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GR is a unique theory

Theoretical consistency: In 4 dimensions, consider
L = L(M, g ,∇g ,∇∇g). Then Lovelock’s theorem in D = 4 states that
GR with cosmological constant is the unique metric theory emerging from,

S(4) =
∫
M

d4x
√
−g (4) [R − 2Λ]

giving,
Equations of motion of 2nd-order (Ostrogradski no-go theorem
1850!)
given by a symmetric two-tensor, Gµν + Λgµν
and admitting Bianchi identities.

Under these hypotheses GR is the unique massless-tensorial 4 dimensional
theory of gravity!
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Observational data

Experimental consistency:
-Excellent agreement with solar system tests and strong gravity tests on binary
pulsars
-Observational breakthrough GW170817: Non local, 40Mpc and strong gravity
test from binary neutron stars. cT = 1± 10−15

Time delay of light Planetary tajectories

Neutron star binary
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Q: What is the matter content of the Universe today?

Assuming homogeinity-isotropy and GR

Gµν = 8πGTµν
cosmological and astrophysical observations dictate the matter content of the

Universe today:
A: -Only a 4% of matter has been discovered in the laboratory. We hope to see
more at LHC. But even then...
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Q: What is the matter content of the Universe today?

Assuming homogeinity-isotropy and GR

Gµν = 8πGTµν
cosmological and astrophysical observations dictate the matter content of the

Universe today:
A: -Only a 4% of matter has been discovered in the laboratory. We hope to see
more at LHC. But even then...

If we assume only ordinary sources of matter (DM included) there is
disagreement between local, astrophysical and cosmological data.
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Universe is accelerating → Enter the cosmological constant

Simplest way out: Assume a tiny cosmological constant
ρΛ = Λobs

8πG = (10−3eV )4, ie modify Einstein’s equation by,

Gµν + Λobsgµν = 8πGTµν

Cosmological constant introduces
√

Λ and generates a cosmological
horizon
√

Λ is as tiny as the inverse size of the Universe today, r0 = H−10

Note that Solar system scales
Cosmological Scales ∼

10 A.U.
H−1
0

= 10−14

Typical mass scale for neutrinos...
Theoretically the cosmological constant should be huge.
What if GR is modified at astrophysical or cosmological scales.
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Modified Gravity : General issues to deal with

Since GR is unique we need to introduce new and genuine gravitational degrees
of freedom!
They generically must not lead to higher derivative equations of motion.
Additional degrees of freedom can lead to ghosts (Ostrogradski theorem 1850
[Woodard 2006]). Since [Gleyzes et al] we know that higher derivative EOM do not always
lead to ghosts. What is essential is the number of propagating dof.
Matter does not directly couple to novel gravity degrees of freedom. Matter sees
only the metric and evolves in metric geodesics. As such EEP is preserved and
space-time can be put locally in an inertial frame.
Novel degrees of freedom need to be screened from local gravity experiments.
Need a well defined GR local limit.
Exact solutions essential in modified gravity in order to understand strong
gravity regimes and novel characteristics. Need to deal with no hair paradigm,
absence of Birkhoff theorem etc.
A modified gravity theory should tell us something about the cosmological
constant problem and in particular how to screen an a priori enormous
cosmological constant. Self tuning and self acceleration.
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Scalar-tensor theories

are the simplest modification of gravity with one additional degree of
freedom
Admit a uniqueness theorem due to Horndeski 1973 and extended to
DHOST theories [Langlois et.al] [Crisostomi et.al.]

contain or are limits of other modified gravity theories.
Include terms that can screen classically a big cosmological constant or
give self accelerating solutions. Need a non trivial scalar field.
Have non trivial hairy black hole solutions even around non trivial self
accelerating vacua
New: Theories are strongly constrained from gravity waves.
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Galileons/Horndeski [Horndeski 1973]

What is the most general scalar-tensor theory
with second order field equations [Horndeski 1973]?

