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Motivation:

Horndeski theories The no-hair theorem Breaking the hypotheses

Parenthesis: Did GW170817 kill Horndeski gravity?

graviton speed = speed of light

GW170817/GRB170817A



[Ogawa, Kobayashi, Suyama'15]

Black holes found in [EB, Charmousis’13] are unstable 

[Takahashi, Suyama'17]

Similar arguments for instability are used in

[Kase, Minamitsuji, Tsujikawa, Zhang’18]

[Takahashi, Suyama, Kobayashi'15]

[Maselli, Silva , Minamitsuji, Berti’16]

Motivation:
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Perturbations in galileons!

Monday 15 June 15

Perturbations of black hole solutions in Horndeski theory!

Monday 15 June 15

Hamiltonian vs stability!

Monday 15 June 15

Stable black holes after GW170817



Perturbations in galileons



Horndeski theory

Most general galileon shift-symmetric action:

EOMs are of second order

[Horndeski’1974,Deffayet et al’09]

L2 = K (X, �)

L3 = G3 (X, �) ��

L4 = G4(X, �) R + G4,X(X, �)
�
(��)2 � (���)2

�
,

L5 = G5,X (X, �)
�
(��)3 � 3�� (���)2 + 2 (���)3

�
� 6G5 (X, �) Gµ��µ���

X � (���)2



Kinetic mixing

Monday 15 June 15

Standard kinetic term:
�

�g gµ� �µ���� only mixing of gµ� and �� — no kinetic mixing

Monday 15 June 15

k-essence:
�

�g gµ� K(X) : only mixing of gµ� and �� — no kinetic mixing

Monday 15 June 15

        galileon:

X�� � ��� � �g�� : kinetic mixing

G3



Perturbations

Monday 15 June 15

Standard kinetic term, k-essence:

L(2) � (�h)2 + (���)2 + h2 + (��)2 + h(��){
kinetic terms

{
lower order terms

Monday 15 June 15

Higher-order galileons:

L(2) � (�h)2 + (���)2+(���)�h + h2 + (��)2 + h(��){
kinetic terms

gµ� = ḡµ� + hµ�

� = �̄ + �



Perturbation in G3 model

S = M2
P

�
d4x

�
�g

�
R

2
� �(�µ�)2 � ���(�µ�)2

�

Perturbation Lagrangian:

1

M2
P

Lkinetic
2�
�g

=

�1

4
�µh��P�����µh�� +

1

4

�
h�

�;� � 1

2
h,�

�2

� � (�µ�)2

��

�
2�� (�µ�)2 � 2�µ��� �µ����+�µ���� �����hµ� � 2�µ���� �µ�

�
h�

�;� � 1

2
h,�

��{
mixing terms

[EB,Esposito-Farese’12]



Perturbation in G3 model

Change of variables

hµ� � hµ� � 4k3

M2

�
�µ���� � 1

2
gµ� (���)2

�
�

1

M2
P

Lkinetic
2�
�g

= �1

4
�µh��P�����µh�� +

1

4

�
h�

�;� � 1

2
h,�

�2

� Sµ��µ����

Sµ� � gµ�
�
� + 2��� � �2 (���)4

�
� 2��µ��� + 4�2 (���)2 �µ����

E�ective metric felt by the scalar perturbations �



Perturbation in “John” model

LJ = Gµ��µ����

L(2)
J,mix � �����hµ� + �µ�

�
h�

�;� � 1

2
h,�

�
+ �����h + �µ���hµ�

The mixing is more complicated,

hµ� � ? It is not clear how to demix perturbations in this case

Let us use symmetry of the background solution



Perturbations of black hole 
solutions in Horndeski 
theory



Black hole solution
[Babichev, Charmousis’13]

SJ[gµ� , �] =

� �
�g d4x

�
�(R � 2�bare) + �Gµ��µ���� � � �2

�

�

In terms of standard Horndeski notations:

G4 = � � �

2
�2

�, G2 = �2��bare � ��2
�.



Black hole solution

Self-tuning Schwarzschild-de Sitter solution:

Also stealth solution when � = �bare = 0 :

ds2 = �A(r) dt2 +
dr2

A(r)
+ r2d�2, A(r) = 1 � 2Gm

r

� = q

�
t ±

� �
1 � A(r)

A(r)
dr

�

ds2 = �A(r) dt2 +
dr2

A(r)
+ r2d�2,

A(r) = 1 � 2Gm

r
� �e�

3
r2,

� = q

�
t ±

� �
1 � A(r)

A(r)
dr

�
,

q2 =
� + � �bare

� �
� �e� = � �

�
,

[Christos talk]



Perturbations of black holes

gµ� = ḡµ� + hµ�

� = �̄ + �

Expansion in spherical harmonics—even parity (polar) and odd-
parity (axial) modes, which do not interact with each other:

l = 0 l = 1 l � 2
[Ogawa, Kobayashi, Suyama'15]



Perturbations of black holes

Spherically symmetric perturbations (Regge and Wheeler formalism):

hµ� =

�

���

A(r)H0(t, r) H1(t, r) 0 0
H1(t, r) H2(t, r)/B(r) 0 0

0 0 K(t, r)r2 0
0 0 0 K(t, r)r2 sin2 �

�

���

�(2)
s SJ =

�
dtdr4�r2L(2)

s

Second order action in terms of �, H0, H1 H2, K,



Perturbations of black holes

L(2)
s = P2 + Ay2 + Bxy + Cx2

P = ẋ � y� + ã1x + ã2y

variation wrt y gives: 2P � + 2Ay + Bx = 0

Constraint on y (nonlocal in space): in principle one can find y in terms of x by
solving ODE with known boundary conditions.

Instead focus on higher order terms: 

ẋ� � y�� = 0 � ẋ = y�

x = ��

L(2)
s; Kin = �1

2

�
Stt�̇2 + 2Str�̇�� + Srr��2�



Stability?

L2 = �1

2

�
Stt�̇2 + 2Str�̇�� + Srr��2� � L2 = �1

2
Sµ��µ����

1. Hyperbolicity (no Laplace instability)!
2. No ghosts

Need check for:

1. Hyperbolicity:

D � S00S11 �
�
S01

�2
< 0 � the cone is defined

2. No ghost:

“Energy of particles >0”
Calculate Hamiltonian and check if it is bounded from below

Sµ� is a function of background



Stability?

Perturbations for stealth solution are given by parabolic equation:!
pathological behaviour

� = �bare = 0

SJ[gµ� , �] =

� �
�g d4x [�R + �Gµ��µ����]

ds2 = �A(r) dt2 +
dr2

A(r)
+ r2d�2, A(r) = 1 � 2Gm

r

� = q

�
t ±

� �
1 � A(r)

A(r)
dr

�



Hamiltonian vs stability



Hamiltonian

L2 = �1

2
Sµ��µ����

p � �L2

��̇
= �S00�̇ � S0i�i�, canonical momentum

H2 = p �̇ � L2 = � 1

2S00

�
p + S0i�i�

�2
+

1

2
Sij�i��j�

In 1+1 we have:

H2 = p �̇ � L2 = � 1

2S00

�
p + S01���2

+
1

2
S11��2

Does unbounded from below Hamiltonian	
necessarily imply instability?

