Brane SUSY Breaking, Pre-Inflation and Non-Linear SUSY

Augusto Sagnotti Scuola Normale Superiore and INFN – Pisa

HEP 2018 Annual meeting of the Hellenic Society for the Study of High Energy Physics Athens, March 28 – April 1, 2018

BSB: D+O Tensions \rightarrow "critical" exponential potential $V = V_0 e^{2\varphi}$ *

(Aldazabal, Uranga, 1999)

Brane SUSY Breaking (BSB)

(Sugimoto, 1999) (Antoniadis, Dudas, AS, 1999) (Angelantonj, 1999) (Aldazabal, Uranga, 1999)

[SAME exponential (from D - anti D): KKLT uplift (2003)] (Kachru, Kallosh, Linde, Trivedi, 2003)

NON-LINEAR SUSY:

COSMOLOGY: hints of a pre-inflationary phase
 STATIC Solutions: puzzles related to (in)stability

Cosmological Potentials

• What potentials lead to slow-roll, and where ?

$$ds^{2} = -dt^{2} + e^{2A(t)} d\mathbf{x} \cdot d\mathbf{x}$$

$$\ddot{\phi} + 3\dot{\phi}\sqrt{\frac{1}{3}} \dot{\phi}^{2} + \frac{2}{3}V(\phi) + V' = 0$$
Driving force from V' vs friction from V

• If V does not vanish : convenient gauge "makes the damping term neater"

• Now driving from logV vs O(1) damping

$$V = \varphi^n \longrightarrow \frac{V'}{2V} = \frac{n}{2\varphi}$$

Quadratic potential? Far away from origin
 (Linde, 1983)

Exponential potential? YES or NO

$$V(\varphi) \ = \ V_0 \ e^{2\gamma\varphi} \ \longrightarrow \ \frac{V'}{2 \, V} = \gamma$$

$V = e^{2\gamma\varphi}$ & Climbing Scalars

γ < 1 ? Both signs of speed
a. "Climbing" solution (φ climbs, then descends):

 $\dot{\varphi} = \frac{1}{2} \left[\sqrt{\frac{1-\gamma}{1+\gamma}} \operatorname{coth}\left(\frac{\tau}{2} \sqrt{1-\gamma^2}\right) - \sqrt{\frac{1+\gamma}{1-\gamma}} \operatorname{tanh}\left(\frac{\tau}{2} \sqrt{1-\gamma^2}\right) \right]$

b. "Descending" solution (ϕ only descends):

$$\dot{\varphi} = \frac{1}{2} \left[\sqrt{\frac{1-\gamma}{1+\gamma}} \tanh\left(\frac{\tau}{2} \sqrt{1-\gamma^2}\right) - \sqrt{\frac{1+\gamma}{1-\gamma}} \coth\left(\frac{\tau}{2} \sqrt{1-\gamma^2}\right) \right]$$

Limiting τ -speed (LM attractor):

(Lucchin and Matarrese, 1985)

$$v_{lim}\,=\,-\,rac{\gamma}{\sqrt{1-\gamma^2}}$$

(Halliwell, 1987;..., Dudas and Mourad, 1999; Russo, 2004; Dudas, Kitazawa, AS, 2010)

 $\gamma = 1$ is "critical": LM attractor & descending solution disappear there and beyond !

CLIMBING: in ALL asymptotically exponential potentials with $\gamma \ge 1$!

BSB in STRING THEORY HAS PRECISELY $\gamma = 1 \rightarrow WEAK$ coupling ($g_s = e^{\varphi}$)

•
$$\gamma = 1$$
:
 $\varphi(\tau) = \varphi_0 + \frac{1}{2} \left[\log |\tau - \tau_0| - \frac{1}{2} (\tau - \tau_0)^2 \right]$
 $\mathcal{A}(\tau) = \mathcal{A}_0 + \frac{1}{2} \left[\log |\tau - \tau_0| + \frac{1}{2} (\tau - \tau_0)^2 \right]$

Critical Exponentials and BSB

SB in STRING THEORY PREDICTS the exponent in $V = V_0 e^{2\,\varphi}$

(Dudas, Kitazawa, AS, 2010) (AS, 2013) (Fré, AS, Sorin, 2013)

• D=10: Polyakov expansion and dilaton tadpole

$$\mathcal{S} = \frac{1}{2k_N^2} \int d^{10} x \sqrt{-\det g} \left[R + \frac{1}{2} g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi - T e^{\frac{3}{2}\phi} + \ldots \right] \longrightarrow \gamma = 1 \text{ (for } \varphi)$$

- D < 10: two combinations of ϕ and "breathing mode" $\sigma \rightarrow (\Phi_s, \Phi_t)$
- $\Phi_t \rightarrow$ "critical" potential ($\gamma = 1$) & CLIMBING, IF Φ_s is stabilized

$$S_d = \frac{1}{2\kappa_d^2} \int d^d x \sqrt{-g} \left[R + \frac{1}{2} (\partial \Phi_s)^2 + \frac{1}{2} (\partial \Phi_t)^2 - T_9 e^{\sqrt{\frac{2(d-1)}{d-2}} \Phi_t} + \dots \right]$$

• If Φ_s is stabilized: a SOLITON (p-brane) that couples via $(g_s)^{-\alpha}$ yields: [D9-brane of 10D BSB: p=9, α =1] \forall Broken SUSY in STRING THEORY: $\gamma \ge 1$!

