Quest for Grand Unification

Qaisar Shafi

Bartol Research Institute
Department of Physics and Astronomy
University of Delaware

in collaboration with
A. Ajaib, S. Boucenna, I. Gogoladze, A. Hebbar, T. Kibble, G. Lazarides, G. Leontaris, F. Nasir, N. Okada, M. Rehman, N. Senoguz, C.S. Un

Outline

- Motivation
- Grand Unification
- Proton Decay
- Inflation, Axions and Magnetic Monopoles
- Supersymmetry

A fifth dimension?

- Polish mathematician Kaluza showed in 1919 that gravity and electromagnetism could be unified in a single theory with 5 dimensions - using Einstein's theory of gravity

Theodor Kaluza
1885-1954
"The idea of achieving a unified theory by means of five-dimensional world would never have dawned on me...At first glance I like your idea tremendously"

Unifying EM and Gravity

- Neutrino Physics: SM + Gravity suggests $m_{\nu} \lesssim 10^{-5} \mathrm{eV}$
- Electric charge quantization not explained in SM
(Dirac requires monopoles)
- Dark Matter: SM offers no plausible DM candidate
- Origin of matter in the universe
- Inflation (resolve problems of standard big bang cosmology)

Grand Unified Theories (GUTs)

- Unification of SM/MSSM gauge couplings
- Unification of matter/quark-lepton multiplets
- Proton Decay
- Electric charge quantization, Magnetic monopoles predicted (as Dirac wanted)
- Seesaw physics, neutrino oscillations
- Baryogenesis/leptogenesis
- Inflation/gravity waves, $\delta \rho / \rho$

Running of Gauge Couplings in SM

Hint of unification?

Gauge Coupling Unification in Non-SUSY SU(5)

Gauge Coupling Unification in the $\operatorname{SU}(5)$ model with additional fermions $\mathrm{Q}+\bar{Q}+\mathrm{D}+\bar{D}$ at mass scale $\sim 1 \mathrm{TeV}$.

Quark-Lepton Unification

- Pati-Salam $\rightarrow S U(4)_{c} \times S U(2)_{L} \times S U(2)_{R}$:
$(4,2,1)+(\overline{4}, 1,2)$

$$
\left(\begin{array}{cccc}
u & u & u & \nu_{e} \\
d & d & d & \ell
\end{array}\right)_{L, R} \Longrightarrow 16 \text { chiral fields; }
$$

SM neutrinos can have tiny masses via seesaw mechanism(built in)

- Georgi-Glashow $\rightarrow S U(5): 10+\overline{5}$
- 15 chiral fields;
- Massless neutrinos
- Fritzsch-Minkowski, Georgi $\rightarrow S O(10)$:

$$
16 \xrightarrow{S U(5)} 10+\overline{5}+1\left(\nu_{R}\right)
$$

- $S U(5) \times U(1)_{\chi}$ (cf: 4-2-2)

SU(5) x U(1) $)_{\text {PQ }}$ (Non-SUSY)

Model Contains axion (strong CP + DM), right-handed neutrinos, and a new scalar which drives inflation (\& breaks U(1) PQ)

$S U(5) \times U(1)_{P Q}$

Neutrino masses

$$
\begin{array}{ll}
\mathcal{L}_{Y u k}=T_{L} \cdot \mathbf{Y}_{\mathbf{1 0}} \cdot T_{L} \cdot H_{1}+T_{L} \cdot \mathbf{Y}_{\mathbf{5}} \cdot F_{L} \cdot H_{2}+T_{L} \cdot \mathbf{Y}_{\mathbf{4 5}} \cdot F_{L} \cdot \chi \\
F_{L} \cdot \mathbf{Y}_{\nu} \cdot \nu_{L}^{c} \cdot H_{1}+\frac{1}{2} \mathbf{Y}_{\mathbf{N}} \nu_{L}^{c} \cdot \nu_{L}^{c} \cdot \sigma+\text { h.c. },
\end{array} \longrightarrow \begin{aligned}
& M_{e}=\mathbf{Y}_{\mathbf{5}}\left\langle H_{2}\right\rangle+2 \mathbf{Y}_{\mathbf{4 5}}\langle\chi\rangle \\
& M_{d}=\mathbf{Y}_{\mathbf{5}}{ }^{T}\left\langle H_{2}\right\rangle-6 \mathbf{Y}_{\mathbf{4 5}}{ }^{T}\langle \rangle \\
& M_{u}=4\left(\mathbf{Y}_{\mathbf{1 0}}+\mathbf{Y}_{\mathbf{1 0}}^{T}\right)\left\langle H_{1}\right\rangle \\
& M_{\nu} \simeq \mathbf{Y}_{\nu}{ }^{T} \cdot \mathbf{Y}_{\mathbf{N}}{ }^{-1} \cdot \mathbf{Y}_{\nu} \frac{\left\langle H_{1}\right\rangle^{\mathbf{2}}}{\langle\sigma\rangle}
\end{aligned}
$$

