation matrix: $\widehat{\mathcal{R}}_{\hat{z}}^{\pi/2} = \begin{pmatrix} \cos(\pi/2) & -\sin(\pi/2) \\ \sin(\pi/2) & \cos(\pi/2) \end{pmatrix}$

$$\widehat{\mathcal{R}}_{\hat{z}}^{\theta} = e^{-i\theta S_z/\hbar} = e^{-i\theta\sigma_z/2} \qquad \widehat{\mathcal{R}}_{\hat{z}}^{\pi/2} = e^{-i\pi\sigma_z/4}$$

$$\sigma_z = -i\sigma_x\sigma_y \equiv -i2\gamma_1\tilde{\gamma}_2 = -(a_0^{\dagger}a_0 - a_0a_0^{\dagger})$$

$$(a_0^{\dagger} a_0 - a_0 a_0^{\dagger}) |1\rangle = +1 |1\rangle (a_0^{\dagger} a_0 - a_0 a_0^{\dagger}) |0\rangle = -1 |0\rangle$$

Fermion parity operator

Majorana fermion braiding

$$|0\rangle \rightarrow e^{+i\pi/4} |0\rangle$$

 $|1\rangle \rightarrow e^{-i\pi/4} |1\rangle$

Majorana fermion braiding

Majorana fermion braiding: effective

Inter-nanowire Majorana Josephson couplings

$$\mathcal{H}_{12} = J \cos\left(\frac{\varphi_1 - \varphi_2}{2}\right) i\gamma_1\gamma_2$$

Intra-nanowire Majorana Capacitive couplings

Y-junction van Heck *et al.*, NJP 2012
Universal quantum gates

All qubit operations can be efficiently approximated by the set:

Hadamard gate:
$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

Phase gate: $Braiding = \begin{pmatrix} e^{i\pi/4} & 0 \\ 0 & e^{-i\pi/4} \end{pmatrix}$
Controlled NOT: $cNOT = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$
Magic gate: $\pi/8 \text{ Gate} = \begin{pmatrix} e^{i\pi/8} & 0 \\ 0 & e^{-i\pi/8} \end{pmatrix}$

Majorana fermion braiding: non-universality

PHYSICAL REVIEW X 6, 031019 (2016)

Universal Geometric Path to a Robust Majorana Magic Gate

Torsten Karzig,^{1,2,3} Yuval Oreg,⁴ Gil Refael,^{1,2} and Michael H. Freedman^{3,5}

The magic gate is not accessible in a protected manner

Other types of non-Abelian anyons are required with the simplest being the so-called Fibonacci anyons

Fractional quantum Hall system

 ν ; FQH State (\mathbb{Z}_k); Anyons: 1/3; Laughlin state ; Abelian 5/2;Moore-Read(\mathbb{Z}_2);Majorana 12/5;Read-Rezayi(\mathbb{Z}_3);Fibonacci

Periodic table of topological systems

	S	Symmetries:					d				
Class	$\widehat{\Theta}^2$	$\widehat{\Xi}^2$	$\widehat{\Pi}^2$	1	2	3	4	5	6	7	8
А	Ô	Ô	Ô	_	\mathbb{Z}	_	\mathbb{Z}	—	\mathbb{Z}	—	\mathbb{Z}
AIII	Ô	Ô	î	\mathbb{Z}	_	\mathbb{Z}	_	\mathbb{Z}	_	\mathbb{Z}	_
AI	î	Ô	Ô	_	_	_	$2\mathbb{Z}$	_	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}
BDI	î	î	î	\mathbb{Z}	_	_	_	$2\mathbb{Z}$	—	\mathbb{Z}_2	\mathbb{Z}_2
D	Ô	î	Ô	\mathbb{Z}_2	\mathbb{Z}	_	_	_	$2\mathbb{Z}$	_	\mathbb{Z}_2
DIII	$-\hat{1}$	î	î	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	—	—	—	$2\mathbb{Z}$	—
AII	$-\hat{1}$	Ô	Ô		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	—	—	—	$2\mathbb{Z}$
CII	$-\hat{1}$	$-\hat{1}$	î	$2\mathbb{Z}$	_	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	—	—	—
С	Ô	$-\hat{1}$	Ô	_	$2\mathbb{Z}$	_	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	_	_
CI	î	$-\hat{1}$	î	_		$2\mathbb{Z}$	_	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	_