NO



c = 1 :

t̃ =
t + vx�
1 � v2

, x̃ =
x + vt�
1 � v2

Compute Hamiltonian:

However the system is 
clearly stable

Hamiltonian: example

L =
1

2
�̇2 � c2

s

2
��2

L � 1

1 � v2

�
1

2
(1 � c2

sv
2)�̇2 + (1 � c2

s)v�̇���1

2
(c2

s � v2)��2
�

H2 =
1

2
(...)2 +

1

2
(c2

s � v2)��2

H2 < 0 |v| > cs



Stable configurations:
t

xx

✓(b)

Figure 1. Possible relative orientations of two causal cones, in a coordinate system such that the grey
cone with solid lines appears at ±45�. We do not plot the equivalent configurations exchanging left
and right, and do not consider the limiting cases where some characteristics coincide. The first row
(a)–(d) are safe cases in which the two metrics can be diagonalized simultaneously by an appropriate
choice of coordinates — corresponding then to panels (b) or (c). Although the kinetic contribution to
their Hamiltonian density is unbounded by below in cases (a) and (d), it is positive in (b) and (c). The
second row (e)–(h) are again safe cases, for which the kinetic contribution to the Hamiltonian density
can be proven to be positive in an appropriate coordinate system, actually corresponding to case (e),
but the two metrics cannot be simultaneoulsy diagonalized7. The third row (i)–(l) are unstable cases,
for which the two metrics can be simultaneously diagonalized as in (j) and (k), but they have then
opposite signatures in this (t, x) subspace. Their total Hamiltonian density remains unbounded by
below in all coordinate systems.

has a non-vanishing gradient @
µ

'̄, and they define thus di↵erent causal cones. In this simple
case, one can show that the spin-2 degrees of freedom (the gravitons, perturbations of the
metric tensor) do propagate in the initial metric gµ⌫ . To simplify this example even further,
one may actually consider it in flat spacetime, i.e., without any graviton, while universally
coupling matter to g

µ⌫

. Then we still have at least two fields (matter and the spin-0 degree
of freedom �) which propagate in di↵erent metrics, defining two di↵erent causal cones.

The conditions for such a k-essence theory to be stable and have a well-posed Cauchy

7Let us recall that two quadratic forms can always be simultaneously diagonalized if at least one of them
is positive (or negative) definite. Here both of our metrics have hyperbolic signature, and this is the reason
why the non-simultaneously diagonalizable cases (e)–(h) are possible.
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In both cases the system is stable
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Figure 1. Possible relative orientations of two causal cones, in a coordinate system such that the grey
cone with solid lines appears at ±45�. We do not plot the equivalent configurations exchanging left
and right, and do not consider the limiting cases where some characteristics coincide. The first row
(a)–(d) are safe cases in which the two metrics can be diagonalized simultaneously by an appropriate
choice of coordinates — corresponding then to panels (b) or (c). Although the kinetic contribution to
their Hamiltonian density is unbounded by below in cases (a) and (d), it is positive in (b) and (c). The
second row (e)–(h) are again safe cases, for which the kinetic contribution to the Hamiltonian density
can be proven to be positive in an appropriate coordinate system, actually corresponding to case (e),
but the two metrics cannot be simultaneoulsy diagonalized2. The third row (i)–(l) are unstable cases,
for which the two metrics can be simultaneously diagonalized as in (j) and (k), but they have then
opposite signatures in this (t, x) subspace. Their total Hamiltonian density remains unbounded by
below in all coordinate systems.

The conditions for such a k-essence theory to be stable and have a well-posed Cauchy
problem have been written several times in the literature [Y. Aharonov, A. Komar, and
L. Susskind, Phys. Rev. 182, 1400 (1969), Mukhanov k-essence, Babichev-Mukhanov-
Vikman, Bruneton-Gef], and we shall rederive them below from our general analysis. They
read f 0(X̄) > 0 and 2X̄f 00(X̄) + f 0(X̄) > 0 when the background scalar gradient @

µ

'̄ is
timelike with respect to gµ⌫ (see the end of the present Section for other cases). Then the
causal cones can be represented as panels (a), (b), (c) or (d) of Fig. 1, where the grey cone

2Let us recall that two quadratic forms can always be simultaneously diagonalized if at least one of them
is positive (or negative) definite. Here both of our metrics have hyperbolic signature, and this is the reason
why the non-simultaneously diagonalizable cases (e)–(h) are possible.

– 2 –

boost

H2 =
1

2
(...)2 +

1

2
c2
s�

�2 H2 =
1

2
(...)2 +

1

2
(c2

s � v2)��2



Stability vs Hamiltonian

D � S00S11 �
�
S01

�2
< 0.

S�1
µ� =

�
S11 �S01

�S01 S00

�
/D. dS2 = S�1

µ� dxµdx�

t
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Figure 1. Possible relative orientations of two causal cones, in a coordinate system such that the grey
cone with solid lines appears at ±45�. We do not plot the equivalent configurations exchanging left
and right, and do not consider the limiting cases where some characteristics coincide. The first row
(a)–(d) are safe cases in which the two metrics can be diagonalized simultaneously by an appropriate
choice of coordinates — corresponding then to panels (b) or (c). Although the kinetic contribution to
their Hamiltonian density is unbounded by below in cases (a) and (d), it is positive in (b) and (c). The
second row (e)–(h) are again safe cases, for which the kinetic contribution to the Hamiltonian density
can be proven to be positive in an appropriate coordinate system, actually corresponding to case (e),
but the two metrics cannot be simultaneoulsy diagonalized2. The third row (i)–(l) are unstable cases,
for which the two metrics can be simultaneously diagonalized as in (j) and (k), but they have then
opposite signatures in this (t, x) subspace. Their total Hamiltonian density remains unbounded by
below in all coordinate systems.

