A Discovery Potential Analysis for KM3NeT/ARCA Detector

HEP 2018 Athens, 28 March – 1 April 2018

Kostas Pikounis

Introduction 1/3

KM3NeT/ARCA Telescope:

- 2 Building blocks each: 115 string, 18 DOMs in each string.
- Depth ~3500 m
- 100 km off-shore of Portopalo di Capo Passero, Sicily.
- Astrophysics with HE neutrinos.
- Currently under Construction!

Introduction 1/3

KM3NeT/ARCA Telescope:

- 2 Building blocks each: 115 string, 18 DOMs in each string.
- Depth ~3500 m
- 100 km off-shore of Portopalo di Capo Passero, Sicily.
- Astrophysics with HE neutrinos.
- Currently under Construction! Already having data!

Graphic representation of an atmospheric muon bundle event "seen" by ARCA!

Colors show the times of hits detected.

Line is the reconstructed track.

Introduction 2/3

Signal:

- HE Cosmic neutrinos.
- Background:
 - Atmospheric neutrinos ("irreducible" background).
 - Atmospheric muons → Challenging!
- High Energy Starting Events' Analysis:
 - No background from atmospheric muons.
 - Estimation of neutrino Energy.
 - Reduced background from atmospheric neutrinos by identifying accompanying muons.

Introduction 2/3

Signal:

- HE Cosmic neutrinos.
- Background:
 - Atmospheric neutrinos ("irreducible" background).
 - Atmospheric muons → Challenging!
- High Energy Starting Events' Analysis:
 - No background from atmospheric muons.
 - Estimation of neutrino Energy.
 - Reduced background from atmospheric neutrinos by identifying accompanying muons.

Силема

Introduction 3/3

A HESE analysis focuses on:

- Staring Track Events ($v_{\mu} \rightarrow \mu$ via CC interaction inside the detector).
- Shower Events (all flavours via NC interaction, $v_e \rightarrow e$ via CC interaction inside the detector).
 - A tool to select starting tracks from all track events.
- We need: A tool to discriminate between track / shower events.

Силема

We need:

Introduction 3/3

A HESE analysis focuses on:

- Staring Track Events ($v_{\mu} \rightarrow \mu$ via CC interaction inside the detector).
- Shower Events (all flavours via NC interaction, $v_e \rightarrow e$ via CC interaction inside the detector).
 - A tool to select starting tracks from all track events.
 - A tool to discriminate between track / shower events.

MAMBA, a tool to reject the Multiple Atmospheric Muon BAckground

Technique:

- Select well reconstructed events (Standard <u>track</u> reconstruction for ARCA).
- Select events having the reconstructed vertex inside a fiducial volume.
 - Developed a new technique to find the neutrino vertex.
 - Rejecting > 85% background and only ~17% signal.

Reconstructed vertices

- ←Atmospheric muons
- Truly contained events \rightarrow

• Use a BTD with 10 event based variables to identify Starting Tracks.

HEP2018, Athens, 31 / 03 / 2018

K. Pikounis

KM3NeT

MAMBA BDT and BDT output

Atmospheric muons with medium energies.

Atmospheric muons with high energies.

 v_{μ} interacting outside det All v_{μ} and v_{e} shower events HEST events

No overtraining observed

BDT output value for all events not used for training.

- MRF technique is used to find the sensitivity.
- MDP technique is used to find the discovery potential.

MAMBA

Sensitivity and discovery potential

- ARCA (2 blocks) sensitive (90% CL) to astrophysical flux in 1.3 years.
 - Astrophysical flux: Ο $\Phi_{astro} = 2.3 \cdot 10^{-18} \cdot (E_v / 100 \text{TeV})^{-2.5}$ in GeV s^{-1} cm⁻² sr⁻¹.
- Signal events:
 - 91% correctly identified as HEST, Ο
 - only 9% contamination from shower Ο events!
- **Background events:**
 - Atmospheric muons left in the final Ο sample ~ 2%

Discovery:

1.3

1.2

1.1

0.9

Observation Time [years]

Using MAMBA to reduce the "irreducible" background

Signal:

• HE Cosmic neutrinos.

Background:

- Atmospheric muons.
- Atmospheric neutrinos .

Can we reduce the atmospheric neutrino background?

- CORSIKA, a program that simulates atmospheric showers.
- "CORSIKA" sample for atmospheric neutrinos from above was analysed:
 - Practically all neutrinos accompanied by muons were rejected!
 - Background events reduced by **33%**.
 - 3σ discovery in 2.25 years, 5σ discovery in 6 years! (25% decrease in time).

Силема

Introduction 3/3

A HESE analysis focuses on:

- Staring Track Events ($v_{\mu} \rightarrow \mu$ via CC interaction inside the detector).
- Shower Events (all flavours via NC interaction, $v_e \rightarrow e$ via CC interaction inside the detector).
 - A tool to select starting tracks from all track events.