A. Altland and M. R. Zirnbauer PRB 1997; Kitaev AIP Conf Proc 2009; Ryu *et al.* PRB 2008 and NJP 2010; Hasan and Kane RMP 2010

Topological classification principles

$$\begin{aligned} \mathcal{H} &= \frac{1}{2} \int dr \widehat{\Psi}^{\dagger}(r) \widehat{\mathcal{H}}(\hat{p}, r) \widehat{\Psi}(r) & \text{BdG Hamiltonian} \\ \widehat{\Psi}^{\dagger}(r) &= \left(\psi_{\uparrow}^{\dagger}(r) \,, \psi_{\downarrow}^{\dagger}(r) \,, \psi_{\uparrow}(r) \,, \psi_{\downarrow}(r) \right) \end{aligned}$$

3 allowed symmetries per irreducible Hamiltonian subspace

Generalized time-reversal symmetry (antiunitary):

$$[\widehat{\mathcal{H}}(\hat{p},r),\Theta] = 0 \Rightarrow \Theta^{-1}\widehat{\mathcal{H}}(\hat{p},r)\Theta = +\widehat{\mathcal{H}}(\hat{p},r)$$

Generalized charge-conjugation symmetry (antiunitary):

$$\{\widehat{\mathcal{H}}(\hat{p},r),\Xi\}=0\Rightarrow\Xi^{-1}\widehat{\mathcal{H}}(\hat{p},r)\Xi=-\widehat{\mathcal{H}}(\hat{p},r)$$

Chiral symmetry (unitary): $\{\widehat{\mathcal{H}}(\hat{p},r),\Theta\Xi\} = \{\widehat{\mathcal{H}}(\hat{p},r),\Pi\} = 0$

$$\mathcal{H}_{\uparrow} = \frac{1}{2} \sum_{k}^{B.Z.} \left(\begin{array}{cc} c_{k\uparrow}^{\dagger} & c_{-k\uparrow} \end{array} \right) \\ \left(\begin{array}{cc} +2t_{\uparrow}\cos(ka) - \mu_{\uparrow} & \Delta_{\uparrow}\sin(ka) \\ \Delta_{\uparrow}\sin(ka) & -2t_{\uparrow}\cos(ka) + \mu_{\uparrow} \end{array} \right) \left(\begin{array}{c} c_{k\uparrow} \\ c_{-k\uparrow}^{\dagger} \end{array} \right)$$

$$\mathcal{H}_{\uparrow}(k) = \boldsymbol{g}(k) \cdot \boldsymbol{\tau}$$

 $\boldsymbol{g}(k) = (\Delta_{\uparrow} \sin(ka), 0, 2t_{\uparrow} \cos(ka) - \mu_{\uparrow})$ BDI class

Winding
$$w = \frac{1}{2\pi} \int dk \left(\hat{g}(k) \times \frac{\partial \hat{g}(k)}{\partial k} \right)_y$$

Main contributions from:
$$k = 0, \frac{\pi}{a}$$

exactly when the bulk energy gap closes

$$E(k = 0) = +2t_{\uparrow} - \mu_{\uparrow} = 0 \quad \text{For a single MF only}$$
$$E(k = \frac{\pi}{a}) = -2t_{\uparrow} - \mu_{\uparrow} = 0 \quad \text{for a single MF only}$$

$$w = \frac{\operatorname{sgn}(2t_{\uparrow} + \mu_{\uparrow}) + \operatorname{sgn}(2t_{\uparrow} - \mu_{\uparrow})}{2} = \frac{1 + \operatorname{sgn}(2t_{\uparrow} - \mu_{\uparrow})}{2}$$
$$k = \frac{\pi}{a}$$
$$k = 0$$

Are there any alternative topological SCs?

Where should we look for them ?

