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A bstract

We construct solutions of type 11B supergravity with non-trivial Ramond-Ramond 5-form
in ten dimensions by replacing the transverse flat space of pp-wave backgrounds with
exact N = (4.4) ¢ = 4 superconformal field theory blocks. These solutions. which also
include a dilaton and (in some cases) an anti-symmetric tensor field, lead to integrable
models on the world-sheet in the light-cone gauge of string theory. In one instance we
demonstrate explicitly the emergence of the complex sine-Gordon model. which coincides
with integrable perturbations of the corresponding superconformal building blocks in the
transverse space. In other cases we arrive at the supersvmmetric Liouville theory or
at the complex sine-Liouville model. For axionic instantons in the transverse space. as
for the (semi)-wormhole geometry, we obtain an entire class of supersvmmetric pp-wave
backgrounds by solving the Killing spinor equations as in flat space, supplemented by
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@ Four decades ago Chodos and Thorn suggested a model
of a bosonic string with two massive particles on its
ends.

@ Their motivation probably was the physics of a flux tube
and quark and an anti-quark on its ends.

@ I encountered this model as an approximation of the
stringy hadron in holographic model (HISH)

@ Through the years this model has been addressed but
never fully quantized and clearly not in four dimension.
This is what we have recently acheieved

@ On root to the quantization of the model we have
further developed an alternative method of
renormalization

@ The hadronic sting is better behaved that the ordinary
bosoinc string



@ Introduction

@ HISH Holography Inspired Stringy Hadron
@ The classical string with massive endpoints
@ Fluctuations and gauge choice

@ Transverse fluctuations

@ Planar modes

@ Quantizing the non-critical string

@ The quantum Regge trajectory

@ Generalization to asymmetric case

@ Higher order in the perturbation expansion
@ Summary and open question
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Stringy Hadron

@ The construction of the HISH model is based on the
following steps.

@ (i) Analyzing string configurations in confining
holographic string models that correspond to hadrons.
@ (ii) Devising a transition from the holographic regime of

large Nc and large A to the real world that bypasses
expansions in + and 1
@ (iii) Proposing a moael or stringy hadrons in flat four
dimensions with massive endpoint particles that is
inspired by the corresponding holographic model

@ (iv)Dressing the endpoint particles with baryonic
vertex, charge, spin etc

@ (v) Confronting the outcome of the models with
experimental data .



1) The structure of a holographic meson

@ The structure of a holographic meson is a
rotating string that starts and ends on flavor
branes ( the same or different). For instance a heavy
quargonium 1s

large mass

Hlavour brane

intermediate mass l

flavour brane

.
H
H
H
H
.
1

infrared “wall”




@ In the generalized Sakai Sugimoto model the
meson looks like

meson

X4

@ We now rotate this string configuration
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@ The vertical segments of the holographic hadronic string
can me mapped to massive particles at the

heavy Flavor brane -

1 m2 _

Light Flavor brane : :

Rotating holographic string

wall

end of the string with mass

ml

m2

Rotating sting in flat space-time
with massive endpoints

u.f
Mgep = 1 /
2y

glu)




HISH Baryon

@ In holography a baryon is a baryonic vertex which is
a wrapped Dp brane on a p cycle and is connected
with Nc strings to a flavor brane.

@ The preferable




o InHISH the holographic baryon is mapped
into a single string that connects a quark on one
side and a diquark on the other side

baryonic p—
vertex 99
e Cquark ‘. .
| I e Msep Mep + My

> RS

Uy
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string with massive endpoints

@ We start with the action and equations of motion

@ The action is the NG action plus two point-particle
action terms

S = Sst + Spplo=—t + Spplo=t

S, =—T / drdo/—h = —T / ,/»,—Jn\/x"?‘\"? — (X - X")2

—N<K<TKCXY ¥It<og<t

@ The world sheet coordinates | _
and the induced metric is hag = MuyOa XF O X"

The relativistic particle action S, = —m / dv]— X2
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The equations of motion

@ The bulk equation of motion
o (V—RhBazX ") = 0

@ The boundary equation of motion

@lThetfor o=£€ and-for o=—L.

o XH |
I'\/—ho° XH £+ mao- ( ) —1




@ A rotating solution in the (1,2) plane

XY=r, X! = R(o) cos(kT), X? = R(o)sin(k7)

For any choice of (o)

Substituting it to the boundary equation of motion

\/(1 _ ;}_.‘2[{2)[{12 2R _
I T Fm VeI =0
1 — e P4
Which translates into the tension being balanced by the
T  2ymf3?

centrifugal force — =

N I
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The energy and angular momentum

@ There are two natural choices of

, / k( | |
Rlo)=o mk 1 — k2(? L=2 p =K
| | T sin(k() 2 ... | =
= —sin(ko) : = = —sin(kf B = sin(kl
R(o) I; sin(ko) ok~ cos2(k0) L - in(kf) | in(k()

@ The energy and angular momentum which are the
Neother charges associated with shifts of and z”and #.

