Exact integrable RG flows and the c-theorem

Konstantinos Sfetsos
National and Kapodistrian U. of Athens
HEP 2018, NTUA, Athens, 28 March 2018

Based on:

- K.S., Nucl. Phys. B880 (2014) 225
- and with: G. Georgiou, G. Itsios, K. Siampos \& E. Sagkrioti in various combinations.
- and in progress.

For loannis

- We first met in 1989 in Trieste
- Several common projects from 1995 to 2002. Most important:
- T-duality and world sheet supersymmetry loannis Bakas (CERN), Konstadinos Sfetsos (Utrecht U.), Phys.Lett. B349 (1995) 448-457
- States and curves of five-dimensional gauged supergravity loannis Bakas (Patras U.), Konstadinos Sfetsos (CERN), Nucl. Phys. B573 (2000) 768-810
- PP waves and logarithmic conformal field theories Ioannis Bakas, Konstadinos Sfetsos (Patras U.), Nucl.Phys. B639 (2002) 223-240
- We were colleagues in the U. of Patras for several years.
- I remember him for his distinct approach to problem solving and humor.
- On the non-scientific life of loannis see talk by T. Vladikas in Xmas Theoretical Physics Workshop @Athens 2016: https://sites.google.com/site/xmasathens2016/home2

Motivation

- Exact beta-function and anomalous dimensions in QFTs.
- Traditionally computed perturbatively. For example

$$
\begin{array}{ll}
\text { QED : } & \mu \frac{d e}{d \mu}=+\frac{e^{3}}{12 \pi^{2}}+\cdots, \\
\text { QCD : } & \mu \frac{d g}{d \mu}=-\frac{7 g^{3}}{16 \pi^{2}}+\cdots,
\end{array}
$$

It is a rare occasion to be able to compute them exactly.

- Systematic construction of new (integrable) deformations of (interacting) CFT's having explicit Lagrangian descriptions.
- Smooth RG flows (UV to IR) between CFTs.
- Type-II supergravity embeddings
- Applications/developments in an AdS/CFT context.

Outline

- The theories of interest
- Construction of effective actions (self- and mutual-interacting)
- Beta-functions and anomalous dimensions.

Perturbative info + symmetry + analyticity \Longrightarrow exact info

- Interplay between CFT and gravitational methods instrumental

Exact C-function obeying Zamolodchikov's c-theorem
(the first example in literature).

- Concluding remarks

The theories of interest

Let any 2-dim CFT with action S_{k} and a group G structure having holomorphic \& anti-holomorphic currents $J^{a}(z) \& \bar{J}(\bar{z})$, obeying

$$
J^{a}(z) J^{b}(w)=\frac{\delta_{a b}}{(z-w)^{2}}+\frac{f_{a b c}}{\sqrt{k}} \frac{J^{c}(w)}{z-w}, \text { similarly } J^{a}(\bar{z}) J^{b}(\bar{z}) .
$$

We would be interested in deformations:

- Driven away from the conformal point by a self-interaction current bilinears

$$
S_{k, \lambda}=S_{k}-\frac{k}{\pi} \int d^{2} z \lambda_{a b} J^{a} \bar{J}^{b}
$$

- Two decoupled theories driven away from the conformal point by mutual-interactions of current bilinears

$$
S_{k_{1}, k_{2}, \lambda_{1}, \lambda_{2}}=S_{k_{1}}+S_{k_{2}}-\frac{1}{\pi} \int d^{2} z\left(k_{1} \lambda_{1}^{a b} J_{1}^{a} J_{2}^{b}+k_{2} \lambda_{2}^{a b} J_{2}^{a} J_{1}^{b}\right) .
$$

We are aiming at:

- To compute the RG flow eqs

$$
\frac{1}{2} \mu \frac{d \lambda_{a b}}{d \mu}=\cdots
$$

- Anomalous dimensions of currents and primary operators.
- Search for new fixed points under the RG flow towards the IR.
- Identity the CFT in the IR.
- We would like to do that exactly in λ and in k, unlike traditional approaches.
- Construct effective, all loop in λ, actions.