Periodic table of topological systems

		Symmetries:					d				
Class	$\widehat{\Theta}^2$	$\widehat{\Xi}^2$	$\widehat{\Pi}^2$	1	2	3	4	5	6	7	8
А	Ô	Ô	Ô	_	\mathbb{Z}	_	\mathbb{Z}	_	\mathbb{Z}	_	\mathbb{Z}
AIII	Ô	Ô	î	\mathbb{Z}	—	\mathbb{Z}	_	\mathbb{Z}	—	\mathbb{Z}	_
AI	î	Ô	Ô	_	_	_	$2\mathbb{Z}$	_	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}
BDI	î	î	î	\mathbb{Z}	_	—	_	$2\mathbb{Z}$	—	\mathbb{Z}_2	\mathbb{Z}_2
D	Ô	î	Ô	\mathbb{Z}_2	\mathbb{Z}	_	_	_	$2\mathbb{Z}$	_	\mathbb{Z}_2
DIII	$-\hat{1}$	î	î	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	—	—	—	$2\mathbb{Z}$	_
AII	$-\hat{1}$	Ô	Ô		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	—	—	—	$2\mathbb{Z}$
CII	$-\hat{1}$	$-\hat{1}$	î	$2\mathbb{Z}$	_	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	—	—	—
С	Ô	$-\hat{1}$	Ô	_	$2\mathbb{Z}$	_	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	_	_
CI	î	$-\hat{1}$	î	_	_	2ℤ	_	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	_

Periodic table of topological systems

		Symmetries:					d				
Class	$\widehat{\Theta}^2$	$\widehat{\Xi}^2$	$\widehat{\Pi}^2$	1	2	3	4	5	6	7	8
А	Ô	Ô	Ô	_	\mathbb{Z}	_	\mathbb{Z}	_	\mathbb{Z}	_	\mathbb{Z}
AIII	Ô	Ô	î	\mathbb{Z}	—	\mathbb{Z}	—	\mathbb{Z}	_	\mathbb{Z}	_
AI	î	Ô	Ô	_	_	_	$2\mathbb{Z}$	_	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}
BDI	Î	î	î	\mathbb{Z}	—	—	—	$2\mathbb{Z}$	—	\mathbb{Z}_2	\mathbb{Z}_2
D	Ô	î	Ô	\mathbb{Z}_2	\mathbb{Z}	_	—	_	$2\mathbb{Z}$	_	\mathbb{Z}_2
DIII	-î	î	î	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	—	—	_	$2\mathbb{Z}$	_
AII	-1	0	0	—	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	—	_	—	$2\mathbb{Z}$
CII	$-\hat{1}$	$-\hat{1}$	î	$2\mathbb{Z}$	_	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	—	—	—
С	Ô	$-\hat{1}$	Ô	_	$2\mathbb{Z}$	_	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	_	_
CI	î	$-\hat{1}$	î	_	_	2ℤ	_	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	_

Symmetry classes supporting MFs

$$\gamma_{\alpha} = \int dr \left[u_{\uparrow,\alpha}^*(r)\psi_{\uparrow}(r) + u_{\downarrow,\alpha}^*(r)\psi_{\downarrow}(r) + u_{\uparrow,\alpha}(r)\psi_{\uparrow}^{\dagger}(r) + u_{\downarrow,\alpha}(r)\psi_{\downarrow}^{\dagger}(r) \right]$$

Here we focus on 2D, quasi-1D and 1D systems

Microscopic model for engineered TSCs

$$\mathcal{H} = \int d\boldsymbol{r} \; \hat{\psi}^{\dagger}(\boldsymbol{r}) \left[\frac{\hat{\boldsymbol{p}}^2}{2m} - \mu + V(\boldsymbol{r}) - \boldsymbol{M}(\boldsymbol{r}) \cdot \boldsymbol{\sigma} \right] \hat{\psi}(\boldsymbol{r})$$

$$+\int d\boldsymbol{r} \; \hat{\psi}^{\dagger}(\boldsymbol{r}) \frac{\{v(\boldsymbol{r}), \hat{p}_{x}\sigma_{y} - \hat{p}_{y}\sigma_{x}\}}{2} \hat{\psi}(\boldsymbol{r})$$

$$+\int d\boldsymbol{r} \left[\psi_{\uparrow}^{\dagger}(\boldsymbol{r})\Delta(\boldsymbol{r})\psi_{\downarrow}^{\dagger}(\boldsymbol{r})+\psi_{\downarrow}(\boldsymbol{r})\Delta^{*}(\boldsymbol{r})\psi_{\uparrow}(\boldsymbol{r})\right]$$

$$\hat{\psi}^{\dagger}(\boldsymbol{r}) = (\psi^{\dagger}_{\uparrow}(\boldsymbol{r})\psi^{\dagger}_{\downarrow}(\boldsymbol{r}))$$