We need:

<u>A tool to discriminate between track / shower events.</u>

Shower / Track Differentiator

Technique:

- Well reconstructed events (standard <u>shower</u> reconstruction for ARCA).
- Events having the reconstructed vertex inside the volume of the detector.
- Developed a series of cuts based on event topologies (preliminary cuts).

• Use a BTD for the final differentiation.

Shower / Track Differentiator BDT and BDT output

Atmospheric muons with medium energies.

Atmospheric muons with high energies.

All v_e CC events

All NC neutrino events

All v_{μ} CC events

No overtraining observed

BDT output value for all events not used for training.

A High Energy Starting Events Analysis

- Using the shower / track differentiator categorise each event as "Shower" or as "Track".
- Feed all "Track" events to MAMBA in order to find the Starting Track Events.

to find the discovery potential.

HESE Discovery Potential

Selected events

• For a 5σ Discovery (in 0.8 years of observation):

Signal events			Background events				
Found as:	"Showers"	"Tracks"	Found as:	"Showers"	"Tracks"		
Number:	38.54	1.77	Number:	23.76	1.07		
Correctly identified	94%	92%	Correctly identified	66%	93%		
			12% atmospheric muons 22% atmospheric v_{μ} CC events: most with very energetic hadronic cascade				

CULKY'

- An analysis using HESE was developed for the first time for ARCA.
 - MAMBA (Algorithm to reject atmospheric muons and select HEST).
 - Very efficient for rejecting incoming / atmospheric muons.
 - Very efficient for rejecting atmospheric neutrinos accompanied by muons.
 - \circ $\;$ Algorithm for track / shower differentiation.
 - Very efficient > 92%.

 We can confirm the IceCube astrophysical flux with a <u>significance of 5σ in</u> less than a year with KM3NeT/ARCA!

KM3NeT

Thank you!

Questions?

HEP2018, Athens, 31 / 03 / 2018

K. Pikounis

19

Back up

MAMBA Reconstructed vertices

MAMBA Efficiency after each step

Efficiency of truly contained track (ν_{μ} and anti ν_{μ}) events

Efficiency of mupage $E_{bundle} \ge 50$ TeV events

Equivalent plot for track events interacting out of the detector in backup 22

HESE efficiency of shower sample after each step

Using the cuts for 5 σ discovery, efficiency for shower events (all NC + $v_{\rm e}$ CC) :

HESE selected

events

	shower sample			track sample		
Type of event	Signal	Background		Signal	Background	
ν_{μ} CC	0.72	3.58		0.80	0.61	
ν_{μ} NC	1.23	5.35		0.00	0.00	
$\overline{\nu_{\mu}}$ CC	0.55	1.68		0.73	0.38	
$\overline{\nu_{\mu}}$ NC	0.95	2.07	0.00		0.00	
all ν_{μ}	3.45	12.68		1.96	0.99	
$\nu_e CC$	10.41	4.32		0.01	0.00	
$\nu_e \text{ NC}$	1.22	0.38		0.00	0.00	
$\overline{\nu_e}$ CC	9.22	3.27		0.08	0.00	
$\overline{\nu_e}$ NC	0.97	0.26		0.00	0.00	
all ν_e	21.82	8.23		0.09	0.00	
$\nu_{\tau} \operatorname{CC} \rightarrow \mu$	0.23	-		0.06	-	
$\nu_{\tau} \text{ CC} \rightarrow \text{shower}$	5.96	-		0.02	-	
ν_{τ} NC	1.28	-		0.00	-	
$\overline{\nu_{\tau}} \operatorname{CC} \rightarrow \mu$	0.14	-	0.05		-	
$\overline{\nu_{\tau}} CC \rightarrow shower$	4.69	-		0.02	-	
$\overline{\nu_{\tau}}$ NC	0.97	-		0.00	-	
all ν_{τ}	13.27	-		0.15	-	
$\mu_{atm} E_{bundle} \ge 10 \text{ TeV}$	-	0		-	0	
$\mu_{atm} E_{bundle} \ge 50 \text{ TeV}$	-	2.84		-	0.08	
total	38.54	23.76		1.77	1.07	

Table 6: Number of expected signal and background events for all types of events, for the cuts used for the minimum MDP for 5σ with a probability of 90%, for 0.8 years for both shower and HEST categories.

Track Sample

- MDP technique gives different cuts on the reconstructed energy and on the BDT value for each sample.
- For the track sample:
 - Higher cut on the reconstructed energy.
 - Cut at reconstructed track $E \ge 10^{5.2} 10^{5.3} \text{ GeV}$.
- Softer cuts on the reconstructed energy like E ≥ 10^{5.0} GeV, also allow just a minimal contribution of atmospheric muon events in the final sample.
 - Increase in signal (astro v) ~ 90%.
 - Increase in background (atm v)~ 280%.
- Shower sample is "large", and the contribution of atmospheric v_{μ} is greater that v_{e} . So cuts in high values of the track reconstructed energy are favored.