Horndeski has shown that the most general action with this property is

SH =
∫

d4x
√
−g (L2 + L3 + L4 + L5)

L2 = G2(φ,X),
L3 = G3(φ,X)�φ,

L4 = G4(φ,X)R + G4X
[

(�φ)2 − (∇µ∇νφ)2
]
,

L5 = G5(φ,X)Gµν∇µ∇νφ−
G5X
6
[

(�φ)3 − 3�φ(∇µ∇νφ)2 + 2(∇µ∇νφ)3
]

the Gi are free functions of φ and X ≡ − 1
2∇

µφ∇µφ and GiX ≡ ∂Gi/∂X .
In fact same action as covariant Galileons [Deffayet, Esposito-Farese, Vikman].
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Galileons/Horndeski [Horndeski 1973]

SH =
∫

d4x
√
−g (L2 + L3 + L4 + L5)

L2 = G2(φ,X),
L3 = G3(φ,X)�φ,

L4 = G4(φ,X)R + G4X
[
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]
,

L5 = G5(φ,X)Gµν∇µ∇νφ−
G5X
6
[

(�φ)3 − 3�φ(∇µ∇νφ)2 + 2(∇µ∇νφ)3
]

Examples: G4 = 1 −→ R.
G4 = X −→ Gµν∇µφ∇νφ.
G3 = X −→ "DGP" term, (∇φ)2�φ
G5 = lnX −→ gives GB term, Ĝ = RµναβRµναβ − 4RµνRµν + R2

Action is unique modulo integration by parts.
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Galileons/Horndeski [Horndeski 1973]

SH =
∫

d4x
√
−g (L2 + L3 + L4 + L5)

L2 = G2(φ,X),
L3 = G3(φ,X)�φ,

L4 = G4(φ,X)R + G4X
[

(�φ)2 − (∇µ∇νφ)2
]
,

L5 = G5(φ,X)Gµν∇µ∇νφ−
G5X
6
[

(�φ)3 − 3�φ(∇µ∇νφ)2 + 2(∇µ∇νφ)3
]

Horndeski theory admits self accelerating vacua with a non trivial scalar field in
de Sitter spacetime. A subset of Horndeski theory self tunes the cosmological
constant.
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Galileons/Horndeski [Horndeski 1973]

SH =
∫

d4x
√
−g (L2 + L3 + L4 + L5)

L2 = K(X),
L3 = −G3(X)�φ,

L4 = G4(X)R + G4X
[

(�φ)2 − (∇µ∇νφ)2
]
,

L5 = G5(X)Gµν∇µ∇νφ−
G5X
6
[

(�φ)3 − 3�φ(∇µ∇νφ)2 + 2(∇µ∇νφ)3
]

the Gi are free functions of φ and X ≡ − 1
2∇

µφ∇µφ and GiX ≡ ∂Gi/∂X .
Horndeski theory includes Shift symmetric theories where Gi ’s depend only on X
and φ→ φ+ c.
Associated with the symmetry there is a Noether current, Jµ which is conserved
∇µJµ = 0.
Presence of this symmetry permits a very general no hair argument
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Black holes have no hair [recent review Herdeiro and Radu 2015]

During gravitational collapse...
Black holes eat or expel surrounding matter
their stationary phase is characterized by a limited number of charges
and no details
black holes are bald...

No hair arguments/theorems dictate under some reasonable hypotheses that adding
degrees of freedom lead to singular solutions...
For example in vanilla scalar-tensor theories black hole solutions are GR black holes
with constant scalar.

Warning : beyond GR Birkhoff’s theorem is not valid.
Spherical symmetry thus does not guarantee staticity.
Scalar tensor black holes radiate monopole gravity waves.
There is no reason for metric and scalar not to radiate for spherical symmetry
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No hair [Hui, Nicolis] [Sotiriou, Zhou] [Babichev, CC, Lehébel]

Static no hair theorem
Consider shift symmetric Horndeski theory with G2, G3, G4, G5 arbitrary functions of
X . We have a Noether current Jµ which is conserved, ∇µJµ = 0.
We now suppose that:

1 spacetime and scalar are spherically symmetric and static,

ds2 = −h(r)dt2 +
dr2

f (r)
+ r2dK2, φ = φ(r)

2 spacetime is asymptotically flat, φ′ → 0 as r →∞ and the norm of the current
J2 is finite on the horizon,

3 there is a canonical kinetic term X in the action,
4 and the Gi functions are such that their X -derivatives contain only positive or

zero powers of X .
Under these hypotheses, φ is constant and thus the only black hole solution is locally
isometric to Schwarzschild.