The conditions for such a k-essence theory to be stable and have a well-posed Cauchy
problem have been written several times in the literature [Y. Aharonov, A. Komar, and
L. Susskind, Phys. Rev. 182, 1400 (1969), Mukhanov k-essence, Babichev-Mukhanov-
Vikman, Bruneton-Gef], and we shall rederive them below from our general analysis. They
read f 0(X̄) > 0 and 2X̄f 00(X̄) + f 0(X̄) > 0 when the background scalar gradient @

µ

'̄ is
timelike with respect to gµ⌫ (see the end of the present Section for other cases). Then the
causal cones can be represented as panels (a), (b), (c) or (d) of Fig. 1, where the grey cone

2Let us recall that two quadratic forms can always be simultaneously diagonalized if at least one of them
is positive (or negative) definite. Here both of our metrics have hyperbolic signature, and this is the reason
why the non-simultaneously diagonalizable cases (e)–(h) are possible.
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S�1
00 dtdt > 0 S11 < 0



Stable configurations:
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Figure 1. Possible relative orientations of two causal cones, in a coordinate system such that the grey
cone with solid lines appears at ±45�. We do not plot the equivalent configurations exchanging left
and right, and do not consider the limiting cases where some characteristics coincide. The first row
(a)–(d) are safe cases in which the two metrics can be diagonalized simultaneously by an appropriate
choice of coordinates — corresponding then to panels (b) or (c). Although the kinetic contribution to
their Hamiltonian density is unbounded by below in cases (a) and (d), it is positive in (b) and (c). The
second row (e)–(h) are again safe cases, for which the kinetic contribution to the Hamiltonian density
can be proven to be positive in an appropriate coordinate system, actually corresponding to case (e),
but the two metrics cannot be simultaneoulsy diagonalized2. The third row (i)–(l) are unstable cases,
for which the two metrics can be simultaneously diagonalized as in (j) and (k), but they have then
opposite signatures in this (t, x) subspace. Their total Hamiltonian density remains unbounded by
below in all coordinate systems.

The conditions for such a k-essence theory to be stable and have a well-posed Cauchy
problem have been written several times in the literature [Y. Aharonov, A. Komar, and
L. Susskind, Phys. Rev. 182, 1400 (1969), Mukhanov k-essence, Babichev-Mukhanov-
Vikman, Bruneton-Gef], and we shall rederive them below from our general analysis. They
read f 0(X̄) > 0 and 2X̄f 00(X̄) + f 0(X̄) > 0 when the background scalar gradient @

µ

'̄ is
timelike with respect to gµ⌫ (see the end of the present Section for other cases). Then the
causal cones can be represented as panels (a), (b), (c) or (d) of Fig. 1, where the grey cone

2Let us recall that two quadratic forms can always be simultaneously diagonalized if at least one of them
is positive (or negative) definite. Here both of our metrics have hyperbolic signature, and this is the reason
why the non-simultaneously diagonalizable cases (e)–(h) are possible.
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In both cases the system is stable
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Figure 1. Possible relative orientations of two causal cones, in a coordinate system such that the grey
cone with solid lines appears at ±45�. We do not plot the equivalent configurations exchanging left
and right, and do not consider the limiting cases where some characteristics coincide. The first row
(a)–(d) are safe cases in which the two metrics can be diagonalized simultaneously by an appropriate
choice of coordinates — corresponding then to panels (b) or (c). Although the kinetic contribution to
their Hamiltonian density is unbounded by below in cases (a) and (d), it is positive in (b) and (c). The
second row (e)–(h) are again safe cases, for which the kinetic contribution to the Hamiltonian density
can be proven to be positive in an appropriate coordinate system, actually corresponding to case (e),
but the two metrics cannot be simultaneoulsy diagonalized7. The third row (i)–(l) are unstable cases,
for which the two metrics can be simultaneously diagonalized as in (j) and (k), but they have then
opposite signatures in this (t, x) subspace. Their total Hamiltonian density remains unbounded by
below in all coordinate systems.

has a non-vanishing gradient @
µ

'̄, and they define thus di↵erent causal cones. In this simple
case, one can show that the spin-2 degrees of freedom (the gravitons, perturbations of the
metric tensor) do propagate in the initial metric gµ⌫ . To simplify this example even further,
one may actually consider it in flat spacetime, i.e., without any graviton, while universally
coupling matter to g

µ⌫

. Then we still have at least two fields (matter and the spin-0 degree
of freedom �) which propagate in di↵erent metrics, defining two di↵erent causal cones.

The conditions for such a k-essence theory to be stable and have a well-posed Cauchy

7Let us recall that two quadratic forms can always be simultaneously diagonalized if at least one of them
is positive (or negative) definite. Here both of our metrics have hyperbolic signature, and this is the reason
why the non-simultaneously diagonalizable cases (e)–(h) are possible.
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Stability vs Hamiltonian
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Figure 1. Possible relative orientations of two causal cones, in a coordinate system such that the grey
cone with solid lines appears at ±45�. We do not plot the equivalent configurations exchanging left
and right, and do not consider the limiting cases where some characteristics coincide. The first row
(a)–(d) are safe cases in which the two metrics can be diagonalized simultaneously by an appropriate
choice of coordinates — corresponding then to panels (b) or (c). Although the kinetic contribution to
their Hamiltonian density is unbounded by below in cases (a) and (d), it is positive in (b) and (c). The
second row (e)–(h) are again safe cases, for which the kinetic contribution to the Hamiltonian density
can be proven to be positive in an appropriate coordinate system, actually corresponding to case (e),
but the two metrics cannot be simultaneoulsy diagonalized2. The third row (i)–(l) are unstable cases,
for which the two metrics can be simultaneously diagonalized as in (j) and (k), but they have then
opposite signatures in this (t, x) subspace. Their total Hamiltonian density remains unbounded by
below in all coordinate systems.

The conditions for such a k-essence theory to be stable and have a well-posed Cauchy
problem have been written several times in the literature [Y. Aharonov, A. Komar, and
L. Susskind, Phys. Rev. 182, 1400 (1969), Mukhanov k-essence, Babichev-Mukhanov-
Vikman, Bruneton-Gef], and we shall rederive them below from our general analysis. They
read f 0(X̄) > 0 and 2X̄f 00(X̄) + f 0(X̄) > 0 when the background scalar gradient @

µ

'̄ is
timelike with respect to gµ⌫ (see the end of the present Section for other cases). Then the
causal cones can be represented as panels (a), (b), (c) or (d) of Fig. 1, where the grey cone

2Let us recall that two quadratic forms can always be simultaneously diagonalized if at least one of them
is positive (or negative) definite. Here both of our metrics have hyperbolic signature, and this is the reason
why the non-simultaneously diagonalizable cases (e)–(h) are possible.
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Figure 1. Possible relative orientations of two causal cones, in a coordinate system such that the grey
cone with solid lines appears at ±45�. We do not plot the equivalent configurations exchanging left
and right, and do not consider the limiting cases where some characteristics coincide. The first row
(a)–(d) are safe cases in which the two metrics can be diagonalized simultaneously by an appropriate
choice of coordinates — corresponding then to panels (b) or (c). Although the kinetic contribution to
their Hamiltonian density is unbounded by below in cases (a) and (d), it is positive in (b) and (c). The
second row (e)–(h) are again safe cases, for which the kinetic contribution to the Hamiltonian density
can be proven to be positive in an appropriate coordinate system, actually corresponding to case (e),
but the two metrics cannot be simultaneoulsy diagonalized2. The third row (i)–(l) are unstable cases,
for which the two metrics can be simultaneously diagonalized as in (j) and (k), but they have then
opposite signatures in this (t, x) subspace. Their total Hamiltonian density remains unbounded by
below in all coordinate systems.

