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The Standard Model

The Standard Model of particle interactions is a very
successful theory.

However, it leaves a number of unanswered questions (Mass
origin, flavor puzzle, charge quantization, a number of
parameters, dark matter, hierarchy problem, gravity...)

Supersymmetry has been introduced to provide a solution to
the gauge hierarchy problem and guarantee stability towards
quantum corrections without fine-tuning. The introduction of
SUSY at a few TeV leads also to coupling unification.

If SUSY were an exact symmetry of the nature every particle
and its superpartener would have degenerate masses.
However, this is not verified experimentally so SUSY must be
broken.



Non-supersymmetric strings

Space-time supersymmetry is not required for consistency in
string theory.

From the early days of the first string revolution it was known
that heterotic strings comprise the SUSY Eg x Eg and SO(32)
models as well as the non-supersymmetric tachyon free
SO(16) x SO(16) theory.

However, non-supersymmetric model building has not
received much attention until recently.
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SUSY breaking in String Theory

Any scenario of supersymmetry breaking in the context of
string theory has to address some important issues, as

- Resolve My /Mp hierarchy

- Compatibility with gauge coupling evolution (unification)
and weak string coupling constant

- Account for the smallness of the cosmological constant

- Resolve possible instabilities (tachyons)

- Moduli field stabilisation



Coordinate dependent compactifications

A stringy Scherk-Schwartz mechanism involves an extra

dimension X°> and a conserved charge Q.
Upon compactification
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fermions-bosons (lying in the same supermultiplet) and thus
to spontaneous breaking of supersymmetry.

SUSY breaking related to the compactification radius M ~ % .



Coordinate dependent compactifications
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Gravitino mass

We compactify the six internal dimensions in three separate
two-tori parametrised by the 700, U() j = 1,2,3 moduli. For
simplicity, we will consider realising the Scherk-Schwartz
mechanism utilising the T, UM torus.

At tree level the gravitino receives a

mass
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for a square torus: T = 1Ry Ry, U = 1Ry /Ry

AlL T, U0 moduli remain massless.

At Ry — oo we have m3,, = 0 and the supersymmetry is
restored.



One loop potential

The effective potential at one loop as a function moduli
ty = 70, U0 is obtained by integrating the string partition
function Z(m, ; t;) over the worldsheet torus ¥,
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One loop moduli potentials

V(Ty)

~0.0005

~0.0010F

Typical one-loop potential versus the modulus T».

Undesirable features: SUSY breaking at the string scale, huge
cosmological constant, region of tachyon instabilities



One loop potential: Analytic results
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One loop potential: Asymptotic limit

The asymptotic behaviour of the potential is dominated by the
contribution of the orbit
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where Ks(z) is the modified Bessel function of the second kind.

Nng — Nfg U3 =
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Super no scale models ng = ng. Cosmological constant is
exponentially small.
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A class of models

Consider a big class of semi-realistic Z, x Z; heterotic string
vacua for explicit realisations of the Scherk-Schwarz scenario.
Study chirality, moduli potential and thresholds.

To this end we utilise both the free fermionic formulation and
orbifold formulation. In the former we have full control of the
spectrum in the latter we have explicit moduli dependence.

in the free fermionic formulation we can utilise the model
classification techniques developed in

A. Gregori, C. Kounnas and J. R. (1999)
A. E. Faraggi, C. Kounnas, S. E. M. Nooij and J. R. (2004)
A. E. Faraggi, C. Kounnas and J. R. (2007)
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The class of models

We consider the class of four dimensional N = 1 heterotic
models spontaneously broken to N = 0 via the
Scherk-Schwarz mechanism.

The Egx Eg gauge symmetry is reduced to
S0(10)xSO(8)% x U(1)?
We select models using the following criteria

- absence of tachyons
- SO(10) chirality
- compatibility with Scherk-Schwarz of N = 1 SUSY
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Class of models: Basis vectors

The free fermions in the light-cone gauge are:
left: w,uj X1,...,6’ yT,...,67w1,...,6

right: )—/1,...,6 ol 771,2,3 1;1,...,5 &1,...,8
The class of vacua under consideration is defined by

51 =7= {w,u’ XW ..... 67y1 ..... 6’w1,...76|)—/1 ..... 6’{:}1 ..... 6’771 237&1,...,5’&1,...,8}
By =S= {W@X1 ..... 6}
63 _ -,—1 _ {y127w12|yT2’a}12}
64 _ TZ _ {y347w34h—/34’@34}
55 — T3 . {y56 w56|)—/56 5156}
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and a variable set of 2°0-1/2 11 =23¢ 11 ~ 10" phases c[gj]. "



Chirality

Fermion generations, transforming as SO(10) spinorials, arise
from B, =S+ bl,, I =1,2,3where bl, =b'+pT, +qTs,
bgq =b>+pTi+qTy bjg =x+Db'+ b’ + pTi +qTo, with

p,g€{0,1},and X =1+S+ 30, T+ b 2k
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Orbifold Partition function

The one—loop partition function at the generic point reads
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where 70 = T 70 y® =y 4 iUl are the moduli of the
three two tori, n(7) is the Dedekind eta function and J[§]()
stand for the Jacobi theta functions.