Most interesting part of no go theorem: Breaking any of these hypotheses leads to
black hole solutions!
Theorem can be extended for star solutions. [Lehébel et al.]

C. Charmousis Hairy black holes in scalar tensor theories



Introduction : Motivating modified gravity
Scalar tensor: From BD to Horndenski...

Black holes and no hair
Constructing black hole solutions: Examples

Constraints from gravity waves

No hair [Hui, Nicolis] [Sotiriou, Zhou] [Babichev, CC, Lehébel]

Static no hair theorem
Consider shift symmetric Horndeski theory with G2, G3, G4, G5 arbitrary functions of
X . We have a Noether current Jµ which is conserved, ∇µJµ = 0.
We now suppose that:

1 spacetime and scalar are spherically symmetric and static,

ds2 = −h(r)dt2 +
dr2

f (r)
+ r2dK2, φ = φ(r)

2 spacetime is asymptotically flat, φ′ → 0 as r →∞ and the norm of the current
J2 is finite on the horizon,

3 there is a canonical kinetic term X in the action,
4 and the Gi functions are such that their X -derivatives contain only positive or

zero powers of X .
Under these hypotheses, φ is constant and thus the only black hole solution is locally
isometric to Schwarzschild.

Most interesting part of no go theorem: Breaking any of these hypotheses leads to
black hole solutions!
Theorem can be extended for star solutions. [Lehébel et al.]

C. Charmousis Hairy black holes in scalar tensor theories



Introduction : Motivating modified gravity
Scalar tensor: From BD to Horndenski...

Black holes and no hair
Constructing black hole solutions: Examples

Constraints from gravity waves

No hair [Hui, Nicolis] [Sotiriou, Zhou] [Babichev, CC, Lehébel]

Static no hair theorem
Consider shift symmetric Horndeski theory with G2, G3, G4, G5 arbitrary functions of
X . We have a Noether current Jµ which is conserved, ∇µJµ = 0.
We now suppose that:

1 spacetime and scalar are spherically symmetric and static,

ds2 = −h(r)dt2 +
dr2

f (r)
+ r2dK2, φ = φ(r)

2 spacetime is asymptotically flat, φ′ → 0 as r →∞ and the norm of the current
J2 is finite on the horizon,

3 there is a canonical kinetic term X in the action,
4 and the Gi functions are such that their X -derivatives contain only positive or

zero powers of X .
Under these hypotheses, φ is constant and thus the only black hole solution is locally
isometric to Schwarzschild.

Most interesting part of no go theorem: Breaking any of these hypotheses leads to
black hole solutions!
Theorem can be extended for star solutions. [Lehébel et al.]

C. Charmousis Hairy black holes in scalar tensor theories



Introduction : Motivating modified gravity
Scalar tensor: From BD to Horndenski...

Black holes and no hair
Constructing black hole solutions: Examples

Constraints from gravity waves

Hair versus no hair [figure: Lehébel]

Shift-symmetric
Horndeski theories

Gi(X)

John, ���φ(∂φ)2

e.g. Babichev et al.,
Kobayashi et al. Stealth
Schwarzschild black hole

John
e.g. Rinaldi, Anabalon

et al., Minamitsuji

G4X = 0, G4XX = 0
Babichev et al. Stealth
solutions (⊃ Kerr)

Everything else
Hui-Nicolis theorem

e.g. G4 ⊃
√−X

Babichev et al.
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Constraints from gravity waves

Introducing time dependence, q 6= 0
Spherical symmetry certainly does not impose staticity (not like GR).

