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NMotivation:

GW170817/GRB170817A

Gamma rays, 50 to 300 keV GRB 170817A

Counts per second

Gravitational-wave strain GW170817

Frequency (Hz)

graviton speed = speed of light




NMotivation:

Black holes found in [EB, Charmousis’| 3] are unstable

[Ogawa, Kobayashi, Suyama'l5]

Similar arguments for instability are used in

[ Takahashi, Suyama, Kobayashi'l5]
[ Takahashi, Suyama'l7]
[Kase, Minamitsuji, Tsujikawa, Zhang’18]

[Maselli, Silva , Minamitsuji, Berti’1l6]



Outline

% Perturbations in galileons
% Perturbations of black hole solutions in Horndeski theory
% Hamiltonian vs stability

% Stable black holes after GW170817



Ferturbsations in galileons



Horndeski theory

Most general galileon shift-symmetric action: (Horndeski’1974,Deffayet et al’09]

£2 — K(X7 QO)
L3 =G3 (X, )0y

L= Gi(X,¢) R+ Gax(X,9) [(Op) - (V9)°],

Ls = Gs.x (X,¢) |(Op)° = 300 (VV)* +2(VV9)*| - 6G5 (X, ¢) G V" V"¢

where X = (Oy¢)?

EOMs are of second order



Kinetic mixing

» Standard kinetic term:

vV—99"" 0,¢0,¢ only mixing of ¢"” and 0¢ — no kinetic mixing

» k-essence:
vV—gg"" K(X): only mixing of ¢*” and ¢ — no kinetic mixing

¥ (G5 galileon:

XUg D I'dp ~ 0gd¢ : kinetic mixing



FPerturbations

guuzg,ul/_'_h/u/
¢p=¢+m

% Standard kinetic term, k-essence:

L2 ~ (0h)? + (064)* + h2 + (6¢)2 + h(5¢)
— —

kinetic terms lower order terms

% Higher-order galileons:

L2~ (0h)? + (056)2+(060)0h + h% + (6¢)% + h(59)
H__/

kinetic terms



Perturbation N G model
[EB,Esposito-Farese’12]

5= [ o v {5 00,07 060,07

Perturbation Lagrangian:

1 l:gineth: B
M]% vV —0
1 afBydTp 1 A 1 ? 2
—Zvuhagp V hfy(S + Z hu;)\ — §h,y — 1 (8M7T)

1
—~|20¢ (8,7)* — 2V ,0,¢ 870" 1+0,,$D, ¢ INTV W — 201 DY ¢ D, (h;\;A — 5/1,”)]
C—————— ————

—

mixing terms




FPerturbation N G= model

Change of variables

4k
h,qu/ — h,uu o Mz [ M¢8V¢ g,uV (8A¢) ]
e )
1 £12<inetic B __v h Paﬁ’yav'uh —l_ h ) lh 2 3 S’W/a 7_(_8 _
M2 /—g 4 2 e
\ J

S = g [n +290p — 42 (&wo)ﬂ — 2yVH0" o + 492 (Orp)” 00"

Effective metric felt by the scalar perturbations 7



FPerturbation Iin "John” model

L;=G"0,00,¢

The mixing is more complicated,

£(2)

J,mix

1
~ O\TVARMY 4+ 0, (h;\;A = 5h,,,) + OV h + 0,7V,

by — ? It is not clear how to demix perturbations in this case

Let us use symmetry of the background solution



FPerturbations of black hole
solutions IN Horndeski
theory



Black hole solution

[Babichev, Charmousis’13]

Syl = [ VT [C(R — 2o + BC0,00,0 ~

In terms of standard Horndeski notations:

G4 — C — ggbg\a G2 — _QCAbare — Wﬁ



Black hole solution

Self-tuning Schwarzschild-de Sitter solution:

r

.

ds® = —A(r) dt* + d_r2 + r2dQ?
A(r) ’
A(T) —1_ 2G'm _ Aeff 7“2,
r 3
v/1—A
A(r)
2 77+6Abare n
q = Ae — T
npo o A 5

N

J

Also stealth solution when n = Apare =0 :

-

|
ds® = —A(r) dt2+%+r2dﬂ2, Alr)=1- QCim
— A
¢ =q ti/\/mdr]
J

[Christos talk]



FPerturbations of black holes

Guv — gul/ + h,ul/
p=¢+m

Expansion in spherical harmonics —even parity (polar) and odd-
parity (axial) modes, which do not interact with each other:

1. Odd-parity modes only contain spin-2 polarizations; [0gawa, Kobayashi, Suyama'l5]
2. Even-parity modes: [ = 0 contains pure i.e. scalar, [ = 1 is dipole, [ > 2
contain both scalar and spin-2 polarizations



FPerturbations of black holes

Spherically symmetric perturbations (Regge and Wheeler formalism):

A(T)H()(t,?“) Hl(t,T) 0 0

I Hq(t,r) Hs(t,r)/B(r) 0 0

o 0 0 K(t,r)r? 0
0 0 0 K(t,r)r?sin® 0

Second order action in terms of w, Hy, H1 Hs, K,

58(2)SJ = /dtdr47rr2£§2)



FPerturbations of black holes

e N
L3 =P? 4+ Ay? + Bry + Ca?

R - .
\P—x Yy + a1z + asy )

variation wrt y gives: 2P’ + 2 Ay + Bz = 0

Constraint on y (nonlocal in space): in principle one can find y in terms of x by
solving ODE with known boundary conditions.