The conditions for such a k-essence theory to be stable and have a well-posed Cauchy
problem have been written several times in the literature [Y. Aharonov, A. Komar, and
L. Susskind, Phys. Rev. 182, 1400 (1969), Mukhanov k-essence, Babichev-Mukhanov-
Vikman, Bruneton-Gef], and we shall rederive them below from our general analysis. They
read f 0(X̄) > 0 and 2X̄f 00(X̄) + f 0(X̄) > 0 when the background scalar gradient @

µ

'̄ is
timelike with respect to gµ⌫ (see the end of the present Section for other cases). Then the
causal cones can be represented as panels (a), (b), (c) or (d) of Fig. 1, where the grey cone

2Let us recall that two quadratic forms can always be simultaneously diagonalized if at least one of them
is positive (or negative) definite. Here both of our metrics have hyperbolic signature, and this is the reason
why the non-simultaneously diagonalizable cases (e)–(h) are possible.
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Stability vs Hamiltonian



Stability vs Hamiltonian

Monday 15 June 15

When total Hamiltonian density is bounded by below, then the lowest 
energy state is necessarily stable.!

Monday 15 June 15

Inverse is not true: A Hamiltonian density which is unbounded from 
below does not always imply instability. !

Monday 15 June 15

Sometimes the unbounded Hamiltonian appears due to the “bad” 
choice of coordinate

The Hamiltonian is not a scalar with 
respect to coordinate transformations!



instead of Hamiltonian?

Four conserved Noether currents:

initial data in this case, since it is not spacelike with respect to G0µ⌫ , therefore the sign of
Hamiltonian (2.3) at t0 = 0 does not have much meaning anyway.] The conclusion is the
same as before: The unbounded Hamiltonian by below in the boosted frame of panel (d) is
a mere coordinate e↵ect, without any physical meaning, and the model is actually stable, as
proven by the positive total Hamiltonian density in the frame of panel (c).

It is also instructive to compute the energy of a system in a boosted frame (still in
flat spacetime, to simplify the discussion). Although it di↵ers from gµ⌫ , the e↵ective metric
Gµ⌫ is a tensor; see for instance Eq. (2.1) for the particular case of k-essence. Therefore,
the Lagrangian L2 = �1

2Gµ⌫@
µ

�@
⌫

� is di↵eomorphism invariant, and this implies that four
Noether currents are conserved,

T ⌫

µ

⌘ �L2

�(@
⌫

�)
@
µ

�� �⌫
µ

L2, (2.8)

where �⌫
µ

denotes the Kronecker symbol. The lower index µ can be understood as a number
specifying which current is considered (there are four of them), while the upper ⌫ is the
current index. The current conservation reads as usual @

⌫

T ⌫

µ

= 0 , @0T
0
µ

+ @
i

T i

µ

= 0.
When integrating this identity over a large spatial volume V containing the whole physical
system under consideration, the spatial derivatives become vanishing boundary terms, and
one gets the standard conservation laws for total energy and momentum, @

t

P
µ

= 0, with
P
µ

⌘
RRR

V

T 0
µ

d3x. For µ = 0, the energy density T 0
0 coincides with the on-shell value of the

Hamiltonian density (2.3). As recalled above, if it is bounded by below, then the lowest-energy
state must be stable. But it should be underlined that the three components of the total
momentum P

i

are also conserved, and that the components T 0
i

= p @
i

� [with p still given
by Eq. (2.2)] have no preferred sign, since there is no privileged spatial direction. When
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and in particular, the energy gets mixed with the initial 3-momentum, P 0
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are scalar quantities, and they remain thus invariant
under coordinate transformations. However, they are not always negative, contrary to the
standard “minus rest mass squared” in special relativity, therefore the magnitude of the
spatial components P
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is not always bounded by P0. For instance, in panels (c) or (d)
of Fig. 1, a scalar field perturbation propagating outside the solid (grey) cone obviously
corresponds to a positive gµ⌫P
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, i.e., a spacelike P
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with respect to gµ⌫ . It is thus clear
that a negative value of P 0

0 = (P0 + vP
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)/
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1� v2 is reachable for a large enough boost

velocity |v| < 1. The fact that P 0
0 can also become negative in the case of panel (a) is

much less obvious [Gilles: to be better understood?], but it can be checked that it coincides
with the (spatial integral of the) on-shell expression of Hamiltonian (2.3) with the boosted
e↵ective metric (2.7). In such a case, a large enough boost velocity |w| < |v| < 1 generates
a negative G011, and thereby a possibly negative Hamiltonian (2.3), when initial data on the
t0 = 0 hypersurface are chosen with a large spatial gradient @
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0� (but a small @
t

0�). Up to
now, we are merely rephrasing our previous conclusions with a slightly di↵erent viewpoint.
But what is more interesting is to understand why situations like panels (a) or (d) of Fig. 1
are stable in spite of their Hamiltonian density (2.3) which is unbounded by below. The
reason is simply that not only their total energy P 0

0 is conserved, but also their 3-momentum
P 0
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. And it happens that the linear combination (P 0
0 � vP 0
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)/
p
1� v2, which is thus also

conserved, happens to be bounded by below, since it obviously gives the positive expression
of P0 in the initial frame of panels (b) or (c). In other words, stability is not ensured by the
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T 0
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Instead of        one may consider an invariant (under boosts) quantity:
boundedness by below of the Hamiltonian density, in the present case, but by that of the
linear combination T 00

0 � vT 00
x

.
In conclusion, although the Hamiltonian density is not bounded by below in the situ-

ations corresponding to panels (a), (d), (f), (g) and (h) of Fig. 1, there exists a choice of
coordinates mapping them to panels (b), (c) or (e), where the new total Hamiltonian density
is bounded by below. This su�ces to guarantee the stability of the lowest-energy state, as
computed in this new coordinate system. The only generically unstable cases correspond to
the third row of Fig. 1, panels (i) to (l), because their total Hamiltonian density is never
bounded by below in any coordinate system. They are such that the matrix Gµ�g

�⌫

is di-
agonalizable and possesses at least two negative eigenvalues. Conversely, it is easy to write
the inequalities needed on the components of the e↵ective metric Gµ⌫ to be in the eight safe
cases corresponding to the first two rows, panels (a) to (h). [Gilles: I don’t believe it is worth
quoting this, but when gµ⌫ = diag(�1, 1, 1, 1), I had derived:

either G00 < 0 < G11 (H2 already positive in this frame); (2.9a)

or G00 > 0, 0 <
��G01

�� < G11, and G00G11 <
�
G01

�2
; (2.9b)

or G11 < 0, G00 < �
��G01

�� < 0, and G00G11 <
�
G01

�2
; (2.9c)

or G00 < G11, and
��G01

�� > max
���G00

�� ,
��G11

��� ; (2.9d)

or G00 > G11, and
��G01

�� >
��G00 + G11

�� /2. (2.9e)

Unfortunately, the eight panels (a)–(h) are not very simply related to these five cases. In the
particular case where gµ⌫ and Gµ⌫ are simultaneously diagonalizable, which is already included in
the first three cases above, this reads:

G00 < G11, and G00G11 <
�
G01

�2 
⇥�
G00 + G11

�
/2
⇤2

. (2.10)

] However, such inequalities are less enlightening than Fig. 1 itself, in which it is immediate
to see whether the two causal cones have both a common exterior (when one should specify
initial data) and a common interior. When one chooses new coordinates such that time lies
within the cone intersection, and space is outside both cones, then the total Hamiltonian
density caused by kinetic terms becomes positive.