Furthermore, for self accelerating or self tuning solutions one has a time
dependence for the scalar in FRW coordinates
In spherical symmetry this leads to a time and radially depending scalar already
for flat spacetime.
So let us allow time dependence for the scalar while keeping for a static and
spherically symmetric spacetime.

But is this consistent with respect to the field equations:

Eφ = 0, Eµν = 0
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The question of time dependence, qt + ψ(r)

Consistency theorem [Babichev, CC, Hassaine]

Consider :
-an arbitrary shift symmetric Horndeski theory φ→ c + φ

-a scalar-metric ansatz ds2 = −h(r)dt2 +
dr2

f (r)
+ r2dK2, φ = qt + ψ(r) with q 6= 0.

The unique solution to the scalar field equation Eφ = 0 and the “matter flow” metric
equation Etr = 0 is given by J r = 0.

We are killing two birds with one stone.
The current now reads, JµJµ = −h(Jt)2 + (J r )2/f and is regular. Time
dependence renders no hair theorem irrelevant.
If J r = 0 allows φ′ 6= 0 solutions then we may construct hairy solutions.
This is where the higher order nature of Horndeski theory is essential!!
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General solution
Consider, L = R − η(∂φ)2 + βGµν∂µφ∂νφ− 2Λ For static and spherically symmetric
spacetime.

The general solution of theory L for static and spherically symmetric metric and
φ = φ(t, r) is given as a solution to the following third order algebraic equation with
respect to

√
k(r):

(qβ)2
(
1 + r2

2β

)2
−
(
2 + (1− 2βΛ) r2

2β

)
k(r) + C0k3/2(r) = 0

All metric and scalar functions given with respect to k and φ = qt + ψ(r).
For general shift symmetric G2,G4 the result can be extended, [Kobayashi, Tanahashi]

Let us now give some specific examples for the different cases...
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Constraints from gravity waves

Scalar with constant velocity q 6= 0
Consider the action,

S =
∫

d4x
√
−g
[
ζR − 2Λ− η (∂φ)2 + βGµν∂µφ∂νφ

]
...,

Scalar field equation and conservation of current,

∇µJµ = 0, Jµ = (ηgµν − βGµν) ∂νφ.

Take ds2 = −h(r)dt2 + dr2
f (r) + r2dΩ2, and φ = φ(t, r) then

φ = ψ + qt while Etr = − q2Jr
f −→ J r = 0 solves both equations...

βG rr − ηg rr = 0 ie. f = (β+ηr2)h
β(rh)′ or φ′ = 0

For a higher order theory J r = 0 does not necessarily imply φ = const.

J r = 0 means that we kill primary hair since, ∇µJµ = 0→
√
−g(βG rr − ηg rr )∂rφ = c

We now solve for the remaining field eqs...
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Solving the remaining EoM

From (rr)-component get ψ′

ψ′ = ±
√
r

h(β + ηr2)

(
q2β(β + ηr2)h′ −

ζη + βΛ
2

(h2r2)′
)1/2

.

and finally (tt)-component gives h(r) via,

h(r) = −
µ

r
+

1
r

∫
k(r)

β + ηr2
dr ,

with
q2β(β + ηr2)2 −

(
2ζβ + (ζη − βΛ) r2

)
k + C0k3/2 = 0,

Any solution to the algebraic eq for k = k(r) gives full solution to the system!
...

Lets take η = Λ = 0
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Constraints from gravity waves

Asymptotically flat limit : Λ = 0, η = 0

Consider S =
∫
d4x
√
−g [ζR + βGµν∂µφ∂νφ]

Algebraic equation to solve: q2β3 − 2ζβk + C0k3/2 = 0→ k = constant!
f (r) = h(r) = 1− µ/r

φ± = qt ± qµ
[
2
√ r

µ
+ log

√
r−√µ√
r+√µ

]
+ φ0...