@ The contribution of the string

/ ¢
A / dov/—hh™@o,t J,=-T / do/—hp*h™,0
—f —f

@ The contribution of the particles

: 2
t p-l
= 1m _ Jpp =M

_ X2 _ X2

E

PP




The energy and angular momentum

@ Altogether for the rotating string E and ] are

E = 2m _ 4+ TL al‘(‘sin 5]
7 mLf3 —TLE dl(s]n 5 — )-} 1 — }32
1 — '}“) 4 -}..

@ In the limit of small masses

J—. 1 21— 8y/m (m) + 2m3/2 (711)5,"2 i
2T 3 \E 5 E

@ In the limit of large masses

= %(E —2m)3/2 4+

I 7 5,0\5/2
V1083ml/2T (E 2”3)
1003 LE e NTT2
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Fluctuations and gauge choice

@ Consider the quantum fluctuations around the
rotating solution

Xt =XH+6XF=(tp,0, 2') = (1 + A\dt, R(0) + Aop, kT + N30, \oz*)

@ Where ). is a formal expansmn parameter later will
be expressed in terms of =

@ We fix the reparameterization invariance using the
orthogonal gauge

1 1
E(h‘r‘r +hm‘r) - 5( \ T \,)) =0
hyg=hyr =X -X'=0

@ We further use the staticgauge =X = 5t =0
R(o) =0 or R(o) = 1 sin(ko



@ Consider the fluctuations transverse to the plane of
rotation. We truncate the action to second order

: - 1 P s
Set 6z = —TA2 / drdo [;(\/ 29) " 622 - 5 (VRZ) >}

i 1 0
- > .
Ao Ny — ’7?/\ dl A"()::H
) pp, oz o !

@ To properly normalize the kinetic term define

fe = (VR2g)'/?52

- ‘ 9 1 9 1 )
@ For the case Sstoz = —TA° /d"dU ( = —f“)
R(o) = £ sin(ko " i &
(2) " s N = HA / dr v ft

3
=
[



The transverse fluctuations

@ The world sheet Hamiltonian

1 0 ; ; 20 19 Ym o
H = TN ( / do(f7 + ) + %frrﬂ)

£

@ The Mode expansion and canonical quantization

. NN QN i g (o
fl‘ — f() + 'I\"f-’\' %t I fn (g)

n+#0

@ The canonical quantization condition
[fi(a),m(0”)] = id(0 — o)

@ Can be achieved upon choosing N

|
's}
"“»
K



The transverse fluctuations

@ The fluctuations have to obey the bulk EOM

n) _
fy’: + wrhlfn = U

. ‘ ! ‘"_)
@ The boundary equations are 1/, F ymw, fn =0

@ The eigenfquencies are subject to

& P oo & s <9 Do By o @ :
20 cot(o0)x cos(2x) — (0° — cot®(0)x”)sin(2x) =0

@ Where r=wpl =kl =arccos(y ')



@ E and ] associated with the transverse modes are

2 [ 1 1 ¢ p12 P2
Est.ff =TA ’(10'_— ) ‘ ( t T ft )
J—E

2 cos* (ko)

1 :
Bt = —m,\‘ jft
a 5 . 1tan’(ko) . .o . =
Jot.f, = T/\“) da— A( )( ¢+ f,z)
—f -'-
1 gsm 2(k0) >

.
Jop.fi = 7711, 9 . 7
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The eigenfrequencies

@ The first few eigenfrequencies
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The transverse modes
@ The first transverse modes

fn
1.5
1.0

0.5

ko

05 /| _— N\ 0.5
-0.5

-10
-1.5

-20



The contribution of the
transverse modes to the
[ e |



T 1€ intercept

" @ We would like to determine the impact of the
fluctuations on E and J, namely the quantum
correction of the trajectory

@ We found before the classical E and ]
E=EmT,y) J=Jm,T,7)

@ The classical trajectory is defines by

@ We define the intercept as

- | R _
a= '1;().] — EOE} Z - 57

@ By substituting the expressions for Es,Epp,]Js, Jpp we
proved that

a=——(H)
e




The intercept

@ Using the mode expansion and the orthogonality
relations we get

1TX 1 . 1
H=—=5Tm D_ @-n0n =5; ) @-nt

n#0 T n#0

@ Thus the contribution of the transverse modes is

vbn
(lt:—— H —_ — E

n>0

@ For the massless case since § =

and w,f = En

. 1 1
a(m=0)=—2% n=_

T
bo




The renormalization of the sum of the eigenfrequencies

@ We convert the infinite sum into a contour integral
using Cauchy integral formula

s f[ d - 1 f'(2)
2me dz = f e f(2) E , o ,
l

@ We will use a function f(w) with only simple zeros
at w = wn which are on the positive real axis