$$\gamma = \frac{1}{12} (p + 9 - 6\alpha)$$
 [NOTE: all multiples of $\frac{1}{12} \simeq 0.08$ ($\rightarrow n_s \cong 0.96$

$$S = \frac{1}{2k_{10}^2} \int d^{10}x \sqrt{-G} \left\{ e^{-2\phi} \left[-R + 4(\partial\phi)^2 \right] - \frac{1}{12} \mathcal{H}_3^2 - \frac{1}{4} e^{-\phi} \operatorname{tr} \mathcal{F}^2 \underbrace{-T e^{-\phi} + \dots} \right\}$$

$$(Lucchin, Matanese, 1985)$$

$$(L$$

2. Scalar \rightarrow emerges from initial singularity "climbing up" ANY potential V(ϕ) that ADDS to BSB SOFTER TERMS t = 0.0001Now: bounded string loop corrections [NOT SO curvature corrections, however]

$$V(\varphi) = V_0 \left(e^{2\varphi} + e^{2\gamma\varphi} + \widetilde{V}(\varphi) \right)$$

3. Slow-roll after bounce and deceleration: Last stages of deceleration imprinted in CMB? \rightarrow Low-l lack of power [& Low-l enhancement of tensor-to-scalar ratio r].

Fast roll, scalar Bounces and the low – & CMB (The Mukhanov-Sasaki equation)

Fast roll, scalar Bounces and the low – & CMB (The Mukhanov-Sasaki equation)

LOW CMB QUADRUPOLE FROM THIS PHENOMENON? Additional signature -> pre-inflationary peak !

Pre-Inflation with a Bounce

(Dudas, Kitazawa, AS, 2010) (Dudas, Kitazawa, Patil, AS, 2012)

Low-I lack of power in CMB from a decelerating inflaton ?

Pre-Inflationary Relics In the CMB?

Analytic Power Spectra

- IF W_s crosses the real axis \rightarrow POWER CUTOFF
- One can also produce a "caricature" PRE-INFLATIONARY PEAK
- Tensor-to-scalar ratio r: typically grows by about one order of magnitude in region of power cut
- ALSO: "caricature" pre-inflationary peak from "tilted" generalization of W_s

$$W_{S} = \frac{\nu^{2} - \frac{1}{4}}{\eta^{2}} \left[c \left(1 + \frac{\eta}{\eta_{0}} \right) + (1 - c) \left(1 + \frac{\eta}{\eta_{0}} \right)^{2} \right]$$

$$\frac{(k \eta_{0})^{3} \exp \left(\frac{\pi (\frac{c}{2} - 1)(\nu^{2} - \frac{1}{4})}{\sqrt{(k \eta_{0})^{2} + (c - 1)(\nu^{2} - \frac{1}{4})}} \right)}{\left| \Gamma \left(\nu + \frac{1}{2} + \frac{i \left(\frac{c}{2} - 1 \right)(\nu^{2} - \frac{1}{4})}{\sqrt{(k \eta_{0})^{2} + (c - 1)(\nu^{2} - \frac{1}{4})}} \right) \right|^{2} \left[(k \eta_{0})^{2} + (c - 1) \left(\nu^{2} - \frac{1}{4} \right) \right]^{\nu}}$$
A. Sagnotti - HEP 2018 - Athens

(Dudas, Kitazawa, Patil, AS, 2012)

Pre-Inflationary Relics in the CMB?

Extend Λ CDM to allow for low- ℓ suppression:

$$\mathcal{P}(k) = A (k/k_0)^{n_s - 1} \to \frac{A (k/k_0)^3}{\left[(k/k_0)^2 + (\Delta/k_0)^2 \right]^{\nu}}$$

(Gruppuso, Mandolesi, Natoli, Kitazawa, AS, 2015)

↔ A new scale Δ . Preferred value? Depends on GALACTIC MASK

 $\Delta = (0.351 \pm 0.114) \times 10^{-3} \,\mathrm{Mpc}^{-1}$ **RED** : +30-degree extended mask > 99% confidence level

What is the corresponding energy scale at onset of inflation?

$$\Delta^{Infl} ~\sim~ 2.4 \times 10^{12} ~e^{N-60} ~{\rm GeV} ~\sim~ 10^{12} - 10^{14} {\rm GeV} ~{\rm for} ~{\rm N} ~\sim~ 60 - 65$$

Pre-Inflationary Relics in the CMB?

(Gruppuso, Lattanzi, Mandolesi, Natoli, Kitazawa, AS, 2015)

Even-Odd Asymmetry in the CMB?

(Gruppuso, Lattanzi, Mandolesi, Natoli, Kitazawa, AS, 2017)

♦ [EVEN vs ODD: signature of oscillations near the transition?]

(Even vs Odd) Detections of Δ

A. Sagnotti - HEP 2018 - Athens

* Δ does not affect standard Λ CMB parameters

WHAT NEXT?

POLARIZATION

* cosmic-variance limited E-mode could lead to a $5-6 \sigma$ detection of Δ (or could rule it out)

(Gruppuso, Lattanzi, Mandolesi, Natoli, Kitazawa, AS, 2017)

Future Prospects, II

(Gruppuso, Lattanzi, Mandolesi, Natoli, Kitazawa, AS, in progress)

OTHER IMPRINTS OF Δ ? LARGEST – SCALE STRUCTURES

A. Sagnotti – HEP 2018 – Athens