As an application of the above results, let us rederive the stability conditions for
the e↵ective metric (2.1) corresponding to k-essence. Let us first choose a locally iner-
tial frame such that g

µ⌫

= diag(�1, 1, 1, 1). Then, if @
µ

'̄ is timelike with respect to g
µ⌫

,
it is always possible to boost this coordinate system such that @

i

'̄ = 0. We thus get
Gµ⌫ = diag

�⇥
�f 0 + 2 ˙̄'2f 00⇤ , f 0, f 0, f 0�. To be in the situation of panels (b) or (c) of Fig. 1,

it is necessary to have G00 < 0 and Gxx > 0, therefore we need �f 0 + 2 ˙̄'2f 00 < 0 and
f 0 > 0. Since X̄ = gµ⌫@

µ

'̄@
⌫

'̄ = � ˙̄'2 in this specific coordinate system, the covariant
expressions of these conditions are necessarily f 0(X̄) > 0 and 2X̄f 00(X̄) + f 0(X̄) > 0, as
mentioned below Fig. 1. Note that no condition is imposed on f 00(X̄) alone. The result
remains the same when the background scalar gradient @

µ

'̄ is spacelike (still with respect to
g
µ⌫

). Then one may choose the x coordinate in its direction, so that its only non-vanishing
component be '̄0 ⌘ @1'̄. In this coordinate system, the components of the e↵ective metric
read Gµ⌫ = diag

�
�f 0,

⇥
f 0 + 2 '̄02f 00⇤ , f 0, f 0�, while X̄ = +'̄02, therefore we recover strictly

the same covariant inequalities. Finally, when @
µ

'̄ is a null vector (again with respect to g
µ⌫

,
i.e., X̄ = 0), it is possible to choose a coordinate system in which @

µ

'̄ = ( ˙̄', ˙̄', 0, 0), and the
non-vanishing components of the e↵ective metric read G00 = �f 0+2 ˙̄'2f 00, G11 = f 0+2 ˙̄'2f 00,
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will confirm so below for a specific exact solution. But
this reference [4] uses the results of [40], which needed
to neglect scalar-graviton mixing terms in order to ex-
tract the spin-2 excitations. Generically, the separation
of the spin-2 and spin-0 degrees of freedom is background
dependent and highly non-trivial. It remains thus impor-
tant to check whether this speed equality is also satisfied
in very curved backgrounds, with large scalar-field gra-
dients, for instance in the neighborhood of a black-hole
horizon. This is what we do now for the particular case
of an exact Schwarzschild-de Sitter solution of the model

L = ζ (R− 2Λbare)− η ϕ2
λ + βGµνϕµϕν , (3)

where Gµν denotes the Einstein tensor, ζ = 1
2M

2
Pl > 0,

and MPl ≡ (8πG)−1/2 is the reduced Planck mass. (The
Gµνϕµϕν term has been nicknamed “John” in the “Fab-
Four” model [29, 30].) In terms of the notation of Eq. (1),
this corresponds to

G2(ϕ
2
λ) = −2 ζ Λbare − η ϕ2

λ, (4)

G4(ϕ
2
λ) = ζ −

β

2
ϕ2
λ, (5)

and G3 = F4 = 0. Since this vanishing of F4 is in contra-
diction with Eqs. (2) and (5), we can immediately con-
clude that this model does not satisfy the cgrav = clight
constraint, if matter (and thereby light) is assumed to
be minimally coupled to gµν as in Eq. (1). However, as
already underlined in [3, 4], it suffices to couple matter
to a different metric g̃µν , related to gµν by a disformal
transformation, to change the matter causal cone so that
cgrav = clight is ensured, at least in a homogeneous Uni-
verse. In the present model, the disformal transforma-
tions given in [13, 14, 24] or the gravity speed derived in
[4, 40] allow us to prove that this physical metric must
read (or be proportional to)

g̃µν = gµν −
β

ζ + β
2 ϕ

2
λ

ϕµϕν . (6)

One may also rewrite Lagrangian (3) in terms of this
g̃µν , and one finds that it becomes of the form (1), with
rather complicated functions G̃4(ϕ̃2

λ) and F̃4(ϕ̃2
λ) (involv-

ing nested square roots), which now do satisfy the con-
straint (2) in terms of the variable ϕ̃2

λ ≡ g̃µνϕµϕν . This
guarantees that the speeds of light and gravity coincide at
least in the asymptotic homogeneous Universe, far away
from any local massive body.

We can go beyond this result by studying the speed
of spin-2 perturbations around a spherical black hole.
An exact Schwarzschild-de Sitter solution has indeed
been found in [26] for model (3), assuming linear time-

dependence of the scalar field [41]:

ds2 = −A(r) dt2 +
dr2

A(r)
+ r2

(

dθ2 + sin2 θ dφ2
)

, (7)

A(r) = 1−
Gm

r
−

Λeff

3
r2, (8)

Λeff = −
η

β
, (9)

ϕ = q

(

t−

∫

√

1−A(r)

A(r)
dr

)

, (10)

q2 =
η + β Λbare

η β
ζ, (11)

where this last equality (11) forces its right-hand side to
be positive. Equation (9) defines the effective cosmolog-
ical constant Λeff entering the line element (7), and one
can note that it may be as small as one wishes, inde-
pendently of the magnitude of Λbare (it does not even
depend at all on Λbare, in the present model). This is
a particularly simple example of self-tuning. However,
the observer, made of matter, is now assumed to be cou-
pled to the physical metric (6), and this changes her per-
ception of the Universe. A straightforward calculation
shows that g̃µν remains of the exact Schwarzschild-de
Sitter form, with a scalar field of the form (10) in the
relevant transformed coordinate system, but the observ-
able cosmological constant now reads

Λ̃eff =

(

Λeff + Λbare

3Λeff − Λbare

)

Λeff. (12)

At this stage, it thus seems that a very small Λ̃eff re-
mains possible, for instance if Λeff = −η/β is chosen to
almost compensate Λbare. However, the field equations
written in the physical frame g̃µν actually always imply
Λ̃eff ∼ Λbare [42]. Moreover, we will see below that the
stability of the solution forces both Λeff and the observ-
able Λ̃eff to be of the same order of magnitude as Λbare

(or even larger). Therefore, in this simple model (3),
the small observed cosmological constant cannot be ex-
plained by the self-tuning mechanism, and some other
reason must be invoked, like in standard general relativ-
ity. It remains that this model is observationally consis-
tent if the constant Λbare entering (3) is small enough.
The odd-parity perturbations of solution (7)–(11) have

been analyzed in [43], and they define the effective metric
Gµν in which spin-2 perturbations propagate. We can
thus compare it with the metric g̃µν , Eq. (6), to which
matter (including photons) is assumed to be coupled, and
we find

g̃µν =

(

1 +
Λbare

Λeff

)