$S U(5) \times U(1)_{P Q}$

Inflation with σ

$\mathrm{SU}(5) \times \mathrm{U}(1)_{\mathrm{PQ}}$

Higgs vacuum is stabilized

$\mathrm{SU}(5) \mathrm{x} \mathrm{U(1)} \mathrm{PQ}_{\mathrm{p}}$

Baryon asymmetry arises via non-thermal

 leptogenesisBaryogenesis

	T_{L}	F_{L}	ν_{L}^{c}	H_{1}	H_{2}	σ	Φ	χ
$S U(5)$	$\mathbf{1 0}$	$\overline{\mathbf{5}}$	$\mathbf{1}$	$\mathbf{5}$	$\overline{\mathbf{5}}$	$\mathbf{1}$	$\mathbf{2 4}$	$\mathbf{4 5}^{\star}$
$U(1)_{P Q}$	$\alpha / 2$	$\alpha / 2$	$\alpha / 2$	$-\alpha$	$-\alpha$	$-\alpha$	0	$-\alpha$

Right handed neutrinos from inflaton decay produces lepton asymmetry:
$\eta_{L} \simeq-10^{-5}\left(\frac{T_{R H}}{10^{9} \mathrm{GeV}}\right)\left(\frac{M_{N}}{m_{\rho}}\right) \longrightarrow M_{N} \simeq 0.3\left(\frac{10^{7} \mathrm{GeV}}{T_{R H}}\right) m_{\rho}$

Proton Decay

In this model $\tau_{P} \simeq 2.4 \times 10^{35} \mathrm{yr}$

Hyper-Kamiokande Physics Goals

Solar neutrinos

CP violation

Astrophysical neutrinos

Proton decay

Mass hierarchy

Nucleon decay

Flagship nucleon decay modes:	Mode	Sensitivity (90\% CL) [years]	Current limit [years]
	$p \rightarrow e^{+} \pi^{0}$	7.8×10^{34}	1.6×10^{34}
	$p \rightarrow \bar{\nu} K^{+}$	3.2×10^{34}	0.7×10^{34}
$\mathrm{p} \rightarrow \mathrm{e}^{+} \boldsymbol{\pi}^{0}$	$p \rightarrow \mu^{+} \pi^{0}$	7.7×10^{34}	0.77×10^{34}
	$p \rightarrow e^{+} \eta^{0}$	4.3×10^{34}	1.0×10^{34}
Positron Cherenkov light	$p \rightarrow \mu^{+} \eta^{0}$	4.9×10^{34}	0.47×10^{34}
	$p \rightarrow e^{+} \rho^{0}$	0.63×10^{34}	0.07×10^{34}
	$p \rightarrow \mu^{+} \rho^{0}$	0.22×10^{34}	0.06×10^{34}
	$p \rightarrow e^{+} \omega^{0}$	0.86×10^{34}	0.16×10^{34}
	$p \rightarrow \mu^{+} \omega^{0}$	1.3×10^{34}	0.28×10^{34}
$\mathrm{p} \rightarrow \overline{\mathbf{V}} \mathrm{K}^{+}$	$n \rightarrow e^{+} \pi^{-}$	2.0×10^{34}	0.53×10^{34}
	$\underline{\underline{n \rightarrow \mu^{+} \pi^{-}}}$	1.8×10^{34}	0.35×10^{34}

Limits will be improved across all nucleon decay channels, some by an order of magnitude.

HK construction timeline

Data taking expected in 2026

Magnetic Monopoles in Unified Theories

Any unified theory with electric charge quantization predicts the existence of topologically stable ('tHooft-Polyakov) magnetic monopoles. Their mass is about an order of magnitude larger than the associated symmetry breaking scale.