Instead focus on higher order terms:

-y =0 = z=9

/

T =X

1
[ [’S%{in _ -3 (SttXQ 4 QSWXX, 4 Ser/2) J




Stability™

1 1
£2 — _5 (Sttx2 i 28”).()(/ _I_STTXIQ) o £2 — _§S’UJV8,LLX81/X

S* is a function of background

Need check for:

1. Hyperbolicity (no Laplace instability)
2. No ghosts

1. Hyperbolicity:
D = 8SY0sH _ (801)2 <0 = the cone is defined

2. No ghost:

“Energy of particles >0”
Calculate Hamiltonian and check if it is bounded from below



Stability™

(g, 6] = / V=gd"z [CR + BG™ 3,60, )

n:AbareZO
e a
2 5 dr? 9 19 B _ZGm
ds® = —A(r)dt +—A(r) +r=dQ*, A(r) =1 .
O =q t:I:/”l_A(T>dr
A(r)
. J

Perturbations for stealth solution are given by parabolic equation:
pathological behaviour




Hamiltonian vs stability



Hamiltonian

1
£2 — = §S'LW8,LLX8VX

p=—==-8"y —8"9;x, canonical momentum

_ 1 ; 2 1 .
Ho=px — Lo = ~ 5500 (p+8"8;x) +§5337;X(9j><

In 1+1 we have:
1

2800

; 2 1
Ho =px — Lo = — (p_|_301xl) _|_§S11X/2

Does unbounded from below Hamiltonian
necessarily imply instability?

NO



Hamiltonian: example

1 2

£:_~2__s /2

oX T X
Relativistic boost ¢ =1 :
~ t+ vx 5 xr + vt
t:— €Tr =

V1 — 02’ V1 — 2

1 1 1
L s (51 = @) + (1= oy~ 5 (¢ — v
' i 1 2 1 2 2\, /2
Compute Hamiltonian:  Hz = 5(...) 4+ 5(03 — v
Ho < 0 for [v] > ¢, However the system is

clearly stable



Stable configurations:

boost

In both cases the system is stable



Stability vs Hamiltonian

Hyperbolicity (existence of propagation cone, characteristics):
D = S00glt _ (501)2 <0.

The inverse is:

L 811 —501
S = (—801 S00 ) /D. dS? = S;,}dx“dx” defines effective metric

1 2 1
Y, — SOL,y/ = Sl 2
2 9500 (P+S"X)" + 57 X
x The time axis is outside the blue cone,

meaning Sy, dtdt > 0 and therefore S < 0




Stable configurations:

In both cases the system is stable



Stability vs Hamiltonian

Hyperbolicity (existence of propagation cone, characteristics):
D = S00glt _ (501)2 <0.

The inverse is:

L 811 —501
S = (—801 S00 ) /D. dS? = S;,}dx“dx” defines effective metric

1 01 12, 1 c11 s
\ 7'(2:—2800 (p+S"X") +§5 X
X The x-axis is inside the blue cone,

meaning S;;'drdz < 0 and therefore S > 0




Stability vs Hamiltonian

()

(b)

(d)

®

(h)

@




Stability vs Hamiltonian

When total Hamiltonian density is bounded by below, then the lowest
energy state is necessarily stable.

Inverse is not true: A Hamiltonian density which is unbounded from
below does not always imply instability.

Sometimes the unbounded Hamiltonian appears due to the “bad”
choice of coordinate

The Hamiltonian is not a scalar with
respect to coordinate transformations



iNnstead of Hamiltonian™

1
»62 — = §S'LW8,MX&/X

oL
Four conserved Noether currents: TV = 2 OuX — 5Z Lo

" 6(0vx)
Current conservation: 5’VT,Z =0 < 80TB + c%TZL =0

The energy density 7} coincides with Hamiltonian density (on-shell):

it is not diff invariant.

Instead of T(’)O one may consider an invariant (under boosts) quantity:

0 0 Coincides with
Ty — vT), Hamiltonian in
unboosted frame



Siable black holes after
CGW170817



Constraints from GW170817

[EB,Charmousis,Esposito-Farese,Lehebel’17]

(" )

L =C(R—2Mpare) — 095 + BG" 000 +Lonatter[9] Horndeski with
minimal coupling to
Cgrav # Clight matter

. J




Constraints from GW170817

[EB,Charmousis,Esposito-Farese,Lehebel’17]

\_

r N ™
L= ((R—2Mpare) =095 + BC"™ 00 +Lomaster [d]
Cgrav = Clight on (almost) homogeneous backgrounds
L v,
Guv = Guv — & Pup
iz iz C+ ggpi K
< 77
4 5 )
A4Pl 2 132
L= T (R — 2Abare) — NP + BG PuPv
B pvpo _afy
— Y E £ o SO,UJ Lo SOVB Sppfy + ﬁmatter [Q]

Cgrav = Clight on (almost) homogeneous backgrounds

J

Horndeski with
nonminimal
(disformal) coupling
to matter

beyond Horndeski
with minimal
coupling to matter



Stability of black holes

Solguun ) = [ V7G4 [C(R ~ 280 + BC 0000 — 1 5]

Matter couples to

i 5
Juv — Guv — —58Mg05y90

C+§SO§\

Sy [g,uw ] + Sm Lg/w/y V]



Stability of black holes

1. We concentrated on scalar mode (even /=0 mode).

2. The odd-parity modes were calculated in
These modes correspond to spin-2 polarisation. We explicitly
checked that for these modes [0gawa, Kobayashi, Suyama’'15].

g L Aeﬁ g
e Abare + Aeff e
3. Stability window:
[EB,Charmousis,Esposito-Farese,Lehebel’17]
. 1 U
either n > 0, 8 < 0, and 3 Apare < —E < Apare,
orn<0,6>0, and Apare < _J < 3A\pare.

B



Conclusions

% There are solutions with exact equality of speeds of light end gravity,
even in the vicinity of black hole.

% Hamiltonian vs stability.

% Stable of black holes for a range of parameters.