Effective actions

Self-interacting theories [KS 14]

The starting point is the action

$$
S(g, \tilde{g})=S_{W Z W, k}(g)+S_{\mathrm{PCM}, \kappa^{2}}(\tilde{g}), \quad g, \tilde{g} \in G .
$$

- $S_{\mathrm{WZW}, \mathrm{k}}(g)$: has a $G_{\mathrm{L}, \text { cur }} \times G_{\mathrm{R}, \text { cur }}$ current algebra symmetry.
- $S_{\mathrm{PCM}}(\tilde{g})$: it is integrable with global $G_{L} \times G_{R}$ symmetry.
- Introduce gauge fields and gauge the group acting as

$$
g \rightarrow \Lambda^{-1} g \Lambda, \quad \tilde{g} \rightarrow \Lambda^{-1} \tilde{g}, \quad \Lambda \in G .
$$

- After gauge fixing $\tilde{g}=\mathbb{1}$ integrating out the gauge fields

$$
S_{k, \lambda}(g)=S_{W Z W, k}(g)+\frac{k}{\pi} \int J_{+}^{a}\left(\lambda^{-1} \mathbb{I}-D^{T}\right)_{a b}^{-1} J_{-}^{b}
$$

where $\lambda^{-1}=1+\kappa^{2} / k$ is the deformation parameter and

$$
J_{+}^{a}=-i \operatorname{Tr}\left(t^{a} \partial_{+} g g^{-1}\right), \quad J_{-}^{a}=-i \operatorname{Tr}\left(t^{a} g^{-1} \partial_{-} g\right), \quad D_{a b}=\operatorname{Tr}\left(t_{a} g t_{b} g^{-1}\right)
$$

Some properties:

- Generalization to $\lambda \delta_{a b} \rightarrow \lambda_{a b}$ straightforward.
- For small $\lambda_{a b}$

$$
S_{k, \lambda}(g)=S_{\mathrm{WZW}, k}(g)+\frac{k}{\pi} \int d^{2} \sigma \lambda_{a b} J_{+}^{a} J_{-}^{b}+\ldots
$$

- This action has a duality-type symmetry [Itsios-KS-Siampos 14]

$$
k \rightarrow-k, \quad \lambda \rightarrow \lambda^{-1}, \quad g \rightarrow g^{-1}
$$

It should be reflected as a symmetry in physical quantities.

- An integrable theory [KS 13, Hollowood-Miramontes-Schmidtt 14]

$$
\lambda_{a b}=\lambda \delta_{a b}
$$

Exact β-function and anomalous dims [Georgiou-Siampos-Ks 15 \& 16]

CFT and symmetry appoach

- We want to compute the 2-point functions

$$
\begin{aligned}
\left\langle J^{a}\left(x_{1}\right) J^{b}\left(x_{2}\right)\right\rangle_{\lambda} & =\left\langle J^{a}\left(x_{1}\right) J^{b}\left(x_{2}\right) e^{-\frac{\lambda}{\pi} \int d^{2} z J^{a}(z) J^{a}(\bar{z})}\right\rangle, \\
\left\langle J^{a}\left(x_{1}\right) \bar{J}^{b}\left(x_{2}\right)\right\rangle_{\lambda} & =\left\langle J^{a}\left(x_{1}\right) \bar{J}^{b}\left(x_{2}\right) e^{-\frac{\lambda}{\pi} \int d^{2} z J^{a}(z) J^{a}(\bar{z})}\right\rangle,
\end{aligned}
$$

perturbatively in λ by expanding the exponential.

- The basic correlators are

$$
\left\langle J^{a}\left(x_{1}\right) J^{b}\left(x_{2}\right)\right\rangle=\frac{\delta_{a b}}{x_{12}^{2}}, \quad\left\langle J^{a}\left(x_{1}\right) J^{b}\left(x_{2}\right) J^{c}\left(x_{3}\right)\right\rangle=\frac{1}{\sqrt{k}} \frac{f_{a b c}}{x_{12} x_{13} x_{23}}
$$

and similarly for the \bar{J} 's. Mixed $J \bar{J}$ correlators vanish.