Examples:
(1) $\mathrm{SU}(5) \rightarrow \mathrm{SM}$ (3-2-1) Lightest monopole carries one unit of Dirac magnetic charge even though there exist fractionally charged quarks;

(3) $S U(4)_{c} \times S U(2)_{L} \times S U(2)_{R}$ (Pati-Salam)

Electric charge is quantized with the smallest permissible charge being $\pm(e / 6)$;

Lightest monopole carries two units of Dirac magnetic charge;
(9) $\mathrm{SO}(10) \rightarrow 4-2-2 \rightarrow 3-2-1$

Two sets of monopoles:
First breaking produces monopoles with a single unit of Dirac charge.
Second breaking yields monopoles with two Dirac units.
(6) E_{6} breaking to the SM can yield 'lighter' monopoles carrying three units of Dirac charge.

The discovery of primordial magnetic monopoles would have far-reaching implications for high energy physics \& cosmology.

They are produced via the Kibble Mechanism as $G \rightarrow H$:

Center of monopole has G symmetry $\langle\phi\rangle=0$

Initial no. density $\propto T_{c}^{-3}$. With big bang cosmology such numbers are unacceptable.
$\mathrm{r}_{\text {in }}=\frac{N_{m}}{N_{\gamma}} \sim 10^{-2}$.
\Rightarrow Monopole Problem
(Need Inflation)

Successful Primordial Inflation should:

- Explain flatness, isotropy;
- Provide origin of $\frac{\delta T}{T}$;
- Offer testable predictions for $n_{s}, r, d n_{s} / d$ Ink;
- Recover Hot Big Bang Cosmology;
- Explain the observed baryon asymmetry;
- Offer plausible CDM candidate;

Slow-roll inflation

- Inflation is driven by some potential $V(\phi)$:
- Slow-roll parameters:

$$
\epsilon=\frac{m_{p}^{2}}{2}\left(\frac{V^{\prime}}{V}\right)^{2}, \eta=m_{p}^{2}\left(\frac{V^{\prime \prime}}{V}\right)
$$

- The spectral index n_{s} and the tensor to scalar ratio r are given by

$$
n_{s}-1 \equiv \frac{d \ln \Delta_{\mathcal{R}}^{2}}{d \ln k}, r \equiv \frac{\Delta_{h}^{2}}{\Delta_{\mathcal{R}}^{2}},
$$

where Δ_{h}^{2} and $\Delta_{\mathcal{R}}^{2}$ are the spectra of primordial gravity waves and curvature perturbation respectively.

- Assuming slow-roll approximation (i.e. $(\epsilon,|\eta|) \ll 1$), the spectral index n_{s} and the tensor to scalar ratio r are given by

$$
n_{s} \simeq 1-6 \epsilon+2 \eta, \quad r \simeq 16 \epsilon .
$$

Slow-roll inflation

- The tensor to scalar ratio r can be related to the energy scale of inflation via

$$
V\left(\phi_{0}\right)^{1 / 4} \approx 3.0 \times 10^{16} r^{1 / 4} \mathrm{GeV}
$$

- The amplitude of the curvature perturbation is given by

$$
\Delta_{\mathcal{R}}^{2}=\frac{1}{24 \pi^{2}}\left(\frac{V / m_{p}^{4}}{\epsilon}\right)_{\phi=\phi_{0}}=2.43 \times 10^{-9} \text { (WMAP7 normalization) }
$$

- The spectrum of the tensor perturbation is given by

$$
\Delta_{h}^{2}=\frac{2}{3 \pi^{2}}\left(\frac{V}{m_{P}^{4}}\right)_{\phi=\phi_{0}}
$$

- The number of e-folds after the comoving scale $l_{0}=2 \pi / k_{0}$ has crossed the horizon is given by

$$
N_{0}=\frac{1}{m_{p}^{2}} \int_{\phi_{e}}^{\phi_{0}}\left(\frac{V}{V^{\prime}}\right) d \phi
$$

Inflation ends when $\max \left[\epsilon\left(\phi_{e}\right),\left|\eta\left(\phi_{e}\right)\right|\right]=1$.