Classification of engineered TSCs

Case	$v(\boldsymbol{r})$	M(r)	$\Delta(\boldsymbol{r})$	2D	quasi-1D	1D		
Ι	\checkmark	Х	$\mathcal{K} = I$	DIII	DIII	no MFs		
Π	\checkmark	×	$\mathcal{K} = 0$	D	D	no MFs		
III	×	$\mathcal{K} = I$	$\mathcal{K} = I$	BDI	BDI	BDI		
IV	×	$\mathcal{K} = \{0, I, 0\}$	$\mathcal{K} = \{I, 0, 0\}$	D	D	D		
V	\checkmark	$\mathcal{K} = I$	$\mathcal{K} = I$	D	D	BDI		
VI	\checkmark	$\mathcal{K} = \{0, \mathbf{I}, 0\}$	$\mathcal{K} = \{I, 0, 0\}$	D	D	D		
<i>PK</i> , NJP 2013								
С	Complex conjugation operator							

$$\mathcal{H} = \int d\mathbf{r} \ \hat{\psi}^{\dagger}(\mathbf{r}) \left[\frac{\hat{\mathbf{p}}^2}{2m} - \mu + V(\mathbf{r}) - \mathbf{M}(\mathbf{r}) \cdot \boldsymbol{\sigma} + \frac{\{v(\mathbf{r}), \hat{p}_x \sigma_y - \hat{p}_y \sigma_x\}}{2} \right] \hat{\psi}(\mathbf{r})$$

$$+ \int d\mathbf{r} \left[\psi^{\dagger}_{\uparrow}(\mathbf{r}) \Delta(\mathbf{r}) \psi^{\dagger}_{\downarrow}(\mathbf{r}) + \psi_{\downarrow}(\mathbf{r}) \Delta^*(\mathbf{r}) \psi_{\uparrow}(\mathbf{r}) \right]$$

Classification of engineered TSCs

Case	$v(\mathbf{r})$	M(r)	$\Delta(\boldsymbol{r})$	2D	quasi-1D	1D
Ι	\checkmark	Х	$\mathcal{K} = I$	DIII	DIII	no MFs
II	\checkmark	×	$\mathcal{K} = 0$	D	D	no MFs
III	×	$\mathcal{K} = I$	$\mathcal{K} = I$	BDI	BDI	BDI
IV	×	$\mathcal{K} = \{0, I, 0\}$	$\mathcal{K} = \{I, 0, 0\}$	D	D	D
V	\checkmark	$\mathcal{K} = I$	$\mathcal{K} = I$	D	D	BDI
VI	\checkmark	$\mathcal{K} = \{0, I, 0\}$	$\mathcal{K} = \{I, 0, 0\}$	D	D	D

PK, NJP 2013

Chiral symmetry: $\{\mathcal{H},\Pi\} = 0$ Time-reversal symmetry: $[\mathcal{H},\Theta] = 0$ Charge-conjugation symmetry: $\{\mathcal{H},\Xi\} = 0$

Classification of engineered TSCs

Case	$v(\boldsymbol{r})$	M(r)	$\Delta(\boldsymbol{r})$	2D	quasi-1D	1D
Ι	\checkmark	Х	$\mathcal{K} = I$	DIII	DIII	no MFs
II	\checkmark	×	$\mathcal{K} = 0$	D	D	no MFs
III	×	$\mathcal{K} = I$	$\mathcal{K} = I$	BDI	BDI	BDI
IV	×	$\mathcal{K} = \{0, I, 0\}$	$\mathcal{K} = \{I, 0, 0\}$	D	D	D
V	\checkmark	$\mathcal{K} = I$	$\mathcal{K} = I$	D	D	BDI
VI	\checkmark	$\mathcal{K} = \{0, I, 0\}$	$\mathcal{K} = \{I, 0, 0\}$	D	D	D

PK, NJP 2013

Chiral symmetry: $\{\mathcal{H},\Pi\} = 0$ $\Pi = \tau_y \sigma_y$ Time-reversal symmetry: $[\mathcal{H},\Theta] = 0$ BrokenCharge-conjugation symmetry: $\{\mathcal{H},\Xi\} = 0$ $\Xi = \tau_y \sigma_y \mathcal{K}$

$$\mathcal{H} = \left(\frac{\hat{p}_x^2}{2m} - \mu\right)\tau_z + v\hat{p}_x\tau_z\sigma_y + M\sigma_z + \Delta\tau_x$$

Topological superconductivity in nanowires

Kinetic term+chemical potential Spin-Orbit coupling Zeeman field SC gap

 $au_z + v\hbar k au_z \sigma_y + M\sigma_z + \Delta au_x$

 ${\cal H}_{m k} = igg[rac{(\hbar k)^2}{2m}$

Lutchyn et al. and Oreg et al. PRL 2010

Delft experiment Mourik et al., Science 2012

1D nanowire: spin-orbit coupling (SOC)