- For higher correlators use Ward dentities

The perturbative β-function and anomalous dimensions

- The β-function is

$$
\beta=\frac{1}{2} \mu \frac{d \lambda}{d \mu}=-\frac{c_{G}}{2 k}\left(\lambda^{2}-2 \lambda^{3}+\mathcal{O}\left(\lambda^{4}\right)\right)
$$

where c_{G} is the quadratic Casimir in the adjoint.

- The anomalous dimension of the currents is

$$
\gamma^{(J)}=\mu \frac{d \ln Z^{1 / 2}}{d \mu}=\frac{c_{G}}{k}\left(\lambda^{2}-2 \lambda^{3}+\mathcal{O}\left(\lambda^{4}\right)\right) .
$$

Task: Extend these exactly in λ ?

Analyticity: λ-dependence of physical quantities

- Expand the action for $g=e^{i x^{a} t^{a}}$ around the identity

$$
S_{k, \lambda}=\frac{k}{4 \pi} \frac{1+\lambda}{1-\lambda} \int \partial_{+} x^{a} \partial_{-} x^{a}+\cdots
$$

- The β-function \& anomalous dims may have poles at $\lambda= \pm 1$.
- The β-function \& anomalous dims should be invariant under

$$
k \rightarrow-k, \quad \lambda \rightarrow \frac{1}{\lambda}
$$

for $k \gg 1$.

- Perturbative information to $\mathcal{O}\left(\lambda^{2}\right)$ and the above symmetry are enough to determine the β-function and the anomalous dimensions exactly in λ and to leading order in k.

The exact β-function and anomalous dimensions The exact β-function and anomalous dimensions are of the form

$$
\beta_{\lambda}=-\frac{c_{G}}{2 k} \frac{f(\lambda)}{(1+\lambda)^{2}}, \quad \gamma^{(J)}=\frac{c_{G}}{k} \frac{g(\lambda)}{(1-\lambda)(1+\lambda)^{3}}
$$

where $f(\lambda)$ and $g(\lambda)$ are analytic in λ.

- They have a well defined non-Abelian and pseudodual limits as $\lambda \rightarrow \pm 1$ and $k \rightarrow \infty$.
- Due to the symmetry $(k, \lambda) \mapsto\left(-k, \lambda^{-1}\right)$ we have that

$$
\lambda^{4} f(1 / \lambda)=f(\lambda), \quad \lambda^{4} g(1 / \lambda)=g(\lambda)
$$

- $f(\lambda)$ and $g(\lambda)$ are polynomials of degree four, fixed by the above symmetry and the two-loop perturbative result.
- The final result for the beta-function is

$$
\beta_{\lambda}=-\frac{c_{G}}{2 k} \frac{\lambda^{2}}{(1+\lambda)^{2}} \leqslant 0
$$

In agreement with [Kutasov 89] and [Gerganov-LeClair-Moriconi 01].

- For the anomalous dimension

$$
\gamma^{(J)}=\frac{c_{G}}{k} \frac{\lambda^{2}}{(1-\lambda)(1+\lambda)^{3}} \geqslant 0
$$

Agreement with perturbation theory to $\mathcal{O}\left(\lambda^{3}\right)$ and $\mathcal{O}\left(\lambda^{4}\right)$.

- Similarly for current 3-point functions and correlators of primary fields [Georgiou-KS-Siampos 16].