AIm(w)
iA




T e renormalization of the sum of the eigen requenc1es

@ The sum of the eigen-frequencies is the Casimir

-1y 250
C W = —
n=1

@ The semi-circle regularizes the Casimir energy

;3

urrgl .

lulf—*

@ We renormalize the result in the same way that we
do for the Casimir effect

EG™ = lim (EG™(m,T,L) - EG (m,T,L - o))

( A— oo




The renormalization of the sum

or the massless case
@ For the ordinary string with no endpoint particles

flw

) = sin(wrwf) = 0

@ Usually we use the zeta function renormlization

Yran=¢(-1)=-5

12
@ Using our method

1 "(w) 1 ., )
Ec(m =0) = Zl s = e % wfj;(w) dw = I ) wl cot(mwl)dw
1 S N o 1., [2
— @ wleot(mwl)dw = —— { coth(myl)dy + —A“I/
41‘,{ ot(mwf)c 4/_Ay th(myl)dy 1

e cot(mAle™)df

B3



@ The regularized energy reads

_ A2/ 1 1 -~ A%/ 1 A2L 1
‘r‘rq| _.L . = 2 ‘
g ( 4 24() s 2‘\ ‘

@ The corresponding force

s(Teg) _i (reg) _—“\L 1
Foe ™ =—qpkc ™ =3 T
@ The renormalized force
| TeEN | . ~(TEQ ) 4 - \T"E€q ) 4 ) _
F&™ = lim (F§*)N(L) - F§™(L — o)) = s
@ The renormalized energy
- 1 1

~(ren) i
E(-_,' T = _ a —

T 12L 24



@ The eigenfrequencies for the static string are
determined from

flw) =2

mw

T

— COS

(wL)+ (1 —

2 2
m-w

T2

)sin(wL) =0

@ Following the same procedure as for the massless

case we get

%(r(n / ( (T_ ml/).
— log|1—e€" 2Ly
(T + my)?

‘.)dy

1 /A_\. (
— log[1—e
nL Jo

_)l(q_ ')
(g+1

)’

o]

[ o]

)d.

@ Where ¢ =

TL

m

@ In the limits of g=0 or q goes to infinity this reduces

ES(q=0) = E|

HFY?I
Ci

(q

— o0) =

1

2L

0

dzlog(l — e~ 2%)

24L




=
or the rotating massive string

The renormatization

@ For the case of our interest a rotating string with
massive endpoints the eigenfrequencies

i ¢ : 2: ar '._-. ;3 , . .. O, 2: ar .s_-. -3
f(z) = 2z8%/1— B cos ( “C;m ) + (8 = (1= B2)22)sin ( m;m )

@ I'he divergent of the integral tor the regularized Ec

A’Laresin 2A T g 2 2A%Larcsin3  2A]
B T3 o % 2ym e [ w3 + rr] B
A2L arcsin 3 I  2ymA
- w3 G 2vym log T

@ The key ingredient now is to rewrite it as

A2L T . 2mA where 7 — Lam;m g




The renormatization for the rotating massive string

@ The integral of the renormalized Casimir energy

) /\ 2y3%\/1 - 32 cosh (—-————-9@““’3““ *) +(8* + (1 - B%)y?)sinh (ﬂyar?in f)
= lo -
0

.
%((1'—3 Jy? +20%/1 -5 +, 34) exp (—y “‘3““”)

@ The corresponding result for the intercept reads

1 > l | ) 4 arcsin 3 Yy — B2 o
g = — o — X — :
“ 273 Jo . == B i y +7B°

@ This goes back to the standard massless result

. 1 o Drrag 1
f — _"'"y — e —
a(B>1)=—o- | log (1 — =
@ For small masses 1 11 1 11 2m 3/

1
“ =51 360r 5 =21 360n TL




T e contribution of the a trasverse mode to the intercer

a

a(m-0)
1.00

0.98
0.96
0.94
0.92
0.90

0.88

10

50 100

500 1000

TL.
5000 2 mq



@ Compare with the static massive case

a

aim-0)

1.0 —
08
06

04

w TL
10~° 0.1 1000 2m
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The contribution to the intercept of the planar mo

@ We have done the analysis also for the planar mode
@ The eigenmodes and eigenfrequencies

wl
fn

05

<0.5 05

-0.5

0.2 04 06 08 10

ko



@ The contribution of the planar mode to the
intercept

1.08

1.06

1.04

1.02

1.00

10

50 100

500 1000

TL
5000 2 m
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iski Strominger term

@ It is well known that the quantization of the
Polyakov string in non-critical dimensions is done
by adding to the action the Liouville term

