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Goal

 We construct and apply the EFT 
approach to torsional modified gravity, 
in order to investigate the propagation 
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in order to investigate the propagation 
of gravitational waves (GW)

 High accuracy advancing GW astronomy 
offers a new window in testing Modified 
Gravity
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Talk Plan
 1) Introduction: Why Modified Gravity

 2) Teleparallel Equivalent of General Relativity and f(T) modification

 3) Non-minimal scalar-torsion theories 
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 4)  Teleparallel Equivalent of Gauss-Bonnet and f(T,T_G) modification

 5)  Solar system, growth-index, baryogenesis and BBN constraints

 6) The EFT approach to torsional gravity

 7)  Background solutions

 8)  Gravitational Waves and observational signatures

 9) Conclusions-Prospects
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Why Modified Gravity?

Knowledge of Physics: Standard Model 
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Why Modified Gravity?

Knowledge of Physics: Standard Model + General Relativity
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Why Modified Gravity?
Universe History:
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Why Modified Gravity?
So can our knowledge of Physics describes all these?
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Why Modified Gravity?

 Einstein 1916: General Relativity: 
energy-momentum source of spacetime Curvature
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Modified Gravity
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Non-minimal gravity-
matter coupling

(Gen. Proca)
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Introduction

 Einstein 1916: General Relativity: 
energy-momentum source of spacetime Curvature
Levi-Civita connection: Zero Torsion
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 Einstein 1928: Teleparallel Equivalent of GR:

Weitzenbock connection: Zero Curvature

[Cai, Capozziello, De Laurentis, Saridakis, Rept.Prog.Phys. 79] 
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Curvature and Torsion

 Vierbeins    : four linearly independent fields in the tangent space

 Connection:

 Curvature tensor:
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 Curvature tensor:

 Torsion tensor:

 Levi-Civita connection and Contorsion tensor:

 Curvature and Torsion Scalars:
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Introduction

 Gauge Principle: global symmetries replaced by
local ones:
The group generators give rise to the compensating 
fields
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fields
It works perfect for the standard model of strong, 
weak and E/M interactions

 Can we apply this to gravity?

    )1(23 USUSU 
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Introduction

 Formulating the gauge theory of gravity 
(mainly after 1960):

 Start from Special Relativity      
Apply (Weyl-Yang-Mills) gauge principle to its Poincaré-
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Apply (Weyl-Yang-Mills) gauge principle to its Poincaré-
group symmetries
Get Poinaré gauge theory:
Both curvature and torsion appear as field strengths

 Torsion is the field strength of the translational group
(Teleparallel and Einstein-Cartan theories are subcases of Poincaré theory)





[Blagojevic, Hehl,  Imperial College Press, 2013] 
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Introduction

 One could extend the gravity gauge group (SUSY, 
conformal, scale, metric affine transformations)
obtaining SUGRA, conformal, Weyl, metric affine    
gauge theories of gravity
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gauge theories of gravity

 In all of them torsion is always related to the gauge 
structure.

 Thus, a possible way towards gravity quantization 
would need to bring torsion into gravity description.
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Introduction

 1998: Universe acceleration
Thousands of work in Modified Gravity

(f(R), Gauss-Bonnet, Lovelock, nonminimal scalar coupling,   

nonminimal derivative coupling, Galileons, Hordenski, massive etc)


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nonminimal derivative coupling, Galileons, Hordenski, massive etc)

 Almost all in the curvature-based formulation of gravity

[Copeland, Sami, Tsujikawa  Int.J.Mod.Phys.D15], [Capozziello, De Laurentis, Phys. Rept. 509] 
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Introduction

 1998: Universe acceleration
Thousands of work in Modified Gravity

(f(R), Gauss-Bonnet, Lovelock, nonminimal scalar coupling,   

nonminimal derivative coupling, Galileons, Hordenski, massive etc)


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nonminimal derivative coupling, Galileons, Hordenski, massive etc)

 Almost all in the curvature-based formulation of gravity

 So question: Can we modify gravity starting from its 
torsion-based formulation?
torsion              gauge                  quantization

modification       full theory            quantization
 ?

 ?