Consider v = t +
∫

(fh)−1/2dr then ds2 = −hdv2 + 2
√

h/f dvdr + r2dΩ2

Regular chart for horizon, EF coordinates

φ+ = q
[
v − r + 2√µr − 2µ log

(√ r
µ

+ 1
)]

+ const

Scalar regular at future black hole horizon.
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Self tuning de Sitter black hole

S =
∫

d4x
√
−g
[
ζR − 2Λ− η (∂φ)2 + βGµν∂µφ∂νφ

]
... q2β(β + ηr2)2 −

(
2ζβ + (ζη − βΛ) r2

)
k + C0k3/2 = 0

f = h = 1− µ
r + η

3β r
2 de Sitter Schwarzschild!

ψ′ = ± q
h
√
1− h and φ(t, r) = q t + ψ(r)

The effective cosmological constant is not the vacuum cosmological constant. In
fact,
Self tuning relation : q2η = Λ− Λeff > 0
Hence for any Λ > Λeff fixes q, integration constant.
where Λeff = − η

β
is fixed by effective theory.

Solution hides vacuum cosmological constant leaving a smaller effective
cosmological constant [Gubitosi, Linder]
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Galileons/Horndeski [Horndeski 1973]

What is the most general scalar-tensor theory
with second order field equations [Horndeski 1973]?

Horndeski has shown that the most general action with this property is

SH =
∫

d4x
√
−g (L2 + L3 + L4 + L5)

L2 = G2(φ,X),
L3 = G3(φ,X)�φ,

L4 = G4(φ,X)R + G4X
[

(�φ)2 − (∇µ∇νφ)2
]
,

L5 = G5(φ,X)Gµν∇µ∇νφ−
G5X
6
[

(�φ)3 − 3�φ(∇µ∇νφ)2 + 2(∇µ∇νφ)3
]

the Gi are free functions of φ and X ≡ − 1
2∇

µφ∇µφ and GiX ≡ ∂Gi/∂X .
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Galileons/Horndeski [Horndeski 1973]

SH =
∫

d4x
√
−g (L2 + L3 + L4 + L5)

L2 = G2(φ,X),
L3 = G3(φ,X)�φ,

L4 = G4(φ,X)R + G4X
[

(�φ)2 − (∇µ∇νφ)2
]
,

L5 = G5(φ,X)Gµν∇µ∇νφ−
G5X
6
[

(�φ)3 − 3�φ(∇µ∇νφ)2 + 2(∇µ∇νφ)3
]

Examples: G4 = 1 −→ R.
G4 = X −→ Gµν∇µφ∇νφ.
G3 = X −→ "DGP" term, (∇φ)2�φ
G5 = lnX −→ gives GB term, Ĝ = RµναβRµναβ − 4RµνRµν + R2

Action is unique modulo integration by parts.
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Going beyond Horndeski [Gleyzes et.al], [Zumalacarregui et.al],[Deffayet et.al], [Langlois et.al],
[Crisostomi et.al]

What is the most general scalar-tensor theory with three propagating degrees of
freedom?
It is beyond Horndeski but not quite DHOST yet...

SH =
∫

d4x
√
−g (L2 + L3 + L4 + L5) ,

where
L2 = G2(φ,X), L3 = G3(φ,X)�φ,

L4 = G4(φ,X)R + G4X
[

(�φ)2 − (∇µ∇νφ)2
]

+ F4(φ,X)εµνρσ εµ
′ν′ρ′σφµφµ′φνν′φρρ′ ,

L5 = G5(φ,X)Gµν∇µ∇νφ−
G5X
6
[

(�φ)3 − 3�φ(∇µ∇νφ)2 + 2(∇µ∇νφ)3
]

+ F5(φ,X)εµνρσεµ
′ν′ρ′σ′φµφµ′φνν′φρρ′φσσ′

where XG5,XF4 = 3F5
[
G4 − 2XG4,X − (X/2)G5,φ

]
. Beyond Horndeski acquires one

extra function. BH has similar SA and ST solutions.
C. Charmousis Hairy black holes in scalar tensor theories



Introduction : Motivating modified gravity
Scalar tensor: From BD to Horndenski...