Gravitational approach

The one-loop β-functions are [Ecker-Honerkamp 71, Friedan 80 , Braaten-Curtright-Zachos 85, Fridling-van de Ven 86]

$$
\frac{\mathrm{d} G_{\mu v}}{\mathrm{~d} t}+\frac{\mathrm{d} B_{\mu v}}{\mathrm{~d} t}=R_{\mu v}^{-}+\nabla_{v}^{-} \xi_{\mu}, \quad t=\ln \mu^{2} .
$$

- Covariant derivatives \& tensors with torsion. The $\xi^{\mu}{ }^{\mu} s$ are diffs.
- Then the RG-flow eqs are [KS-Siampos 14, KS-Siampos-Sagkrioti 18]

$$
\frac{d \lambda_{a b}}{d t}=\frac{1}{2 k} \operatorname{Tr}\left(\mathcal{N}_{a}\left(\lambda, \lambda_{0}^{-1}\right) \mathcal{N}_{b}\left(\lambda^{T}, \lambda_{0}\right)\right)
$$

where the matrices \mathcal{N}_{a} have elements

$$
\begin{aligned}
& \left(\mathcal{N}_{a}\left(\lambda, \lambda_{0}^{-1}\right)\right)_{b}{ }^{c}=\left(\lambda_{a e} \lambda_{b d} f_{e d f}-\lambda_{0}^{-1} f_{a b e} \lambda_{e f}\right) g^{f c}, \\
& g_{a b}=\left(\mathbb{1}-\lambda^{T} \lambda\right)_{a b}, \quad k=\sqrt{k_{1} k_{2}}, \quad \lambda_{0}=\sqrt{\frac{k_{1}}{k_{2}}}<1 .
\end{aligned}
$$

Mutually-interacting theories [Georgiou-KS 16,17]
Modifying the gauging procedure produces an action with two coupling matrices. $\lambda_{1, a b}$ and $\lambda_{2, a b}$.

- If $\lambda_{i}=\lambda_{i} \delta_{a b}$ then it is integrable.
- Beta-function for $\lambda_{a b}=\lambda \delta_{a b}$

$$
\frac{d \lambda}{d t}=-\frac{c_{G}}{2 k} \frac{\lambda^{2}\left(\lambda-\lambda_{0}\right)\left(\lambda-\lambda_{0}^{-1}\right)}{\left(1-\lambda^{2}\right)^{2}}
$$

where λ is either λ_{1} or λ_{2}.

- A new fixed point in the IR at

$$
\lambda=\lambda_{0}=\sqrt{\frac{k_{1}}{k_{2}}}<1
$$

- Anomalous dimensions also computed.

Smooth RG flows

The parameter λ runs with the energy scale.

- There must be a CFT at the IR at the fixed point at λ_{0}.
- Indeed one may show that the flow is [Georgiou-KS 17]

$$
\underbrace{G_{k_{1}} \times G_{k_{2}}}_{\text {At the UV, } \lambda=0} \quad \stackrel{\mathrm{RG} \text { flow }}{\Longrightarrow} \underbrace{\frac{G_{k_{1}} \times G_{k_{2}-k_{1}}}{G_{k_{2}}} \times G_{k_{2}-k_{1}}}_{\text {At the IR, } \lambda=\lambda_{0}}
$$

- ${c_{I R}}^{<} c_{\mathrm{UV}}$, i.e. in accordance with Zamolodchikov's c-theorem.

Exact Zamolodchikov's C-function, i.e. $C=C\left(\lambda, \lambda_{0}\right)$?

It will be the first such example in literature.

The exact C-function [In progress]

Zamolodchikov's c-theorem [A.B. Zamolodchikov 86]
In a 2-dim QFT with couplings λ^{i} :

- There exist a function $C(\lambda) \geqslant 0$ such that

$$
\mu \frac{d C}{d \mu}=2 \beta^{i} \frac{\partial C}{\partial \lambda^{i}} \geqslant 0 .
$$

- The equality is reached at the fixed points λ_{*}^{i} of the RG flow. Then $C\left(\lambda_{*}\right)$ equals the central charge of a CFT.
- The proof is technically simple: Based on renormalizability, rotational and translational symmetry and positivity.

Physical content:

- Theories at high energies have more degrees of freedom than at low energies.
- UV information is lost irreversibly towards the IR.