Gµν . (13)

Therefore, even close to the black hole, their causal cones
exactly coincide. In other words, the universal coupling
of matter to the disformal metric (6) suffices to ensure

c �= c
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will confirm so below for a specific exact solution. But
this reference [4] uses the results of [40], which needed
to neglect scalar-graviton mixing terms in order to ex-
tract the spin-2 excitations. Generically, the separation
of the spin-2 and spin-0 degrees of freedom is background
dependent and highly non-trivial. It remains thus impor-
tant to check whether this speed equality is also satisfied
in very curved backgrounds, with large scalar-field gra-
dients, for instance in the neighborhood of a black-hole
horizon. This is what we do now for the particular case
of an exact Schwarzschild-de Sitter solution of the model

L = ζ (R− 2Λbare)− η ϕ2
λ + βGµνϕµϕν , (3)

where Gµν denotes the Einstein tensor, ζ = 1
2M

2
Pl > 0,

and MPl ≡ (8πG)−1/2 is the reduced Planck mass. (The
Gµνϕµϕν term has been nicknamed “John” in the “Fab-
Four” model [29, 30].) In terms of the notation of Eq. (1),
this corresponds to

G2(ϕ
2
λ) = −2 ζ Λbare − η ϕ2

λ, (4)

G4(ϕ
2
λ) = ζ −

β

2
ϕ2
λ, (5)

and G3 = F4 = 0. Since this vanishing of F4 is in contra-
diction with Eqs. (2) and (5), we can immediately con-
clude that this model does not satisfy the cgrav = clight
constraint, if matter (and thereby light) is assumed to
be minimally coupled to gµν as in Eq. (1). However, as
already underlined in [3, 4], it suffices to couple matter
to a different metric g̃µν , related to gµν by a disformal
transformation, to change the matter causal cone so that
cgrav = clight is ensured, at least in a homogeneous Uni-
verse. In the present model, the disformal transforma-
tions given in [13, 14, 24] or the gravity speed derived in
[4, 40] allow us to prove that this physical metric must
read (or be proportional to)

g̃µν = gµν −
β

ζ + β
2 ϕ

2
λ

ϕµϕν . (6)

One may also rewrite Lagrangian (3) in terms of this
g̃µν , and one finds that it becomes of the form (1), with
rather complicated functions G̃4(ϕ̃2

λ) and F̃4(ϕ̃2
λ) (involv-

ing nested square roots), which now do satisfy the con-
straint (2) in terms of the variable ϕ̃2

λ ≡ g̃µνϕµϕν . This
guarantees that the speeds of light and gravity coincide at
least in the asymptotic homogeneous Universe, far away
from any local massive body.

We can go beyond this result by studying the speed
of spin-2 perturbations around a spherical black hole.
An exact Schwarzschild-de Sitter solution has indeed
been found in [26] for model (3), assuming linear time-

dependence of the scalar field [41]:

ds2 = −A(r) dt2 +
dr2

A(r)
+ r2

(

dθ2 + sin2 θ dφ2
)

, (7)

A(r) = 1−
Gm

r
−

Λeff

3
r2, (8)

Λeff = −
η

β
, (9)

ϕ = q

(

t−

∫

√

1−A(r)

A(r)
dr

)

, (10)

q2 =
η + β Λbare

η β
ζ, (11)

where this last equality (11) forces its right-hand side to
be positive. Equation (9) defines the effective cosmolog-
ical constant Λeff entering the line element (7), and one
can note that it may be as small as one wishes, inde-
pendently of the magnitude of Λbare (it does not even
depend at all on Λbare, in the present model). This is
a particularly simple example of self-tuning. However,
the observer, made of matter, is now assumed to be cou-
pled to the physical metric (6), and this changes her per-
ception of the Universe. A straightforward calculation
shows that g̃µν remains of the exact Schwarzschild-de
Sitter form, with a scalar field of the form (10) in the
relevant transformed coordinate system, but the observ-
able cosmological constant now reads

Λ̃eff =

(

Λeff + Λbare

3Λeff − Λbare

)

Λeff. (12)

At this stage, it thus seems that a very small Λ̃eff re-
mains possible, for instance if Λeff = −η/β is chosen to
almost compensate Λbare. However, the field equations
written in the physical frame g̃µν actually always imply
Λ̃eff ∼ Λbare [42]. Moreover, we will see below that the
stability of the solution forces both Λeff and the observ-
able Λ̃eff to be of the same order of magnitude as Λbare

(or even larger). Therefore, in this simple model (3),
the small observed cosmological constant cannot be ex-
plained by the self-tuning mechanism, and some other
reason must be invoked, like in standard general relativ-
ity. It remains that this model is observationally consis-
tent if the constant Λbare entering (3) is small enough.
The odd-parity perturbations of solution (7)–(11) have

been analyzed in [43], and they define the effective metric
Gµν in which spin-2 perturbations propagate. We can
thus compare it with the metric g̃µν , Eq. (6), to which
matter (including photons) is assumed to be coupled, and
we find

g̃µν =

(

1 +
Λbare

Λeff

)

Gµν . (13)

Therefore, even close to the black hole, their causal cones
exactly coincide. In other words, the universal coupling
of matter to the disformal metric (6) suffices to ensure
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Stability of black holes

G01 = G10 = �2 ˙̄'2f 00, and G22 = G33 = f 0. We then find that one of the characteristics
defined by Gµ⌫ coincides with one of those defined by gµ⌫ , corresponding to a velocity �1
for spin-0 perturbations. This is thus a limiting case of those plotted in Fig. 1. But when
f 0(X̄) > 0, consistently with the same covariant inequalities as above, one finds that the
causal cones defined by gµ⌫ and Gµ⌫ have both a common interior and a common exterior,
and the background solution is thus stable. [Gilles: To be checked again.]

[Gilles: Initial plan that I had in mind, but it would need to change the presentation of the
next Section; a simple transition sentence will probably su�ce. Discuss here the Ogawa et al.
incorrect reasoning, and what conditions the correct one imposes on the parameters of the John
model. Mention that if only the helicity-2 modes are considered, then one only needs to impose
the hyperbolicity of the e↵ective metric Gµ⌫ in which they propagate ) very simple condition. If
one couples matter to g

µ⌫

, then one needs both metrics to be consistent as in the first two rows
of Fig. 1, and this imposes extra conditions. However, the recent experimental constraints on the
speed of gravitational waves actually forces us to couple matter to a disformal metric g̃µ⌫ (3.46),
proportional to Gµ⌫ , and the two causal cones for matter and gravitons then exactly coincide.
Therefore, we no longer have any extra constraint on the parameters of the model, and only the
simple hyperbolicity condition mentioned above needs to be enforced. However, the spin-0 degree
of freedom of this model propagates in an e↵ective metric Sµ⌫ which does di↵er from Gµ⌫ / g̃µ⌫ .
This imposes new constraints that we shall derive in the next Section, and which had not been
analyzed by Ogawa et al.]