Connection with fermionic formulation
Fermionic point T=sand U= (1+1)/2
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Twisted/shifted lattices
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Typical partition functions

Some typical expansions of partition functions (fermionic point)
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Classification

We expand the partition function in powers of g, = e=2™

Z= > Whq!

nez/2
n>-1/2

The constant term at the fermionic point Wy or the generic
point WS is proportional to ng — ne.

Wo<0 Wo=0 Wy>0
WS <0| 3560 0 1856
WS =0 96 0 8848
W§ >0 0 0 62192

Total | 3656 0 7289

Table 1: Number of chiral models for the subclasses of models with
WS positive/negative/zero and Wy positive/negative.
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Numerical calculation

n Model A Model B

—1 244 244
-3 —9.87 —19.7

0 172. 2.1

] —-29.6 —17.7

1 3.13 —2.73

3 9.71 8.18
Total +170. —5.47

Contributions to the rescaled one-loop potential 2(27r)‘*V1_100p
arranged according to energy level for models A and B. At each level
n, the cumulative contribution of level-matched as well as non
level-matched states is displayed.
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Chirality

A preliminary scan shows that a number of approximately
7 x 10* models in the class under consideration satisfy all
criteria.

300
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One loop potentials: Numerical results
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The asymptotic form of the one-loop potential versus the modulus T, (dashed line)

matched against the direct numerical evaluation of the integral (in dots).
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One loop potentials: Super no scale models
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One loop potentials: Super no scale models
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One loop potentials: Super no scale models
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Gauge coupling Running - Thresholds

The gauge coupling running is calculable in the context of
string theory. It turns out that they depend on the
compactification moduli. At the one loop level

1672 1672 M2
=R + bglog — + A
g(w)  “g2 T2

where Ms = gsMp , Mp = 1/4/32Gy.
bg <+ Massless modes A, <+ Massive modes
L. ). Dixon, V. Kaplunovsky and ). Louis (1991)

C. Angelantonj, I. Florakis and M. Tsulaia (2014)
Florakis (2015)
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Decompactification problem

2y — 2y = Y {—aly log [Ty In(T) (U]

i
—B1p log [T3U3 194(T) d5(U)*]

~7op L0g|[1a(T'/2) = To(U)|“lja(U') — 241° ] }

s Baps Y Model dependent coefficients The dominant
growth at T, > 1

Al = af (grg—logrg) Yo
Solutions ? : @}, = 0, ...

Antoniadis (1990)
E. Kiritsis , C. Kounnas, P.M. Petropoulos, J. R. (1996) 27



Computation of the thresholds

The dominant moduli dependent contribution is

k
A/a = _LT;Y‘F@J

where the universal part Y is defined as

E,E4Es — E
/rzzru (“g‘*woos),

A= / CT (T, U) = ~ log [ToUs (M n()l*] -
At the limit T, > 1
Y=48aT,+O(T;") , A= grz —logT, + O(e™>")

and finally
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Computation of the thresholds

A comprehensive scan over a class of 7 x 10 models with
S0(10) x SO(8)% x U(1)* gauge symmetry yields for the
non-abelian gauge couplings

Decompactification condition By = 3kq

by bg bg | #of models %
3 3 3 29456 | 385
9 <=5 =3 15840 | 20.7
-3 9 9 14000 | 18.3

22.5

In a big class of vacua there is no decompactification problem
for the gauge couplings.
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Gauge coupling running

For models satisfying the decompactification condition
Bq = 3Ry the coupling running is

1672 1672 M2 2017 M2
= Rg—s— + Bq log = + B log< KK>+
9i(p)  “ gz Tt T2 3mv/3 M2

Here, v is the Euler-Mascheroni constant, Mgx = 1/4/T is the
Kaluza-Klein scale. 3, = bg) + ng) + bg3) and g3, = bg) + b((f)
with b = 3,
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A Standard Model scenario
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A Standard Model scenario

For (By. 2, Bs) = (=7 ’_% %) (Ry, Ry, R3) = (371,1) and
(5Y7/327ﬁ3) = (—757—%37_2373)'
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Conclusions

We have analysed a class of non supersymmetric heterotic
vacua where SUSY is spontaneously broken via the
Scherk-Schwartz mechanism. In this context we have
constructed semi-realistic models with the following
interesting characteristics

- Fermion chirality

- Dynamical determination of supersymmetry breaking
scale Msysy < Mpjanck

- Exponentially small cosmological constant

- Finite gauge coupling running (no decompactification
problem)

- These developments pay the way for non-supersymmetric
string phenomenology (consider more realistic models
e.g. Pati-Salam) -