@ Polchinsky and Strominger mapped this in the
formulation of the NG string by taking a “composite
Liouville ” mode

¢ =—3log(9;X -9_X)

@ In the orthogonal gauge the PS term reads

a

—_—
- I\

B / s (02X -0_X)(0*X-0.X)
(

) B / 0
Spg=— [ d°00,Ld0_0 = ' —
PS—or b (0. X -0_X)2




The renormalization of the PS term |

@ The contribution of the PS to the intercept is

achieved by substituting the classical solution into
the PS action

- )

’ \ B ; 9 0, ' B ‘ - -
Eps = (Hps) = — [ doLps = - dok*tan“(ko) = —k(tand — 9)

2T —‘ J

where. §=j¢/Theterm  ktans liverges in the
massless case since 0 = 7/2

@ For small masses it is finite but un-physically large

@ Hellerman et all renormalized the PS term for the
massless case by

2 v a9 vvalv a v
S‘pq s S{ :ﬁg] _ 2 (120 (C)+.\ : L)_;\ _)(()_.\ ’ U+.\ )
o PS 21 (0. X -0_X)? + e 1(:03 X .0%2X)

@ And adding a counterterm { o
Sct X — / dr{X - X)*/*

t -




T e renorma 1zation of the PS term

@ The result of the renormalization of the PS term in
the massless case is that

26 — D
24

aps ( m =0 ) —

@ As a result the total intercept is in any D dimensions
D—-2 26-D
24 " 24

=1

alm=0) =

@ The massive endpoints serve as a regulator. Never
the less we have to perform a subtraction since we
subtract anyhow for the other divergenseis and also
since we want to connect smoothly to the
subtraction at m=o0



.....

T e renorma 1zation of the PS term

@ We can re-write the PS term as

@ Using the length and mass measured in the Lab
frame

arcsin 2 . ) 20

m = ym L=L

A - - sind k

@ Based on the boundary equation of motion

- Tecosd T
kEtand = —
m N

@ WE renormalize by subtracting from the force for
the string of length L the force of the string with I — ~



The contribution of the PS term to the intercept

@ Thus the renormalized contribution of the

]. ( ren) 26 - D - 26 — D -
Y = e oy T = — arcs ,‘3
aps A-EP:' = 0 75— arcsin,
S ‘ __26—-D
@ In the limitof 53— 1 apg = %552

@ As a function of 2m/TL it reads

26 — D [ 2m 26 — D ) 2 (2m)\/? . 2 (2m\°/? .
8 = arccos | 4/ = —— —— _ - o
i \ 7 \TL 37 \TL

127 | 2m + TL 24

@ Thus the total intercept is

26— D 2m . y,9 199 — 14D 2m )3/2

a=(D—3)at+ap+aps~1- 127 ('TL) LT ('TL
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T'he quantum spectrum

@ The vacuum is taken to be the classical rotating
string

@ We can build excited states by applying on the
vacuum.

@ The worldsheet Hamiltonian is related to E and ] via

H =0F — kdoJ.

@ In the massless case the spectrum constitute the
@ Regge trajectories

J+N=0dE?+a




The spectrum of the massive string

@ In the massive case the transverse and planar

numbers x o
T D
E v N, = E o af

n=1

@ The massive modified Regge trajectory can be
written as

J —l— ( Nt + Np) = Ja(E) +(D — 3)as + ap + aps.

@ The eigenvalues of Ntand Np on a generic state

>0

§ ’ m m N _2 ;,(m N (p)
t = W, [\ ‘\’p — - I“\n



The radial excited states

@ The first two radially excited states are

N State Nt + Np No. of states
1| o' ,l0) Wy D -3
a? |0 wiP e 1
a' ,|0) wy e D-3
of 9 0) ;u.gp /¢ 1
2 Oi—lail 0) 2(,0(1” 4 (D — 3)?
al jaf 1|0) | wi?l+ wiPe D-3
of laji 110) Qwil'p g, 1




The GGeneralization to
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Asymmetric string

@ So far we have assumed that the two endpoint
particles casrry the same mass. We generalize it
now to the case of two different masses

@ We are interested in asymmetric scenarios since
they can, as we will see negative intercept.

@ Negative intercept is what one finds for all the
hadronic trajectories if it is defined in the relation
of the orbital and not the total angular momentum.

@ For instance  hasa 0.5 and S=1 s so for L=]-S we
get a= -0.5

@ The extreme case of one massless end and one
infinitely heavy end is a Dirichlet-Neumann case

which can analyzed as the usual case wih ~ wn =n— 3



Asymmetric string

@ The intercept for such a case is

l 1
anNp —_—Z(“ _; :—E

n— 1

@ Instead of 1/24 for the DD or NN cases.