3 Stable black hole solutions in Horndeski and beyond theories

Let us now illustrate our findings with a specific example, stemming from Horndeski theory.
We will discuss certain solutions of the following action, which has been studied quite a lot
due to its simple self-tuning properties:

SJ[gµ⌫ ,'] =

Z p
�g d4x

⇥
⇣(R� 2⇤bare) + �Gµ⌫@

µ

'@
⌫

'� ⌘ '2
�

⇤
. (3.1)

⇣ is the Planck mass squared divided by 16⇡, and ⌘, � and ⇤bare are some constants. [Gilles:
define '

�

⌘ @
�

'.] In terms of standard Horndeski notation, this action corresponds to

G4 = ⇣ � �

2
'2
�

, G2 = �2⇣⇤bare � ⌘'2
�

. (3.2)

Static and spherically symmetric black hole solutions of the above theory were first derived
in [1] while they were extended in [2–4] to the case of non-vanishing ⇤bare. A new family of
solutions, with a linearly time-dependent scalar field, was proposed in [2]. These solutions
enjoy novel regularity properties akin to the time dependence of the scalar. Some solutions
have spacetime metrics that are identical to their GR counterparts (apart from the value of
the cosmological constant). As a result, they are often referred to as stealth solutions. More
importantly, time dependence of the scalar field qualifies the scalar to be a dark energy field
responsable for late-time acceleration (as well as self-tuning properties). These solutions were
claimed to be unstable under linear perturbations [5], and more recently the theory (3.1) was
ruled out observationally. The aim of the forthcoming section is to show that the former
result is in fact wrong, while the latter crucially depends on how the metric couples to
matter. Put in other words, if the physical metric to which matter couples minimally is g

µ⌫

,
then the above theory is ruled out (more precisely, the scalar field is ruled out as a dark
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energy candidate). Indeed, the speed of gravitons in this theory generically deviates from
the speed of light [6, 7] in inconsistency with the simultaneous observation of gravitational
and electromagnetic waves from the same source, GW170817 [8]. However, it is easy to
map the action (3.1) to a beyond Horndeski theory in which gravitational waves do travel
at the speed of light in accordance with observations. This has been checked in weakly
curved backgrounds [6, 7] but also in strong spherically symmetric backgrounds [9]. To make
therefore the theory (3.1) viable, the matter action should be minimally coupled to g̃

µ⌫

, the
physical metric:

g̃
µ⌫

= g
µ⌫

� �

⇣ +
�

2
'2
�

@
µ

'@
⌫

'. (3.3)

One should then work with the action

SJ[gµ⌫ ,'] + Sm[g̃µ⌫ , ], (3.4)

where Sm is some given matter action with matter fields collectively denoted as  coupling
to the physical frame metric g̃

µ⌫

. In analogy to standard nomenclature for Brans-Dicke
gravity, g

µ⌫

is therefore the non-physical ‘Einstein frame’ metric [Gilles: very dangerous to
use the phrase “Einstein frame”, since the perturbations of g

µ⌫

are not pure spin-2 degrees of
freedom! ) use something like “Horndeski frame”?], whereas g̃

µ⌫

is the ‘Jordan frame’ physical
metric. As in standard Brans-Dicke, it is easier to work in the non physical frame because
the metric sector is simpler there. We should keep in mind that our analogy is to be taken
with caution, because the frames of the higher order theories are related disformally (3.3),
and not conformally as in Brans-Dicke. Indeed, the disformal factor (3.3) has been chosen in
order to impose a unit speed for the gravitational waves in the physical (or Jordan) frame, at
least in weakly curved backgrounds. We recently reported [9] that the black hole solutions
found in [2] are again black holes with respect to the physical frame. This is not a trivial
result, as a disformal transformation may change the nature of solutions, rendering them even
singular upon going from one frame to the other. We will explicitly work out the physical
disformed metric in the next section. Furthermore, we study the stability of some solutions
of the theory (3.4). We do so in the Einstein frame, as stability properties carry through
upon field redefinitions (3.3) as long as these are not singular. A priori, three causal cones
must be considered in our analysis, and must have compatible orientations for the solutions
to be stable: the matter causal cone associated to g̃

µ⌫

, and the cones associated to scalar and
gravitational perturbations (with their associated e↵ective metrics). Quite remarkably, as we
will see, the graviton perturbation cone will end up being identical to the matter light cone
in the physical frame, demonstrating that gravity waves travel at same speed as light, even
in a strongly curved region of spacetime (close to the event horizon). This will e↵ectively
reduce the number of causal cones under scrutiny from three to two. We will see in the next
section how to construct these causal cones and e↵ective metrics in a spherically symmetric
background.

Regarding stability, Appleby and Linder examined the action (3.1) with vanishing ⇤bare

in a cosmological framework [10]. From the study of scalar perturbations, they found that
there always exists either a gradient instability or a ghost. This pathology can however be
cured by the introduction of a bare cosmological constant ⇤bare, as we will see below. The
stability of the black hole static solutions was discussed in a couple of papers by Kobayashi
et al. [11, 12], based on a more generic theory than (3.1). The authors employed the well-
established Regge-Wheeler formalism: they decomposed the perturbations into odd and even
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1. We concentrated on scalar mode (even l=0 mode).!
2. The odd-parity modes were calculated in                                                            

These modes correspond to spin-2 polarisation. We explicitly 
checked that for these modes [Ogawa, Kobayashi, Suyama’15].

with

Stt =
c21c

2
3c

2
4

4c2D
(�2c24c5 + c2c1c

0
4 � c2c4c

0
1 � c1c4c

0
2), (3.37)

Srr = �c21c
2
3c

2
4

2D
(�c3c8 + c2c6), (3.38)

Str = �c21c
2
3c

2
4

4D
(�c4c7 + c1c8), (3.39)

D = c26{2(�c3c8 + c2c6)(�c2c4c
0
1 + c1c2c

0
4 � c1c4c

0
2) + [4c3c8c5

+ c2(c
2
7 � 4c6c5)]c

2
4 � 2c2c4c7c1c8 + c2c

2
1c

2
8}.