Inflation with a Higgs Potential [Kallosh and Linde, 07; Rehman, Shafi and

Wickman, 08]

- Consider the following Higgs Potential:

$$
V(\phi)=V_{0}\left[1-\left(\frac{\phi}{M}\right)^{2}\right]^{2} \longleftarrow \text { (tree level) }
$$

Here ϕ is a gauge singlet field.

- WMAP/Planck data favors BV inflation $(r \lesssim 0.1)$.

Note: This is for minimal coupling to gravity

Higgs Potential:

n_{s} vs. r for Higgs potential, superimposed on Planck and Planck+BKP 68% and 95% CL regions taken from arXiv:1502.01589. The dashed portions are for $\phi>v . N$ is taken as 50 (left curves) and 60 (right curves).

n_{s} vs. r for Coleman-Weinberg potential, superimposed on Planck and Planck+BKP 68% and 95% CL regions taken from arXiv:1502.01589. The dashed portions are for $\phi>v . N$ is taken as 50 (left curves) and 60 (right curves).

n_{s} vs. H for Coleman-Weinberg potential, superimposed on Planck TT+lowP+BKP 95\% CL region taken from arXiv:1502.02114. The dashed portions are for $\phi>v . N$ is taken as 50 (left curves) and 60 (right curves).

Higgs Potential:

Primordial Monopoles

- Let's consider how much dilution of the monopoles is necessary. $M_{I} \sim 10^{13} \mathrm{GeV}$ corresponds to monopole masses of order $M_{M} \sim 10^{14} \mathrm{GeV}$. For these intermediate mass monopoles the MACRO experiment has put an upper bound on the flux of $2.8 \times 10^{-16} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \mathrm{sr}^{-1}$. For monopole mass $\sim 10^{14} \mathrm{GeV}$, this bound corresponds to a monopole number per comoving volume of $Y_{M} \equiv n_{M} / s \lesssim 10^{-27}$. There is also a stronger but indirect bound on the flux of $\left(M_{M} / 10^{17} \mathrm{GeV}\right) 10^{-16} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \mathrm{sr}^{-1}$ obtained by considering the evolution of the seed Galactic magnetic field.
- At production, the monopole number density n_{M} is of order H_{x}^{3}, which gets diluted to $H_{x}^{3} e^{-3 N_{x}}$, where N_{x} is the number of e-folds after $\phi=\phi_{x}$. Using

$$
Y_{M} \sim \frac{H_{x}^{3} e^{-3 N_{x}}}{s},
$$

where $s=\left(2 \pi^{2} g_{S} / 45\right) T_{r}^{3}$, we find that sufficient dilution requires $N_{x} \gtrsim \ln \left(H_{x} / T_{r}\right)+20$. Thus, for $T_{r} \sim 10^{9} \mathrm{GeV}, N_{x} \gtrsim 30$ yields a monopole flux close to the observable level.

Relativistic Monopoles at IceCube

Source: IceCube Collaboration, Eur. Phys. J. C (2016) 76:133

Supersymmetry

Source: Martin, Adv.Ser.Direct.High Energy Phys. 21 (2010) 1-153

- Resolution of the gauge hierarchy problem
- Predicts new particles, some maybe found at LHC ?
- Unification of the SM gauge couplings at $M_{G U T} \sim 2 \times 10^{16}$ GeV
- Cold dark matter candidate (LSP)
- Compelling inflation models

Why Supersymmetry ?

Where is SUSY?

Selected CMS SUSY Results* - SMS Interpretation
ICHEP '16 - Moriond '17

SUSY Yukawa Unification

$\mathbf{b}-\tau$ Yukawa coupling unification

Without Supersymmetry

$b-\tau \mathrm{YU}$ and finite threshold corrections ${ }^{1}$

Dominant contributions to the bottom quark mass from the gluino and chargino loop

$$
\delta y_{b} \approx \frac{g_{3}^{2}}{12 \pi^{2}} \frac{\mu m_{\tilde{g}} \tan \beta}{m_{1}^{2}}+\frac{y_{t}^{2}}{32 \pi^{2}} \frac{\mu A_{t} \tan \beta}{m_{2}^{2}}+\ldots
$$

where $m_{1} \approx\left(m_{\tilde{b}_{1}}+m_{\tilde{b}_{2}}\right) / 2$ and $m_{2} \approx\left(m_{\tilde{t}_{2}}+\mu\right) / 2$

where $\lambda_{b}=y_{b}$ and $\lambda_{t}=y_{t}$
$1_{\text {L. J. Hall, R. Rattazzi and U. Sarid, Phys. Rev.D 50, }} 7048$ (1994)