@ In the asymmetric case there two arms with

different length A

T '1
M



The intercept for the asymmetric string

@ The contribution to the intercept from transverse

modes
a; = _.)1 /l dylog (1 _ _‘—-.-(’lr(_‘::lll 31 +arcsin 5 (U _ ;}l M )(U - 3“ ’)))
2T Jo (y + 51 )y + dg Y2)
Q The contrlbutlon from the plannar modes
1
(l-p = —E ) dl/
| _9 3 2 1 A2’ 2 _ 9a1mio o L A2 1 32
10g [1 :,—)mr(‘smﬁﬁnr(\m %Ju(u 2YY1P1 1 1( +'*l)) (y 2Yyn2P2 + "2( +2))]
2+ 2y B+ (14 57) ) \ v+ 2ynb+v5(1+ 43
@ The contribution of the PS mode
26— D ,_ 26— D, o o
apg = (01 + 09) = (aresin 31 + aresin [35)
247 247 |




10°

The asymmetric intercept

‘lransverse




The asymmetric intercept

@ The intercept

10°

0.9
o8
101 410.7
0.6
= 0.5
£ 10°
I
N
10"
10”

61 02 03 04 05 06 OF OB 09 1

|
1

contribution of PS full intercept
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@ We quantized the bosonic string with massive
endpoints.

@ This is in fact a quantization of the hadronic string

@ The trajectories that follows from the model fit very
nicely the hadronic spectra

@ The decay width of hadron were also computed and
their fit to the data is also good

@ We are currently computing the analog of the
Veneziano amplitude for scattering of massive
strings.

@ Adding charges and spins are next to do facing the
challenge of getting negative intercept

@ Many more hadronic data to explain



@ For strings with massive endpoints one determine
the solution of the classical EOM that corresponds
to a rotating string

@ The classical energy and angular momentum

~arcsin 3;
B = E yim; + TE; :
oy B,
—1.2 :

AP T
J = |:’}Z m; 3:€; + ST (; arcsin ,."31' — ’131"

—1%

@ The quantum intercept for a static string J — .J—a.

. ‘ 1 N —2z (91 — = g2 — 2
a(qi,q2) = 572 ./0 dz log [1—0 (Q1+2) (qg—{—:




\

The intercept

The intercept of a static st

- as a function of the masss
E
10° ' i [ ‘ B =
10"
05t
10° \
10°¢ 10* 10° 10° 10° 10° T
: \\
2qwn
tan(wn) = 5 N | | . |
“Wa — 1 10° 10° 10° 10° 10* 10°
m/TL




The spectra fits

@ The best fits of HISH to meson states

=1, pand =0, wandy

M?

r
 3¥ ]
N\

0 1

r
o
=
un
o
-y
s
W
e

"

.‘.




The decay of the
hadronic string



@ The decay of a hadron is in fact the breaking of a
string into two strings

@ Obviously a type I open string can undergo such a
split

(a) (b)




@ The total decay width is related by the optical
theorem to the imaginary part of the self-energy
diagram

@ A trick that Polchinski et al used is to compactify
one space coordinate and consider incoming and
outgoing strings that wrap this coordinate so one
can use the simple vertex operator of a closed string

| : —

TN Al
( J \_/

™



@ We would like to determine the dependence of the
string amplitude on the string length L

t\:'

, i I'N K " e
1Ay = — d“z (: e'P X(0) .. o—ip-X(2) )
g~ 2 1 ‘c_’ 1 \
rav1tat10nal \
OBell trlng i Vertex operator
couphng Zero mode
Normalization

Of the vertex




@ A further dependence on L comes from the energy
and momenta

P, =(E,LT,0) Pgp=(E,—LT,0) E=+/(TL)?—8rT

. (1 I P _
For open strings ~ 271 a = 51

For closed strings the tension and intercept are twice



@ Using the vertex operator

and the standard OPE

iP-X

d
( = €

(PL-X+Pp-Xp)

<: (‘iP-X(O) .

(iPX(2) .y




@ After substituting the amplitude reads

| iTNk2 .. T(@-1IrQ1-J)
tAy = ——lim — _ _
2mgc t—0 I'(t—.J)

IT.:\ThQ = e~ 7
— . JO;In|I'(—J lim —
27 g ( g (=) +t—>1(l) fl
\ regulator

@ The imaginary party~, 7kd(.J — k) for k=1, ....