Black holes and no hair
Constructing black hole solutions: Examples

Constraints from gravity waves

Conformal and disformal relations [Bellido, Zumalacarregui]

How are theories mapped under conformal and disformal transformations?

gµν −→ g̃µν = C(φ,X)gµν + D(φ,X)∇µφ∇νφ

Horndeski theory has G2,G3,G4,G5 free functions.
For C(φ) and D(φ) we remain within Horndeski.
However if we take a disformal D(X) we jump to
Beyond Horndeski (one more free function)
Take a conformal C(X) and jump to
DHOST Type I (one more free function) [Langlois, Noui], [Crisostomi, Koyama]

In other words DHOST type I are all related to some Horndeski theory. Remaining
DHOST theories are pathological [Langlois, Noui, Vernizzi]

Most general acceptable scalar tensor theories are related to Horndeski theory via a
disformal and conformal transformation.
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GW170817 constraints on scalar tensor theories [Creminelli, Vernizzi],
[Ezquiaga, Zumalacarregui]

The combined observation of a gravity wave signal from a binary neutron star
and its GRB counterpart constraints cT = 1 to a 10−15 accuracy.
For dark energy the scalar field (ST or SA) is non trivial at such distance scales
(40Mpc) and generically mixes with the tensor metric perturbations modifying
the light cone for gravity waves.
For Horndeski the surviving theory has free G2(φ,X),G3(φ,X), G4(φ) and
G5 = 0.
For beyond Horndeski we have G5 = 0,F5 = 0, 2G4,X + XF4 = 0 and theory,

LcT =1 = G2(φ,X) + G3(φ,X)�φ+ B4(φ,X) (4)R

−
4
X
B4,X (φ,X)(φµφνφµν�φ− φµφµνφλφλν) ,

For DHOST we just make a conformal transformation of the above,
G2(φ,X)G3(φ,X),B4(φ,X),C(φ,X)
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Physical and disformed frames

Most general scalar tensor theory with cT = 1 minimally coupled to matter
parametrized by G2,G3,B4,C

LcT =1 = G2 + G3�φ+ B4C (4)R −
4B4,XC

X
φµφνφµν�φ

+
(4B4,XC

X
+

6B4C,X 2

C
+ 8C,XB4,X

)
φµφµνφλφ

λν

+
8C,XB4,X

X
(φµφµνφν)2 .

Horndeski is related via a transformation
gµν −→ g̃µν = C(φ,X)gµν + D(φ,X)∇µφ∇νφ

to the LcT =1 for given C and D.
One can start with a cT 6= 1 Horndeski theory and map it to a DHOST cT = 1
theory for a specific function D.
The former is what we could have called the Einstein → Horndeski frame
respective to the latter, the Jordan frame...
except that the metric is disformed in the procedure...
The more the symmetry the betterC. Charmousis Hairy black holes in scalar tensor theories
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The physical frame and the disformed solution [Babichev, CC, GEFarèse,

Lehébel]

The theory

S =
∫

d4x
√
−g
[
ζR − 2Λ− η (∂φ)2 + βGµν∂µφ∂νφ

]
,

is excluded or it is not in the physical frame.
Solution: f = h = 1− µ

r + η
3β r

2, φ = qt ± q
h
√
1− h with Λeff = −ζη/β.

The physical frame is :

g̃µν = gµν −
β

ζ + β
2 ϕ

2
λ

ϕµϕν .

Indeed the g̃µν frame is a beyond Horndeski theory with cT = 1 for a
cosmological background.
The disformed metric is a black hole
we have exactly cgrav = 1 for a highly curved background!
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Conclusions

Modifying GR is a difficult task but with countable possibilities.
Even more so after the GW experiments. :)))
Scalar tensor theories are parametrized by 4 free functions which we
hope will be further constrained.
Numerous spherically symmetric solutions known. Black holes,
neutron stars. One has to adjust them to acceptable theories. One
has to study GW-compatible theories independently.
Self tuning vacua and black holes can be found with cgrav = 1.
Exact solutions are important to understand the MG theory and find
novel effects. Are there solutions free of singularities? What of
rotating hairy black holes and Neutron stars?
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