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Motivation

More than the 80% of the matter in the universe,
the dark matter,

remains elusive



The dark sector of the universe (which we know that exists)



Motivation and Outline

I The recent detection of gravitation waves created by the merging of two
massive (∼ 30M�) black holes has revived the idea that the dark matter
in the universe, or some fraction of it, is composed of Primordial Black
Holes (PBHs)

I Such PBH are distinguished from astrophysical black holes since they
are not produced by stellar collapse. Instead, they are formed due to
gravitational collapse of density perturbations which are of order unity
upon horizon entry

I The mass of such PBH is not limited by the usual bound of the 3M� for
astrophysical black holes but can attain much larger masses.

I Also PBH can be as light as 10−18M�, but not lighter in order the
evaporation rate in the late universe to be suppressed.



The allowed windows



PBH Production mechanism

I If PBH are possible to be created in the early universe it is natural to
contemplate upon the production mechanism and the possibility to
comprise the elusive dark matter

I Recent studies indicate that the PBH production can be successfully
attributed to the inflationary phase.

I PBH are found to be formed with a relic abundance possibly large
enough to account for a significant fraction of the bulk dark matter in the
universe.

I The power spectrum has to be CMB normalized at large scales,
PR ∼ 10−9 and increase about seven orders of magnitude in small
scales, PR ∼ 10−2.



A sketch of the required inflationary potential



The peak in the Power Spectrum



The inflationary set up

Superconformal attractors
We consider here superconformal model of N = 1 supergravity coupled to
chiral multiplets in the context of supersymmetric α attractor models1 Along
the trajectory S = ImΦ = 0, the effective Lagrangian for the field φ = ReΦ
turns out to be
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1Cecotti, Kalosh, Linde, Roest



The inflationary set up

Superconformal attractors
In this class of models inflation occurs for large fields ϕ� 0 (or φ ≈

√
3). In

this case, we can approximate the potential as

V = f 2
1 − 4f1f ′1e−

√
2
3ϕ +O(e−2

√
2
3ϕ),

where

f1 = f (tanhϕ/
√

3)|ϕ→∞, f ′1 = ∂ϕf (ϕ)|ϕ→∞. (1)

It is then straightforward to verify that for the potential the spectral index ns

and the scalar-to-tensor ratio r are given to leading order in the number of
e-folds N as

1− ns =
2
N
, r =

12
N2 . (2)

In the universality class of superconformal models, inflation gives the correct
CMB anisotropies and normalization if f (1) ≈ 10−5M2

Pl.



Conditions for inflection point

The potential of the scalar lagrangian is V (ϕ) = f 2(tanhϕ/
√

6). The
conditions that the potential should satisfy are:

1. A global minimum at ϕ = ϕ0 where the potential vanish

V (ϕ0) = 0.

This is the point where the inflaton will settle down without giving rise to
a cosmological constant.

2. An inflection point ϕ = ϕinfl,

V ′(ϕinfl) ≈ 0, V ′′(ϕinfl) = 0,

that is the point where the inflaton slows down and generates large
amplification in power spectrum. Both points have to lie into a specific
interval before the potential becomes asymptotically flat.



CMB and inflection point

I The main feature of the cosmological attractor mechanism is that for a
arbitrary potential function chosen, it is compatible with the CMB
constraints due to the flat potential for ϕ� 1. The flattening of the
potential for the boost φ→ tanhϕ/

√
6 happens close to the boundary

ϕ = 6 of the moduli space where the SO(1,1) approximate symmetry of
superpotential is not broken yet. In the φ space this means when φ
approaches unity.

I This very strong feature of attractors may make someone think that it is
impossible to construct a second small plateau into the ϕ interval O(6)
around zero, that will serve for PBHs production.

I A family of functions which share the IP characteristics is possible to
make the attractors a candidate to generate primordial black holes.



Specific inflationary models

Model I: Polynomial Superpotential

I Generaly, an n-th degree polynomial has n − 2 inflection points. Hence,
the simplest polynomial with one inflection point is the cubic

f (φ) = a0 + a1φ+ a2φ
2 + a3φ

3,

I the inflationary trajectory is determined by the canonically normalized
inflaton potential

V = |f (ϕ)|2 =

{
a0 + a1 tanh

(
ϕ√
6

)
+ a2 tanh2

(
ϕ√
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)
+ a3 tanh3

(
ϕ√
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Model I: Polynomial Superpotential

f (φ) = a0 + a1φ+ a2φ
2 + a3φ

3,
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Specific inflationary models

Model II: Modulated Chaotic Inflation Potentials

I Beside the obvious polynomial functions which possess this behavior,
sinusoidal functions appear periodical inflection points and roots.

I We study a class of models with potentials inspired from the natural
modulated potentials2 and the axion monodromy models3.

f (φ) = λ
(
φ+
√

3A sin
φ

fφ

)
I The potential for the canonical normalized field ϕ turns out to be

V (ϕ) = V0

[
tanh(ϕ/

√
6) + A sin

(√
3 tanh(ϕ/

√
6)/fφ

) ]2
, V0 = 3λ2.