ImAy = ——J
29°




@ Since A2 is the mass square shift the total decay width

L s 9

[ = —Imdé(m) = —Im—3d(m?) =

2m

T .:\T HQ i
4.(/2 E

@ The leading behavior for string in d=26 is

[ B ‘I/Q'TIB‘\T
L 4(4r)12
TN k2 4 1
I' = — e
—1.(/2 [ tot I' Liot

J\ Lot = ‘\/L‘



@ For a rotating string due to time dilation we get

T L/2 (T
I'= (—) / do\/1— (ow)? = = (—) L
L stat +/ —L /2 1 L stat

@ For nth excited string

R 45 2m(n — a)
- (0




@ The decay of a string with massive particles on its
ends m

@ The dependence on the masses:

(@) T

he length L(m1,m2)

(b) T

e boundary conditions ( not anymore Neuman)



decay width of a string with massive endpoints

@ For small endpoint masses we can expand *

m
—Imn —

4

2v/2
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m*2(TL)~1% + O(L73/?)

I

0.80

0.65 5

0.60 \




dimensions

decay width in non-critica

@ N. Turok et all analyzed the decay width of open
string ind dimension. They got

D—14

N~ 1@ =]

[)—‘2__1

@ Thus linearity ford=26 but I' ~ L% in D=4.

@ But this analysis took only the transverse modes.
Their result follows from

D-—2

::111[(5‘(1112)] ~t 20 =t"

@ It was shown by Hellerman et al that the intercept

R = s T P8 =

(D - 2)

24

@ Thus for any d dimension




decay of a stringy hadron

@ We just argued that the intercept of a string at D dim

d=1

@ In fact experimental value of the intercept aexp 1S negati

(1(:_1'1) P ‘(IE'IP‘

@ Thus the leading order width of a string with no
massive endpoints
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@ With massive endpoint we combine this with *



Exponential
suppression of par
creation
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The suppression factor

@ The horizontal segment of the stringy hadron
fluctuates and can reach flavor branes

@ When this happens the string may break up , and
the two new endpoints connect to a flavor brane

h <y




The suppression factor

@ There are in fact several possible breakup patterns

h .




@ Assuming first that the string stretches in flat space-
time we found ( J.S, K. Peeters , M. Zamamklar) using
both a string beads model and a continues one that

2
[' = const. - exp (—1.0 #)  Test Peplit * L

QL a

22 m?
exp (—1.0 V,B) — exp | —2r =%
(]eﬁ' T(’ff

@ There are further corrections due to the curvature and
due to the massive endpoints.

| » 'Inf.ep
Q F: exp _271'(_ (Teff. j\[. T ) ‘
Teff

‘ ;:\[2 = 1.
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Multi string breaking and string fragmentation

@ The basic process of a string splitting into two
strings can of course repeat itself and thus

eventually describe a decay of a single string into n
strings

@ The probability for a | —
multi-decay ——

;HZ Z —c\p( m—}f;n) .

I wl—l rl

This mechanism is believed _—

to be the generator of jets. ———

It is incorporated in Pithya

o AT



The Decay process of

the dif ferent types
of hadrons



decay process of Baryons

@ A baryon in HISH is a string connected to a qurak and
to a di-quark so its decay is also by a string splitting

- oy

. -l R

) \ Jl

@ A way to determine what i1s the diquark pair and
which is the stand-alone quark is by identifying the
decay products

(q132)q3) [(q193)q2 [(g2g3)q1 |
U’ “’ 'tl

(q192)Q;]|Q:as) (q143)Q:l|Qiga| |(g203)Q;) Qa1 |



@ The width
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@ Certain heavy quarkonia mesons, build out of ¢z or bb.
cannot decay via the mechanism of breaking apart
of the horizontal string

@ In QCD the decay based of the annihilation of the
pair into 3 gluons or e 2 gluons and a photon
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@ An approximation for probability of process a
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@ Virtual pair combined with a Zweig suppressed
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@ An exotic tetraquark built from a string connecting
a di-quark and and anti di-quark will decay
predominantly to a baryon anti-baryon

c




U = d .
| #
¥ Ac ‘
—— L 74\( C
e o
- { u
= ) ¢ - |
€ Te - 3 7 Ee'
g - .d d R
e Z‘D 7 R . ’
- i . Zc -
ds
. u ™ -
- of 7 K ° |
< Ac _ AC "
il - _— t



Decays via breaking of the vertical segment

@ Nothing prevents a breaking of the vertical
segments. What is the hadronic interpretation of it?

@ We first clarify the holographic set up of hadrons

Ty Ty

= - P A—

i

@ So the vertical segment of a heavy flavor does not
cross that of a lighter flavor brane.
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@ We get a meson plus a string that stretches only in
the radial and x4 but not is space-time coordinates



@ In a similar way to the computation of the width
associated with the breaking of the horizontal
segment, the width associated with the breaking of
a vertical segment should be

up A " 9
l_‘Vert.ical - / du exp ( (‘ ( 14(11)) )

. o (u)

@ The interpretation of the decay processes associated
with the vertical breaking is not well understood.

@ One possibility is that the vertical string segments
that are " particles” from the space-time point of
view are the Goldstone boson mesons pions and
kaons.