(3.40)

Alternatively, we can remark that the scalar mode propagates to linear order in the given
black hole background (3.5) with an e↵ective two-dimensional metric S

µ⌫

:

L(2)
s; K = �1

2
Sµ⌫@

µ

⇡s@⌫⇡s. (3.41)

[Antoine: This definition for S is probably not correct, it should be divided by 4⇡r2 and an
`-dependent coe�cient.]. We can read from Eq. (3.36) the inverse metric:

Sµ⌫ =


Stt Str

Str Srr

�
, (3.42)

and the metric itself:

S
µ⌫

=
1

SttSrr � (Str)2


Srr �Str

�Str Stt

�
. (3.43)

From this last object, we can determine the hyperbolicity condition, the propagation speeds,
and all the information we need for the causal structure of the scalar mode. The hyperbolicity
condition for instance reads

(Str)2 � SttSrr > 0. (3.44)

The speed of a wave moving towards or away from the origin is then given by

c±s =
Str ±

p
(Str)2 � SttSrr

Stt

. (3.45)

The hyperbolicity condition ensures that these propagation speeds are well defined. At any
given point, c+s and c�s generate the scalar causal cone. Finally, one needs to know where the
interior of the cone is located. This can be easily determined by checking whether a given
direction (for instance the one generated by the vector @

t

) is time or space-like with respect
to the metric S

µ⌫

.
A similar analysis must be carried out for the spin-2 mode. It was actually already

realized by Ogawa et al. in [5]. They studied odd-parity perturbations, which cannot cor-
respond to a scalar degree of freedom – the latter always has even parity. Hence odd-parity
perturbations correspond to one of the two spin-2 polarizations. We checked the calculations
of Ogawa et al., and we are in full agreement as to the quadratic Lagrangian derived in their
paper. For brevity, we only reproduce the final result here, applied to the solution (3.5)-
(3.9); the gravity perturbations propagate in a two-dimensional e↵ective metric G

µ⌫

, which
essentially coincides with the physical metric g̃

µ⌫

, as given by Eq. (3.3):

G
µ⌫

=
⇤e↵

⇤bare + ⇤e↵
g̃
µ⌫

. (3.46)
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3. Stability window:

3

cgrav = clight even in a very non-homogeneous configura-
tion. Details will be given in [42].
The perturbative analysis of Ref. [43] was actually per-

formed to claim that the above Schwarzschild-de Sitter
solution is always unstable, but this claim is incorrect.
The argument was that the Hamiltonian of these per-
turbations is unbounded by below, close enough to the
black-hole horizon. However, although a bounded Hamil-
tonian does guarantee the stability of the lowest-energy
state, the converse theorem does not exist. Indeed, a
Hamiltonian is not a scalar quantity, and it may take
large negative values in a very boosted frame even if it
was bounded by below initially. It gets mixed with other
conserved quantities which are not bounded by below,
corresponding to the 3-momentum of the system. A cor-
rect stability criterion may thus be formulated as: If the
Hamiltonian is bounded by below in at least one coor-
dinate system, then the theory is stable. As we shall
detail in [42], when focusing on kinetic terms, it suffices
that the causal cones of all interacting degrees of freedom
share a common interior timelike3 direction (which will
become the time coordinate of the “safe” frame in which
the Hamiltonian can be proven to be bounded by be-
low), and also a common exterior spacelike hypersurface,
on which initial data may be set to define the Cauchy
problem (see [44–48] for related discussions).
In the present model, we saw that the graviton and

matter causal cones coincide everywhere, because of the
disformal metric (6) to which we universally couple mat-
ter. There remains however to check that both interi-
ors are indeed timelike, otherwise matter and gravitons
would have opposite kinetic energies. This means that
the factor entering Eq. (13) must be positive. Moreover,
the scalar field ϕ itself has a different causal cone, that
we study in [42] by analyzing the ℓ = 0 even-parity per-
turbations. Therefore, stability can be ensured only if
the scalar causal cone shares a common interior direc-
tion and a common exterior hypersurface with that of
g̃µν (and gravitons). We found that it is possible pro-
vided the parameters of Lagrangian (3) satisfy the fol-
lowing inequalities. We write them here in terms of the
ratio −η/β, denoted as Λeff in Eq. (9), and we assume
that the observed Λ̃eff = 3H̃2 is positive (which implies
that Λbare and Λeff are positive too, when taking into
account these very inequalities):

either η > 0, β < 0, and
1

3
Λbare < −

η

β
< Λbare, (14)

or η < 0, β > 0, and Λbare < −
η

β
< 3Λbare. (15)

3 Timelike (resp. spacelike) means here that for an effective metric
Gµν in which a given degree of freedom propagates, the line el-
ement Gµνdxµdxν is negative (resp. positive). Our criterion on
the intersections of causal cones therefore also forbids the exis-
tence of ghost degrees of freedom, for which the effective metric
would have the opposite (mostly-minus) signature.

It is straightforward to prove analytically that these con-
ditions suffice for the consistency of the causal cones in
the asymptotic de Sitter Universe. Close to the black
hole, the analytic expressions are so long that we checked
instead specific examples in a numerical way, by follow-
ing the relative positions of the scalar and graviton (or
matter) causal cones while varying the distance r to the
center of the black hole. Our conclusion is that for the
above ranges of the ratio −η/β, Eqs. (14) or (15), the
perturbation Hamiltonian is bounded by below in a well-
chosen frame, at any spacetime point, and the stability
criterion we established is satisfied.
Note that when setting Λbare = 0, the interval of stabil-

ity disappears, in agreement with the perturbation anal-
ysis of [49] around a cosmological background. In other
words, it is the presence of vacuum energy which allows
for a window of stability for the black hole solution.
In terms of the observed Λ̃eff, Eq. (12), conditions (14)

and (15) imply

either η > 0, β < 0, and Λbare < Λ̃eff, (16)

or η < 0, β > 0, and Λbare < Λ̃eff <
3

2
Λbare. (17)

As stressed below Eq. (12), this means that self-tuning is
impossible in this specific model, since the observed cos-
mological constant must always be larger than the bare
one.
But there exists an infinite class of other beyond-

Horndeski models which do provide self-tuning, as shown
in Ref. [37], and we prove below that a subclass of them
also satisfies the cgrav = clight constraint. From now on,
we assume that matter is minimally coupled to gµν , as in
Lagrangian (1), and we no longer consider any disformal
transformation such as (6).
To avoid hiding several different scales in the functions

of ϕ2
λ, it is convenient to work with the dimensionless

quantity

X ≡
−ϕ2

λ

M2
, (18)

M being the only mass scale entering the Lagrangian of
the scalar field ϕ, itself chosen dimensionless (beware not
to confuse M with the Planck mass MPl). All the coeffi-
cients entering dimensionless functions of X will also be
assumed to be of order O(1). Up to a total derivative,
action (1) may then be rewritten as4

L =
M2

Pl

2
(R− 2Λbare)−M4Xf2(X)− 4s4(X)Gµνϕµϕν

−
f4(X)

M2
εµνρσ εαβγσ ϕµ ϕα ϕνβ ϕργ + Lmatter, (19)

where we do not include the G3 term because it must
anyway be passive for the self-tuning solutions derived

4 The above model (3) corresponds for instance to constant values
ζ = 1

2
M2

Pl
, f2 = −η/M2, s4 = − 1

4
β, and f4 = 0.

[EB,Charmousis,Esposito-Farese,Lehebel’17]
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There are solutions with exact equality of speeds of light end gravity, 
even in the vicinity of black hole.!
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Hamiltonian vs stability.!
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Stable of black holes for a range of parameters.