[Copeland, Sami, Tsujikawa  Int.J.Mod.Phys.D15], [Capozziello, De Laurentis, Phys. Rept. 509] 
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Teleparallel Equivalent of General Relativity (TEGR)

 Let’s start from the simplest tosion-based gravity formulation, 
namely TEGR:

 Vierbeins : four linearly independent fields in the tangent space

Use curvature-less Weitzenböck connection instead of torsion-less

)()()( xexexg BA
AB  


Ae
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 Use curvature-less Weitzenböck connection instead of torsion-less
Levi-Civita one:

 Torsion tensor:

A
A
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  }{}{ [Einstein 1928], [Pereira: Introduction to TG] 
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 Use curvature-less Weitzenböck connection instead of torsion-less
Levi-Civita one:

 Torsion tensor:

 Lagrangian (imposing coordinate, Lorentz, parity invariance, and up to 2nd order 
in torsion tensor)
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[Einstein 1928],  [Hayaski,Shirafuji PRD 19], [Pereira: Introduction to TG] 

 Completely equivalent with
GR at the level of equations
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f(T) Gravity and f(T) Cosmology

 f(T) Gravity: Simplest torsion-based modified gravity
 Generalize T to f(T) (inspired by f(R))

 Equations of motion:

[Ferraro, Fiorini PRD 78], [Bengochea, Ferraro PRD 79]  mSTfTexd
G

S   )(
16
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
[Linder PRD 82]
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 Equations of motion:
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f(T) Gravity and f(T) Cosmology

 f(T) Gravity: Simplest torsion-based modified gravity
 Generalize T to f(T) (inspired by f(R))

 Equations of motion:

  mSTfTexd
G

S   )(
16

1 4


[Ferraro, Fiorini PRD 78], [Bengochea, Ferraro PRD 79]

[Linder PRD 82]
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 Equations of motion:

 f(T) Cosmology: Apply in FRW geometry:

(not unique choice)

 Friedmann equations:
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f(T) Cosmology: Background

 Effective Dark Energy sector:
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 Interesting cosmological behavior: Acceleration, Inflation etc
 At the background level indistinguishable from other dynamical DE models
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Non-minimally coupled scalar-torsion theory

 In curvature-based gravity, apart from one can use 
 Let’s do the same in torsion-based gravity:   

[Geng, Lee, Saridakis, Wu  PLB 704]
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Non-minimally coupled scalar-torsion theory

 In curvature-based gravity, apart from one can use 
 Let’s do the same in torsion-based gravity:   
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 Friedmann equations in FRW universe:

with effective Dark Energy sector:

 Different than non-minimal quintessence!
(no conformal transformation in the present case)
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Non-minimally coupled scalar-torsion theory

 Main advantage: Dark Energy may lie in the phantom regime or/and 
experience the phantom-divide crossing

 Teleparallel Dark Energy:

25

[Geng, Lee, Saridakis, Wu  PLB 704]
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Observational constraints on Teleparallel Dark Energy

 Use observational data (SNIa, BAO, CMB) to constrain the 
parameters of the theory

 Include matter and standard radiation:
 We fit                      for various ,w,Ω,Ω )(V

azaa rrMM /11,/,/ 4
0

3
0  
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 We fit                      for various ,0DEDE0M0 w,Ω,Ω )(V
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Observational constraints on Teleparallel Dark Energy

Exponential potential

27

Quartic potential

[Geng, Lee, Saridkis   JCAP 1201]
E.N.Saridakis – HEP2018, NTUA, March 2018



Non-minimally matter-torsion coupled theory

 In curvature-based gravity, one can use            coupling 
 Let’s do the same in torsion-based gravity:   

mLRf )(
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Non-minimally matter-torsion coupled theory

 In curvature-based gravity, one can use            coupling 
 Let’s do the same in torsion-based gravity:   
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 Friedmann equations in FRW universe:

with effective Dark Energy sector:

 Different than non-minimal matter-curvature coupled theory
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Non-minimally matter-torsion coupled theory

 Interesting phenomenology 
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,)( 2
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[Harko, Lobo, Otalora, Saridakis,  PRD 89]
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Non-minimally matter-torsion coupled theory

 In curvature-based gravity, one can use            coupling 
 Let’s do the same in torsion-based gravity:   
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Non-minimally matter-torsion coupled theory

 In curvature-based gravity, one can use            coupling 
 Let’s do the same in torsion-based gravity:   
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 Friedmann equations in FRW universe (              ):

with effective Dark Energy sector:

 Different from            gravity
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Non-minimally matter-torsion coupled theory

 Interesting phenomenology 

33[Harko, Lobo, Otalora, Saridakis, JCAP 1412]
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Teleparallel Equivalent of Gauss-Bonnet and f(T,T_G) gravity

 In curvature-based gravity, one can use higher-order invariants like 
the Gauss-Bonnet one

 Let’s do the same in torsion-based gravity:   
 Similar to                         we construct                          with 


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
 RRRRRG  42
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 Similar to                         we construct                          with  
 ,2 eTeTRe  divergtoteTGe G .
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 Similar to                         we construct                          with 

 gravity:

 Different from            and          gravities
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[Kofinas, Leon, Saridakis, CQG 31]
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Teleparallel Equivalent of Gauss-Bonnet and f(T,T_G) gravity

 Cosmological application:
 
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[Kofinas, Saridakis, PRD 90a]

[Kofinas, Saridakis, PRD 90b]

[Kofinas, Leon, Saridakis, CQG 31]
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Torsional Gravity with higher derivatives
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[Otalora, Saridakis, PRD 94]
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Torsional Modified Gravity

E.N.Saridakis – HEP2018, NTUA, March 2018



 Perturbations:                         , clustering growth rate:

 γ(z): Growth index.    

Growth-index constraints on f(T) gravity
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Growth-index constraints on f(T) gravity
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 Perturbations:                         , clustering growth rate:

 γ(z): Growth index.    

40[Nesseris, Basilakos, Saridakis, Perivolaropoulos, PRD 88]

 Viable f(T) models are practically indistinguishable from ΛCDM.
[Nunes, Pan, Saridakis, JCAP 1608]
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 Baryon-anti-baryon asymmetry through CP violating term:             

Baryogenesis and BBN constraints on f(T) gravity
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 BBN constraints:    
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[Oikonomou, Saridakis, PRD 94]

[Capozziello, Lambiase, Saridakis, EPJC77]
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The Effective Field Theory (EFT) approach

 The EFT approach allows to ignore the details of the underlying theory and write 
an action for the perturbations around a time-dependent background solution.

 One can systematically analyze the perturbations separately from the background 
evolution. [Arkani-Hamed, Cheng JHEP0405 (2004)]

42
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43

<- background

<- linear evolution of perturbations

<- linear evolution of perturbations

<- linear evolution of perturbations

<- 2nd-order evolution of perturbations

The functions Ψ(t), Λ(t), b(t), are determined by the background solution 

[Gubitosi, Piazza, Vernizzi, JCAP1302]
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The (EFT) approach to torsional gravity

 Application of the EFT approach to torsional gravity leads to include terms:

 i) Invariant under 4D diffeomorphisms: e.g. R,T multiplied by functions of time.

 ii) Invariant under spatial diffeomorphisms: e.g.

 ii) Invariant under spatial diffeomorphisms: e.g.                ,            ,         ,  
the extrinsic torsion is defined as

44

the extrinsic torsion is defined as

with       the orthogonal to t=cont. surfaces unitary vector       = 

[Cai, Li, Saridakis, Xue, 1801.05827,   Li, Cai, Cai, Saridakis, 1803.09818]
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the extrinsic torsion is defined as

with       the orthogonal to t=cont. surfaces unitary vector       = 

Using the projection operator      we can express 

[Cai, Li, Saridakis, Xue, 1801.05827,  Li, Cai, Cai, Saridakis, 1803.09818]
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The (EFT) approach to torsional gravity

 We perturb the previous tensors, and we finally obtain:

46

where the time-dependent functions are determined by the background solution.

[Cai, Li, Saridakis, Xue, 1801.05827,   Li, Cai, Cai, Saridakis, 1803.09818]
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The (EFT) approach to torsional gravity

 Finally, the EFT action of torsional gravity becomes:

47

 The perturbation part contains:

i) Terms present in curvature EFT action

ii) Pure torsion terms such as        ,

iii) Terms that mix curvature and torsion, such as                       ,  

[Cai, Li, Saridakis, Xue, 1801.05827,   Li, Cai, Cai, Saridakis, 1803.09818]
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The (EFT) approach to f(T) gravity: Background 

 For the case of f(T) gravity, at the background level, we have:

48

where by comparison:

[Li, Cai, [Li, Cai, Cai, Saridakis, 1803.09818]
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The (EFT) approach to f(T) gravity: Background 

 For the case of f(T) gravity, at the background level, we have:

49

where by comparison:

 Performing variation we obtain the background equations of motion (Friedmann Eqs):

[Li, Cai, Cai, Saridakis, 1803.09818]
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The (EFT) approach to f(T) gravity: Background

 These can be written as:

with

50

with

and thus:

 The same equations with standard approach!
[Li, Cai, Cai, Saridakis, 1803.09818]
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 For tensor perturbations:                                          i.e.