The Decay modes
spin and flavor
symmetry



avor symmetry

@ Considerations of spin and isospin or more
generally flavor symmetry of the initial and final
states are very important in determining which
decays are forbidden and the relative decay width of
the allowed ones.

@ How are such considerations been realized in the
holographic decay mechanism of stringy hadrons.

@ The spectra of hadrons is slightly affected by spin
and isospin via the dependence of the intercepts .

@ This issue has to be further studied



The spin structure of the stringy decays

@ We assume that the spin degrees of freedom are carried
by the particles that are on the string endpoints

@ The spin structure of allowed decays of a neutral meson
Mo with spin S=1 into M+ and M_ mesons. The arrows
indicated the values of Sz



.....

The spin structure of the stringy decays

@ The spin structure of allowed decays of doubly
charged baryon B++ with spin S = 3/2 into a baryon

and a meson.

1
-N

S$=3/2

R
o
-
— -
.



Isospin constraints on stringy mesons

@ [sospin approximate symmetry is realized in holography by
the fact that the u and d flavor branes are located at
roughly the same holographic radial coordinate.

@ The world volume of a stack of Nt coincident flavor branes
is characterized by a U(Nr ) flavor gauge symmetry.

@ In fact we can have UL(Nr)Ur(Nr ) that is geometrically
spontaneously broken in the IR to Up(Nr)




[sospin constraints on stringy mesons

@ The stringy mesons of the isospin triplet.

{ 7

-

]

\ v%(uﬁ + dd)

i
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[sospin constraints on stringy mesons

@ The decay processes of mesons involve the breaking
apart of the horizontal string and the attachment of
its endpoints to either the u or the d flavor branes.

M+

= — =~
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[sospin constraints on decays of stringy baryon

@ Possible decays of B+

T =TT




Facing experimental
data



- @ Hadrons admit modified Regge trajectories even for
no orbital angular momentum!!

@ This is due to the fact that there isa quantum length
caused by a repulsive Casimir force.

Fe =—2a/L?

=N T -

@ The quantum length is related to the intercept

L a
= 7
1

@ There are different ways to determine C.
@ Our approach is to extract it from the fits.

L

]




@ Is the experimental data admit the linear
dependence on L

)= gATL(J[. mi,mo, 1) .

@ For short strings with important role of the
massive endpoints we add a phase space factor

Fz%AX@UUxTHMwmmgﬂL

@ The phase space factor

oyl M+ My, M — M,
b(M, My, My) =228 —  [(1— 2) (1 2
(M, My, M) = 22 (=) ()




A test case: The K

@ We compare our model to the decays of K* trajectory

State J* Mass Width I'/M Decay modes®
K*(892) 1= | 891.66+0.26 | 50.84+0.9 | (5.7+0.1)% | K= (100%)
K3(1430) | 27 | 1425.6£1.5 | 98.5+2.7 | (6.9£0.2)% | K (50%), K'7 (25%).

K*nn (13%), Kp (9%), ...
K3(1780) | 3~ 17767 159+21 | (9.0x1.1)% | Kp (31%), K*= (20%),

Kr (19%), Kn (~30%).. ..
K;(2045) | 47 | 2045%0 | 108+30 | (9.7£1.5)% | K= (10%), K*7r (9%),

5 more modes (7% or less), ...
KZ(2380) | 5~ 2382424 178+50 | (7.5+£2.1)% | K7 (6%), no other measured

modes.




test case: The K
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@ Meson fits

Fit results: the meson trajectories

Trajectory (No. of states) | a (from spectrum) | A (fitted value) | y/\2/DOF
P 5lal -0.46 0.097 1.76
w 5lal -0.40 0.120 2.31
p and w (avg.) 6 -0.46 0.108 1.14
m 3lal -0.34 0.100 1.66
" 3lal -0.29 0.108 1.56
m and n (avg.) 4 -0.29 0.109 1.52
K* 5 -0.25 0.098 0.77
) 3 -0.10 0.074 0.50
D 2 -0.20 0.072 0.87
D 2 -0.03 0.076 1.44

S
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@ For baryons the linearity with L is somewhat modified.