$b-\tau \mathrm{YU}$ in $\mathrm{SU}(5)$

$R \equiv \frac{\operatorname{Max}\left(y_{b}, y_{\tau}\right)}{\operatorname{Min}\left(y_{b}, y_{\tau}\right)} \leq 1.1 \quad b-\tau$ YU Condition
$y_{b}: y_{\tau}=(1-C):(1+3 C), \quad|C| \leq 0.2 \quad b-\tau$ QYU Condition

$b-\tau \mathrm{QYU}$ in SU(5)

All points are consistent with REWSB and neutralino LSP. The green points satisfy the LHC constraints. Blue points form a subset of green and they are compatible with the QYU and Fine-tuning conditions. Brown points are a subset of blue and they are consistent with the WMAP bound on the relic abundance of neutralino LSP within 5σ.

$b-\tau \mathrm{QYU}$ in $\mathrm{SU}(5)$

Higgsino-like dark matter, A-resonance and chargino-neutralino coannihilation scenarios.

The color coding is the same as previous figure. In addition, the blue points satisfy the QYU condition and brown

	Point 1	Point 2	Point 3
m_{10}	2325	5805	3299
M_{5}	4334	5756	4813
$M_{1 / 2}$	1317	2478	1002
$m_{H_{d}}$	1574	6740	1592
$m_{H_{u}}$	3698	8052	4206
$\tan \beta$	22.6	13.8	26.7
A_{t} / m_{10}	-1.73	-1.65	-1.46
$A_{b, \tau} / m_{5}$	0.29	-2.46	0.05
μ	107.8	714.9	835.4
$\Delta_{E W}$	35.3	117	163
m_{h}	124.5	126.4	124.1
m_{H}	1334	6513	946.3
m_{A}	1326	6471	940.1
$m_{H^{ \pm}}$	1336	6514	950
$m_{\tilde{\chi}_{1,2}^{0}}$	102.8, 111.4	701.3, 716.4	441.7, 783.3
$m_{\tilde{\chi}_{3,4}^{0}}$	579.9, 1104	1128, 2110	831, 899
$m_{\tilde{\chi}_{1,2}^{ \pm}}$	110.8, 1093	732.5, 2088	792, 894
$m_{\tilde{g}}$	2954	5361	2369
$m_{\tilde{u}_{L, R}}$	3420, 3424	7354, 7302	3780, 3839
$m_{\tilde{t}_{1,2}}$	1403, 2569	2797, 5473	1548, 2747
$m_{\tilde{d}_{L, R}}$	3421, 4957	7355, 7187	3781, 5140
$m_{\tilde{b}_{1,2}}$	2572, 4831	5539, 6868	2751, 4958
$m_{\tilde{\nu}_{1}}$	4457	6007	4902
$m_{\tilde{\nu}_{3}}$	4411	5852	4822
$m_{\tilde{e}_{L, R}}$	4455, 2246	6002, 5791	4899, 3196
$m_{\tilde{\tau}_{1,2}}$	2053, 4404	5464, 5851	2947, 4816
$\sigma_{S I}(\mathrm{pb})$	0.10×10^{-8}	0.72×10^{-9}	0.20×10^{-8}
$\sigma_{S D}(\mathrm{pb})$	0.82×10^{-4}	0.15×10^{-5}	0.59×10^{-6}
$\Omega_{C D M} h^{2}$	0.05	0.097	0.098
$y_{t, b, \tau}$	$0.50,0.13,0.17$	0.51, 0.07, 0.1	0.52, 0.16, 0.21
C	0.08	0.08	0.07

$b-\tau \mathrm{QYU}$ in $\mathrm{SU}(5)$

Direct detection!

The color coding is the same as previous figure.