2Kallosh & Linde
3Silverstein etal, Easther etal, Flauger etal, Kobayashi etal



Inflationary potentials with inflection point from
superconformal attractors
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The evolution of the inflaton field
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The Hubble flow parameters
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The Hubble flow parameters
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The curvature power spectrum

I Expanding the inflaton-gravity action

S =

∫
d4x

√
−g
[

1
2

R +
1
2

(∂φ)2 − V (φ)

]
to second order in R one obtains
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1
2

∫
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2

H2

[
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]
.

I After the variable redefinition v = zR where z2 = a2φ̇2/H2 = 2a2ε and
switching to conformal time τ , dτ = dt/a, the action is recast into
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∫
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]
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The curvature power spectrum

I The evolution of the Fourier modes vk of v(x) are described by the
Mukhanov-Sasaki equation

v ′′k +

(
k2 − z′′

z

)
vk = 0

I The z′′/z can be analyzed in terms of the Hubble flow slow-roll
parameters

z′′

z
= (aH)2

[
2− ε+

3
2
η − 1

2
εη +

1
4
η2 +

1
2
ηκ

]
I The power spectrum of R is obtained once the solution vk of the

Mukhanov-Sasaki equation is known

PR =
k3

2π2

|vk |2
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The curvature power spectrum

I The evolution of the Fourier modes vk of v(x) are described by the
Mukhanov-Sasaki equation

v ′′k +

(
k2 − z′′

z

)
vk = 0

I The power spectrum of R is obtained once the solution vk of the
Mukhanov-Sasaki equation is known

PR =
k3

2π2

|vk |2

z2

∣∣∣∣
k=aH

I In de Sitter space it is simplified, since it is z′′/z = 2/τ 2, and one can
solve it explicitly. In such a case the power spectrum for R in scales
larger than the Hubble radius is found to be

PR =
H2

8π2ε

∣∣∣∣
k=aH

(3)



The curvature power spectrum

I The evolution of the Fourier modes vk of v(x) are described by the
Mukhanov-Sasaki equation

v ′′k +

(
k2 − z′′

z

)
vk = 0

I The power spectrum of R is obtained once the solution vk of the
Mukhanov-Sasaki equation is known

PR =
k3

2π2

|vk |2

z2

∣∣∣∣
k=aH

I The analytic result is a very good approximation as long as the Hubble
flow slow-roll parameters are much less than one during the inflationary
phase. If this is not the case the numeric solution of the exact
Mukhanov-Sasaki equation has to be pursued



The numerical estimation of the curvature power
spectrum

I We calculate the evolution of the coupled inflaton-metric system in the
background level.

I We solve numerically the Mukhanov-Sasaki equation and find the
evolution of the real and the imaginary part of the solution vk . A
numerical iteration is carried out for more than 2500 modes k that range
from k∗ = 0.05 Mpc−1 to k = k∗(Hend/H∗) aN . We apply the
Bunch-Davies initial conditions for each mode five e-folds before it exits
the Hubble horizon.

I We calculate the power spectrum of each Rk once the scale exits the
Hubble horizon and its value freezes out. In total more than 2500 points
produce the PR(k) that allows the estimation of the variance σ2(M) of
the density perturbations and in turn the fraction of the mass that
collapses to form PBHs.



The numerical estimation of the curvature power
spectrum
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What sources the PS enhancement?

Polynomial Model
Z''/Z
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The power spectrum

0.1 1000.0 107 1011 1015 1019 1023

10-11

10-7

10-3

k (Mpc-1)

P
(k
)

0.1 1000.0 107 1011 1015 1019 1023

10-11

10-7

10-3

k (Mpc-1)

P
(k
)



The diffusion issue

Polynomial Model
Classical / Quantum dynamics
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The power spectrum
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Results -Signatures

ns Ppeak
R δc Mpeak

PBH /M� ΩPBH/ΩDM
Model I 0.943 0.56 0.48 2.5×10−16 0.22
Model II 0.943 0.18 0.30 3.3×10−15 0.42



Summary-Outlook

I We studied the PBH production from inflationary superconformal
attractors, where the inflationary fluctuations provide the seeds for the
CMB anisotropies an the PBH formation

I The increase in the power spectrum is achieved by the rapid change of
the Hubble flow parameters εH , ηH and κH about the inflection point.

I The amplification of the power spectrum requires a notable tuning of the
potential parameters.

I The superconformal attractors customized to generate PBH of mass
10−16 − 10−15 M� predict a relatively small ns value, and larger r and
αs values compared to the coventional inflationary attractor models. T

I Henceforth, these scenarios are possible to be tested by the next
generation CMB probes that aim at pinning down the scalar tilt value
with per mile accuracy. Large values for the ns and microlensing results
will rule out these sort of models.

THANK YOU!
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