Trajectory (No. of states) | a (from spectrum) | A (fitted value) | \/x2/DC
N (even) 2 -0.77 0.080 3.33
N (odd) 3 -1.11 0.082 2.43
A (even) 3 =137 0.101 1.90
A 4 -0.46 0.041 2.33
Y = 1/2) 2 -0.95 0.052 0.96
¥ (S =3/2) 3 11.22 0.100 1.57




suppression of pair creation

@ The ratio of the decay width to a strange pair
versus to a light quark pair is

¢ -y 2 9 N —_ ‘
As = €Xp (—27?((11@ — My 4)/ Teﬁ‘) ~ 0.3

Hadron g Light channel s5 channel Ratio As
53(1600) 3 | wnw 16£6% KEkr 38+12% | 0.24+0.12 | 0.30+0.15
[\'I(‘ZO-lS') 47 | K*mremr T+5% oK* 1.4+0.7% 0.20+0.17 | 0.32+0.28

@ In radiative decays

['(J/¥ — ~f5(1525)) D(T = 7f3(1525)) _ oo
’ , — 0.31 +0.06. 2 — .38 £ 0.10
T(J/U — ~ f»(1270)) R T(T = ~ f(1270))




@ The probability of a meson to decay via
annihilation of the quark and antiquark

I'=1Iz exp(,—TZLQ,--""Q‘)

@ The decays of upsilon

State | Full width [keV] B(gg9) B(~vg9) Partial width [keV] | Best fit [keV]
T(1S) 54.02+1.25 81.7+0.7% | 2.2+0.6% 45.3+1.3 45.2
T(2S) 31.98+2.63 58.8+1.2% | 1.87+0.28% 19.441.7 20.6
T(3S5) 20.32+1.85 35.7+2.6% | 0.97+0.18% 7.5+0.9 o |




@ In spite of five decades of research, the story of the
strong decays of mesons and baryons has yet not been
fully deciphered. One does not know who to
determine the decay width from QCD.

@ We believe, though not in the same strength as for the
spectrum, that the decays of hadronic states tell us that
indeed hadrons are strings.

@ This is based on three ingredients:

(i) The linearity relation between the decay width and the
length of the string

(ii) The exponential suppression factor associated with

the creation of a pair that accompanies the breaking of the
string into two strings.

(iii) The constraints due to a]r:)lproximated sKmmetries like
isospin baryon number and flavor SU(3) which are
realized in the stringy description



/»f*":""

@ In this work we have used two string frameworks
(i)Strings of a holographic confining background in
critical dimensions (ii) HISH model of strings in at four
space-time dimensions.

@ We saw that the effect of the intercept can be thought of
as a repulsive Casimir force, giving it non-zero length,
and mass and width, even when it is not rotating.

@ We found that the decay coefficient is universal

A=0.095+0.015.
@ Open questions: creation mechanisms of the hadronic

states, Jet formation, scattering amplitudes, weak
interactions, incorporating leptons.



Open questions

@ Our model assumes chargeless massive endpoint
particles. The endpoint of a string on a flavor

brane carries a charge associated with the symmetry
group of the flavor branes. Thus it is natural to add an
interaction, for instance EM interaction, between the
two string endpoints.

@ It is easy to check that this change will introduce a
classical modification of the intercept. One can use
it to determine the difference between md and mu

@ Magnetic moment and other EM properties can be
computed.
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Open Questions

— "a""yg

@ As was discussed in the introduction, the models we
are using are not the outcome of a full quantization
of the system.

@ The quantization of the rotating string without
massive endpoints was analyzed . The quantum
Regge trajectories associated with strings with
massive endpoints require determining the
contributions to the intercept to order J"o from
both the “Casimir” term and the Polchinski-
Strominger term.

@ Once a determination of the intercept as a function
of m”2/T is made, an improved fit and a re-
examination of the deviations from a universal
model should be made.



(¢) The #ISH# baryon and ito
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baryon c=3onfigurations

@ A priori for Nc=3 there are several possible
configurations




@ Naturally the analog at Nc=3 of the symmetric
configuration with a central baryonic vertex is the
old Y shape baryon

@ The analog of the asymmetric setup with one
quarks on one end and Nc-1 on the other is a
straight string with quark and a di-quark on its
ends.




@ It was shown that the classical Y shape three string
configuration is unstable. An arm that is slightly
shortened will eventually shrink to zero size.

@ We have examined Y shape strings with massive
endpoints and with a massive baryonic vertex in the

middle.

@ The analysis included numerical simulations of the
motions of mesons and Y shape baryons under the
influence of symmetric and asymmetric disturbance.

@ We indeed detected the instability

@ We also performed a perturbative analysis where the
instability does not show up.



o

The conclusion from both the simulations and
the qualitative analysis is that indeed the

Y shape string configuration is unstable to
asymmetric deformations.

Thus an excited baryon is an unbalanced single
string with a quark on one side and a di-quark
and the baryonic vertex on the other side.



(d) The F#ISH Gluchall



HISH Glueba

@ The map of the classical folded rotating closed string in
holographic background to a similar string in four
dimensions is simple.

@ Unlike the case of the open string here there are no
vertical segments involved and correspondingly no
msep.

@ It is just the string tension dependence on the
holographic background

@ However, as will be seen in later, the form of the
quantum string yields another significant difference

@ The relation between the energy and angular
momentum is modied from the linear Regge trajectory

/ ‘ 2
F =l Closed(E — My )
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