- Attractive scenario in which inflation can be associated with symmetry breaking $G \longrightarrow H$
- Simplest inflation model is based on

$$
W=\kappa S\left(\Phi \bar{\Phi}-M^{2}\right)
$$

$S=$ gauge singlet superfield, $(\Phi, \bar{\Phi})$ belong to suitable representation of G

- Need $\Phi, \bar{\Phi}$ pair in order to preserve SUSY while breaking $G \longrightarrow H$ at scale $M \gg \mathrm{TeV}$, SUSY breaking scale.
- R-symmetry

$$
\Phi \bar{\Phi} \rightarrow \Phi \bar{\Phi}, \quad S \rightarrow e^{i \alpha} S, \quad W \rightarrow e^{i \alpha} W
$$

$\Rightarrow \quad W$ is a unique renormalizable superpotential

- Tree Level Potential

$$
V_{F}=\kappa^{2}\left(M^{2}-\left|\Phi^{2}\right|\right)^{2}+2 \kappa^{2}|S|^{2}|\Phi|^{2}
$$

- SUSY vacua

$$
|\langle\bar{\Phi}\rangle|=|\langle\Phi\rangle|=M,\langle S\rangle=0
$$

Take into account radiative corrections (because during inflation $V \neq 0$ and SUSY is broken by $F_{S}=-\kappa M^{2}$)

- Mass splitting in $\Phi-\bar{\Phi}$

$$
m_{ \pm}^{2}=\kappa^{2} S^{2} \pm \kappa^{2} M^{2}, \quad m_{F}^{2}=\kappa^{2} S^{2}
$$

- One-loop radiative corrections

$$
\Delta V_{\text {1loop }}=\frac{1}{64 \pi^{2}} \operatorname{Str}\left[\mathcal{M}^{4}(S)\left(\ln \frac{\mathcal{M}^{2}(S)}{Q^{2}}-\frac{3}{2}\right)\right]
$$

- In the inflationary valley $(\Phi=0)$

$$
V \simeq \kappa^{2} M^{4}\left(1+\frac{\kappa^{2} \mathcal{N}}{8 \pi^{2}} F(x)\right)
$$

where $x=|S| / M$ and

$$
F(x)=\frac{1}{4}\left(\left(x^{4}+1\right) \ln \frac{\left(x^{4}-1\right)}{x^{4}}+2 x^{2} \ln \frac{x^{2}+1}{x^{2}-1}+2 \ln \frac{\kappa^{2} M^{2} x^{2}}{Q^{2}}-3\right)
$$

Tree level + radiative corrections + minimal Kähler potential yield:

$$
n_{s}=1-\frac{1}{N} \approx 0.98
$$

$\delta T / T$ proportional to M^{2} / M_{p}^{2}, where M denotes the gauge symmetry breaking scale. Thus we expect $M \sim M_{G U T}$ for this simple model.
Since observations suggest that n_{s} lie close to 0.97 , there are at least two ways to realize this slightly lower value:

- include soft SUSY breaking terms, especially a linear term in S;
- employ non-minimal Kähler potential.

[Pallis, Shafi, 2013; Rehman, Shafi, Wickman, 2010]

(a)

(a)

(b)

(b)

MSSM μ-Problem and Inflation

$U(1)_{R}$ symmetry prevents a direct μ term but allows the superpotential coupling

$$
\lambda H_{u} H_{d} S
$$

Since $\langle S\rangle$ acquires a non-zero VEV $\propto m_{3 / 2}$ from supersymmetry breaking, the MSSM μ term of the desired magnitude is realized.

- $W=S\left(\kappa \bar{\Phi} \Phi-\kappa M^{2}+\lambda H_{u} H_{d}\right)$
- $K=K_{\text {min }}+\kappa_{s} \frac{|S|^{4}}{4 m_{p}^{2}}+\kappa_{s s} \frac{|S|^{6}}{6 m_{p}^{4}}$
- $V=\kappa^{2} M^{4}\left(1+\frac{\gamma_{S}}{2}\left(\frac{M}{m_{P}}\right)^{4} x^{4}-\kappa_{S}\left(\frac{M}{m_{P}}\right)^{2} x^{2}+a \frac{m_{3 / 2}}{\kappa M} x\right)$
where $\gamma_{S}=1+2 \kappa_{S}^{2}-\frac{7 \kappa_{S}}{2}-3 \kappa_{S S}$ and $x=|S| / M$

Reheat Temperature vs κ for $m_{3 / 2}=1 \mathrm{TeV}$ (solid-green), 10 TeV (dashed-red), and 100 TeV (dotted-blue), $n_{s}=0.9655, \kappa_{S}=0.02$, $\kappa_{S S}=0$ and $\gamma=2(10)$ for thick (thin) curves.