Broken inversion symmetry: electric field

1D nanowire: SOC and transverse field

Zeeman field lifts Kramers degeneracy

1D nanowire: adding a superconducting gap

 $\mu = 0$

1D nanowire: adding a superconducting gap

 $\mu = 0$

Topological superconductivity in nanowires

Sufficiently high magnetic field → Topological Superconductor

Majorana , fermions

Zero-energy edge quasiparticles

> Delft experiment Mourik *et al.,* Science 2012

1011CTOP

Topological superconductivity in nanowires

Topologically non-trivial phase

Majorana
fermions
Zero-energy
quasiparticles
The bulk gap closing @
$$k = 0$$

drives the topological phase transition

n

Maj

ferr

Delft experiment Mourik et al., Science 2012

ROUCEOF

MF signatures in zero-bias anomaly peak

Other nanowire experiments

Rokhinson, Liu and Furdyna, Nat. Phys. 2012

Lee et al., Nat. Nanotech. 2014

InAs/InP

NW

0 nm

10 nm

V_{LG} V_{GG}

MFs

Bx

Bv

Churchill et al., PRB 2013 A. D. K. Finck et al., PRL 2013

Conductance quantization

Detecting MFs in topological SC islands

Detecting MFs in a nanowire-Qdot system

M-T Deng et al., Science 2016

Scalable devices and networks

Krizek et al., Phys. Rev. Mat. 2018.

A twist: MFs in magnetic atomic chains

random magnetic impurities

Choy et al., PRB 2011

Bulk SC+helical magnetism

Martin & Morpurgo, PRB 2012

nanomagnets

Kjaergaard et al., PRB 2012

Proximity of SC+helical magnetism

Nadj-Perge *et al.*, PRB 2013 Nakosai *et al.*, PRB 2013 Braunecker *et al.*, PRL 2013 Klinovaja *et al.*, PRL 2013 Vazifeh & Franz, PRL 2013 Pientka *et al.*, PRB 2013, 2014 Kim *et al.*, PRB 2014 Pöyhönen *et al.*, PRB 2014 Li *et al.*, Nat. Commun. 2016 Röntynen & Ojanen, PRB 2014

Helical magnetism and synthetic SOC

Braunecker et al., PRL 2013

Electrons feel a helical Zeeman field

 $M\cos(Qx)\sigma_z - M\sin(Qx)\sigma_x = Me^{iQx\sigma_y/2}\sigma_z e^{-iQx\sigma_y/2}$

Helical magnetism and synthetic SOC

Electrons feel a helical Zeeman field

$$M\cos(Qx)\sigma_z - M\sin(Qx)\sigma_x = Me^{iQx\sigma_y/2}\sigma_z e^{-iQx\sigma_y/2}$$

Effective spin-orbit coupling in momentum space

$$\frac{\left(\hat{p}_x + \hbar Q\sigma_y/2\right)^2}{2m} - \mu = \frac{\hat{p}_x^2}{2m} - \left[\mu - \frac{(\hbar Q)^2}{8m}\right] + \frac{\hbar Q}{2m}\hat{p}_x\sigma_y$$

Topological Criterion: $|M| > \sqrt{\left[\mu - (\hbar Q)^2/(8m)\right]^2 + \Delta_{FS}^2}$

MFs in STM-probed magnetic adatom chains

STM technology provides spatial resolution of MF wavefunctions

Nadj-Perge et al., PRB 2013

MFs in STM-probed magnetic adatom chains

STM technology provides spatial resolution of MF wavefunctions

Nadj-Perge et al., PRB 2013

Nadj-Perge et al. Science 2014

MFs in STM-probed magnetic adatom chains

Nadj-Perge et al., PRB 2013

Nadj-Perge et al. Science 2014

Sun et al., PRL 2016

Recent spin-resolved measurements

Jeon et al., Science 2017
Recent spin-resolved measurements

Jeon et al., Science 2017

PK et al., Physica E 2015

Conclusions and Outlook

- Find functional p-wave superconductors
- Or intrinsic topological magnetic superconductors due to textures
- Parafermions, Fibonacci anyons and universal Q-computing
- Topological phases and interactions beyond mean-field theory
- Majorana manipulations and braiding in nanowire systems
- Floquet and non-Hermitian topological systems

Thank you !!!