The exact C-function - one coupling case
On general grounds near a fixed point

$$
G_{\lambda \lambda} \beta_{\lambda} \equiv \frac{\mu}{2} \partial_{\mu} \lambda=\frac{1}{24} \partial_{\lambda} C+\cdots
$$

where $G_{\lambda \lambda}$ is the metric in the coupling space. In our case $G_{\lambda \lambda}=\frac{\operatorname{dim} G}{\left(1-\lambda^{2}\right)^{2}}$.

- The beta-function near $\lambda=0$ is

$$
\beta_{\lambda}\left(\lambda, \lambda_{0}\right)=-\frac{c_{G}}{2 k} \lambda^{2}+\cdots
$$

- At the UV CFT $G_{k_{1}} \times G_{k_{2}}$ for $k \gg 1$ is

$$
c_{\mathrm{UV}}=2 \operatorname{dim} G-\frac{c_{G} \operatorname{dim} G}{2 k}\left(\lambda_{0}+\lambda_{0}^{-1}\right)+\cdots .
$$

- Therefore by a simple integration

$$
C\left(\lambda, \lambda_{0}\right)=c_{\mathrm{UV}}-4 \frac{c_{G} \operatorname{dim} G}{k} \lambda^{3}+\mathcal{O}\left(\lambda^{4}\right)
$$

Proceeding as before, i.e.

- Symmetry considerations, i.e. $k_{1,2} \mapsto-k_{2,1}, \lambda \rightarrow 1 / \lambda$
- Demanding finite limiting behavior for $\lambda= \pm 1$ and $k \rightarrow \infty$
- Matching with the perturbative results

The exact in λ (and leading in $1 / k$) C-function is
$C\left(\lambda, \lambda_{0}\right)=2 \operatorname{dim} G-\frac{c_{G} \operatorname{dim} G}{k} \frac{\left(\lambda_{0}+\lambda_{0}^{-1}\right)\left(1-3 \lambda^{2}-3 \lambda^{4}+\lambda^{6}\right)+8 \lambda^{3}}{2\left(1-\lambda^{2}\right)^{3}}$.

Properties and checks

- It is positive, i.e. $C\left(\lambda, \lambda_{0}\right) \geqslant 0$.
- Near the IR fixed point at $\lambda=\lambda_{0}$

$$
C=\underbrace{2 \operatorname{dim} G-\frac{c_{G} \operatorname{dim} G}{k} \frac{1+\lambda_{0}^{4}}{2 \lambda_{0}\left(1-\lambda_{0}^{2}\right)}}_{\text {CFT central charge at IR }}+\underbrace{\frac{6 c_{G} \operatorname{dim} G}{k} \frac{\lambda_{0}}{\left(1-\lambda_{0}^{2}\right)^{3}}\left(\lambda-\lambda_{0}\right)^{2}}_{\text {obeys } \partial_{\lambda} c \sim \beta_{\lambda}}+\ldots
$$

- In addition

$$
\mu \frac{d C}{d \mu}=2 \beta_{\lambda} \partial_{\lambda} C=12 \frac{c_{G}^{2} \operatorname{dim} G}{k^{2}} \frac{\lambda^{4}\left(\lambda-\lambda_{0}\right)^{2}\left(\lambda-\lambda_{0}^{-1}\right)^{2}}{\left(1-\lambda^{2}\right)^{6}}
$$

Hence, C is monotonically increasing from the IR to the UV.

Concluding remarks

- Computed exactly the beta-function and anomalous dimensions of operators in interacting current algebra theories.
- Based on leading order perturbative results and symmetries.
- New integrable σ-model theories, as all loop effective actions for current-current interactions of one, two or more exact CFT CFTs.
- Non-trivial smooth flows between exact CFTs.
- Computation of Zamolodchikov's C-function as a complete function of the coupling (1st example in literature).
- Future directions:
- For $k_{1} \neq k_{2}$ embed to type-II supergravity.

As in [KS-Thompson 14, Demulder-KS-Thompson 15, Borsato-Tseytlin 15]. Prototype example $A d S_{3} \times S^{3} \times S^{3} \times S^{1}$.

- Check C-function to higher orders in perturbation.