- $W=S\left[\kappa M^{2}-\kappa \operatorname{Tr}\left(\Phi^{2}\right)-\frac{\beta}{M_{*}} \operatorname{Tr}\left(\Phi^{3}\right)\right]+\gamma \bar{H} \Phi H+\delta \bar{H} H$ $\left.+y_{i j}^{u} 10_{i} 10_{j} H+y_{i j}^{d, e} 10_{i} \overline{5}_{j} \bar{H}+y_{i j}^{(} \nu\right) 1_{i} \overline{5}_{j} H+m_{\nu_{i j}} 1_{i} 1_{j}$
- $K=K_{\text {min }}+\kappa_{S} \frac{|S|^{4}}{4 m_{P}^{2}}+\kappa_{S S} \frac{|S|^{6}}{6 m_{P}^{4}}+\cdots$
- $V \supset \kappa^{2}\left|M^{2}-\frac{1}{2} \sum_{i} \phi_{i}^{2}-\frac{\beta}{4 \kappa M_{*}} d_{i j k} \phi_{i} \phi_{j} \phi_{k}\right|^{2}+$

$$
\begin{aligned}
& \sum_{i}\left|\kappa S \phi_{i}+\frac{3 \beta}{4 M_{*}} d_{i j k} S \phi_{j} \phi_{k}-\gamma T^{i} \bar{H}_{a} H_{b}\right|^{2}+\sum_{b}\left|\gamma T^{i} \phi^{i} \bar{H}+\delta \bar{H}_{b}\right|^{2} \\
& +\sum_{b}\left|\gamma T^{i} \phi^{i} H+\delta H_{b}\right|^{2}+D-\text { terms }+V_{\text {soft }}
\end{aligned}
$$

$$
\begin{gathered}
n_{S} \simeq 1-2 \kappa_{S}+\left(\frac{8\left(1-\kappa_{S}\right)}{9\left(4 / 27-\xi^{2}\right)}+6 \gamma_{S} x_{0}^{2}\right)\left(\frac{M_{\xi}}{m_{P}}\right)^{2} \\
-\frac{275 \kappa^{2}}{16 \pi^{2}}\left|\partial_{x_{0}}^{2} F\left(5 x_{0}^{2}\right)\right|\left(\frac{m_{P}}{M_{\xi}}\right)^{2}
\end{gathered}
$$

where $x_{0}=\left|S_{0}\right| / M_{\xi}$ and $M_{\xi}^{2}=M^{2}\left(4 / 27 \xi^{2}-1\right)$

n_{S} VS κ

Figure: n_{S} vs κ for shifted hybrid inflation with $\xi=0.3, T_{r}=10^{9} \mathrm{GeV}$. $1-\sigma$ bounds from WMAP7 are shown in yellow.

MSSM with Vector Like Particles

Inflation in SU(5) introduces light particles $G(1,8,0)$ and $T(1,3,0)$. Gauge coupling unification is restored by introduction of vector like particles $\mathrm{L}(1,2,1 / 2), \bar{L}(1,2,-1 / 2)$ and $2(\mathrm{E}(1,1,1)+\bar{E}(1,1,-1))$ at scale $M_{S U S Y}(\sim \mathrm{TeV})$

From Left to Right: Columns showing Gauge Coupling Unification and $b-\tau$ Yukawa Unification at $M_{S U S Y}=2 \mathrm{TeV}, 3 \mathrm{TeV}$

- Unification of all forces remains a compelling idea.
- Grand unification explains charge quantization, predicts monopoles and proton decay.
- Also explains tiny neutrino masses via seesaw mechanism.
- Non-SUSY gauge coupling unification require new particles/new physics below $M_{G U T}$.
- In non-SUSY inflation with Higgs potential, $r \gtrsim 0.02$ (minimal coupling to gravity).
- SUSY models offer plausible dark matter candidates such as TeV mass higgsino.
- Class of SUSY inflation models predict $\frac{\delta T}{T} \propto\left(\frac{M}{M_{P}}\right)^{2}$, with M $\sim 10^{16} \mathrm{GeV} ; r \leq 10^{-4}$.
- $b-\tau$ Yukawa Unification can be implemented in SUSY models with heavy particle masses; Find Them.

Thank You!