 We obtain: 

The (EFT) approach to f(T) gravity: Tensor Perturbations

 We obtain: 

 And finally:

51
[Cai, Li, Saridakis, Xue, 1801.05827]
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 Varying the action and going to Fourier space we get the equation for GWs:

The (EFT) approach to f(T) gravity: Gravitational Waves

with

 An immediate result: The speed of GWs is equal to the speed of light! 

 GW170817 constraints that 

are trivially satisfied.

52

[Cai, Li, Saridakis, Xue, 1801.05827]
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 We can express:

 In GR and TEGR        is zero. Thus, if a non-zero is measured in future 

The (EFT) approach to f(T) gravity: Gravitational Waves

In GR and TEGR        is zero. Thus, if a non-zero is measured in future 
observations, it could be the smoking gun of modified gravity. 

 Very important since f(T) gravity has the same polarization modes with GR.

 The effect of f(T) gravity on GWs comes through its effect on the background 
solutions itself, since at linear perturbation order f(T) gravity is effectively TEGR.

53

[Cai, Li, Saridakis, Xue, 1801.05827]
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 For scalar perturbations:

i.e

The (EFT) approach to f(T) gravity: Scalar Perturbations

 So

 Thus:

54[ Li, Cai, Cai, Saridakis, 1803.09818]
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 Finally:                                              with

The (EFT) approach to f(T) gravity: Tensor Perturbations

55[ Li, Cai, Cai, Saridakis, 1803.09818]
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Conclusions
 i) Many cosmological and theoretical arguments favor modified gravity.

 ii) Can we modify gravity based in its torsion formulation?

 iii) Simplest choice: f(T) gravity, i.e extension of TEGR

 iv) f(T) cosmology: Interesting phenomenology. Signatures in growth 

56

 iv) f(T) cosmology: Interesting phenomenology. Signatures in growth 
structure.

 v) Non-minimal coupled scalar-torsion theory: Quintessence, phantom or 
crossing behavior. Similarly in torsion-matter coupling and TEGB.

 vi) EFT approach allows for a systematic study of perturbations

 vii) Observational signatures in the dispersion relation of GWs

 viii) No further polarization modes.
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Outlook
 Many subjects are open. Amongst them:

 i) Examine higher-order perturbations to look for further polarizations.
[Farugia, Gakis, Jackson, Saridakis, in preparation]

57

 ii) Extend the analysis to other torsional modified gravity.

 iii) Try to break the various degeneracies and find a signature of this 
particular class of modified gravity

 vi) Convince people to work on the subject! 

[Farugia, Gakis, Jackson, Saridakis, in preparation]
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 “There are the ones that invent occult
fluids to understand the Laws of Nature.
They come to conclusions, but they now
run out into dreams and chimeras
neglecting the true constitutions of the
things...

58

things...
However there are those that from the
simplest observation of Nature, they
reproduce New Forces”…

From the Preface of PRINCIPIA (II edition) 1687 
by Isaac Newton, written by Mr. Roger Cotes.
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things...
However there are those that from the
simplest observation of Nature, they
reproduce New Forces”…

From the Preface of PRINCIPIA (II edition) 1687 
by Isaac Newton, written by Mr. Roger Cotes.

THANK YOU!
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Covariant formulation of f(T) gravity

 In standard f(T) gravity spin connection is set to zero.

 However vierbein transformations must be accompanied by connection ones:
BA

B
A ee  

C
B

A
C

D
B

C
D

A
C

A
B    [Krssak, Pereira EPJC 75]
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 Example: FRW geometry
or

 On the other hand, if one assumes/imposes then only “peculiar” forms 
of vierbeins will be allowed.

 Lorentz invariance has been restored in f(T) gravity
[Krssak, Saridakis CQG 33]
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