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lannis liked gravitational instantons and dualities

Our papers

» Geometric flows in Horava—Lifshitz gravity, |. Bakas,
F. Bourliot, D. List and P.M. Petropoulos, JHEP 1004 (2010)
131

» Mixmaster universe in Horava—Lifshitz gravity, |. Bakas,
F. Bourliot, D. Liist and P.M. Petropoulos, Class. Quantum
Grav. 27 (2010) 045013

» Ricci flows and expansion in axion-dilaton cosmology, |. Bakas,
D. Orlando and P.M. Petropoulos, JHEP 0701 (2007) 040

An inspiring paper
|. Bakas, E.G. Floratos and A. Kehagias, Octonionic gravitational
instantons, Phys. Lett. 445B (1998) 69



AdS/CFT

Holographic correspondence: microscopic duality with gsying <> 1/ gvm

type 1IB string theory on AdS; x S°

!

N = 4 Yang—Mills on D = 4 conformal boundary of AdSg

Anti-de Sitter space: homogeneous spacetime with A # 0
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Figure: AdS4 Penrose—Carter diagram



Thoughts on flat or de Sitter extensions

Minkowski spacetime:

j+

* past and future
/ null infinities
Ve

1

Figure: Minkowski Penrose—Carter diagram

Asymptotically flat holographic correspondence:

» microscopically: perhaps in 2 + 1 dimensions or higher spins?

» macroscopically: better prospects



Macroscopic approach: fluid/qravity correspondence

Branch of AdS/CFT: Einstein’s and relativistic Euler’s equations

[Bhattacharyya, Haack, Hubeny, Loganayagam, Minwalla, Rangamani, Yarom, ... 07]

Einstein locally AdS spacetime & with A # 0

!

relativistic fluid on . = 0& = conformal boundary

Historically: non-relativistic incompressible-fluid equations
emerge from perturbations of the black-hole horizon (pumou 7o)



Scrutinizing the flat-spacetime holography:
1. Which surface . would replace the AdS conf. bry. .% and what
is its geometry?
2. Which are the degrees of freedom hosted by ., what is their
dynamics, how are the observables packaged?

Wlde diSPET’SiOYl - mixing Sometimes AdS [Strominger et al "10; Caldarelli, Taylor, Skenderis
et al '13; Klemm et al "14]
» Minkowski, surface at finite r.. ., relativistic, Rindler ...

» incompressible classical fluids, relativistic fluids, Brown—York
tensor, conserved energy—momentum tensor. ..



Our aim: unravel a clear pattern (3 4 1 dim)

Method: setting k — 0 inside the expansion that reconstructs the
bulk from the boundary (A = —3k?)

Ricci-flat spacetime <> conformal Carrollian fluid on . x R at .+
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Relativistic fluid/AdS gravity



The bulk reconstruction

Given the “initial data”
» boundary metric ds? (neither flat nor conformally flat)

» conserved energy—momentum tensor T (generally viscous)

Two options exist to get perturbatively the asymptotically AdS
bulk:

1. Fefferman—Graham expansion: mathematically robust

2. Derivative expansion: designed for fluid/gravity correspondence
requires an extra piece of bry. data — time-like hydrodynamic
congruence u




Fefferman—Graham: expansion of the 3 + 1-dim Einstein metric for
large r in a specific gauge (no lapse/shift): iregerman, Granan ‘s3]

» metric: leading term

» energy—momentum: subleading term

161G

r2
2
+rd5bry+ S+ ( )

Caveats

> not resummable
> does not discriminate locally vs. globally AdS bulks
» the limit kK — 0 is singular (A = —3k?)



The derivative expansion — fluid/qravity ismacharyya et a07)

» Guideline: Weyl covariance — the bulk metric must be

invariant under boundary conformal transformations

> Tool: Weyl connection A = % (a— Su) and Weyl covariant

derivative 2 = V + wA (a is the acceleration and ® = V - u)

» Output: dsgulk = complicated expression based on the
boundary data & their derivatives — order by order

Advantﬂges [Leigh et al "10; Caldarelli et al "12; Mukhopadhyay et al "13; Gath et al "15]

» potentially resummable
» controls locally vs. globally AdS bulks
> the limit kK — 0 is regular: flat holography



Relativistic fluids

Obey V,, TH = 0 with

) v uta¥ u gt
™ = (e +p) 2 T pg"’ + " + k;’ + kZ
> [Jul]? = —k% u® =k, ' =

> ¢, p: energy density and pressure

» TH gt viscous stress tensor and heat current — transverse
u'q, =0 u't, =0
q' and ¥

» carry all information on heat exchange and friction processes
» are usually expressed in terms of a u-derivative expansion



The resummation in 4 dimenSionS [Caldarelli et al "12; Mukhopadhyay et al '13; Gath et al "15]

Assuming u shear-free a resummation is performed:

2
dsres. Einstein

25 (dr +rA) + r?ds® + k4 + k4 5 (8Ger + cvy)

boundary metric ds? = —k2 (Qdt — bidx')® + ajdxidx/

| 4

» u=—k%(Qdt — bidx') < u= 50, with [[u]|? = —k?
» ¢ = 2p: conformal-fluid energy density

> p2:r2+ﬁwaﬁw"‘ﬁ=r2+’y2

>

>

v

c: Cotton (3rd-order derivative of the metric) VACy, =0

C 3c Uy Uy Ly ¢y Ly Cyy

ck S
K T28w— 1t t %




Resummability conditions (on top of the absence of shear)
> transverse duality (with 77, = —”7'];7(,,“, )

1
_ _ P
u = 87TG77VPCV T = _87_[Gk277 1 Cov
boundary “electric-magnetic gravitational duality” [Bakes 0]

> energy-momentum conservation V* Tay = 0 for the boundary
data ¢, ajj, () and b;

Output: algebraically special Einstein spacetimes — Goldberg—Sachs
generalizations — asymptotically locally AdS

> Kerr—Taub—NUT (perfect fluids)
» Robinson—Trautman

» Plebanski—-Demianski

> ..
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Galilean vs. Carrollian contractions of Poincaré group

[Lévy—Leblond '65]

Both non-relativistic limits with decoupling of time

At =y (At — A—X>

Lorentz boosts: ) e
Ax" =y (Ax’ - ,B’cAt)
with B’ = v'/cand v = 1/\/1-p
At = At
» Galilean limit ¢ — oc: . . .
Ax" = Ax' — V' At
i — 0
» Carrollian limit ¢ — 0: everything is at rest = {ﬁ
¥—1
At = At — b,'AXi

but lim Bi/c = b; = . .
0 {AX” = Ax'



The Ricci-flat limit A = —3k*> — 0

In the boundary data: k = speed of light

ds?> = —k? (Qdt — b,-dx")2 +ajdxdxd |u? = —K?

m Carrollian limit: .# — . X R reached at #+
4>

The boundary conformal fluid e conformal Carrollian fluid
—
» data: ¢ = 2p, q; = Q; + k?mt; + O (k*),
Tjj = %Z,‘j + E,‘j +0 (kz)
» dynamics: conformal Carrollian lim, oV, T#" =0
0= £V, Ty = 47 +£40 (k)
0=V, TV =LH +G +0(k?)



Carrollian hydrodynamics

Scalar equations

> &= -5 (e+p)0-V,Q —20,Q +EVg; + 380 =0
» F=xig +150=0

Vector equations
> Gj=0;p+ (e + p)gj+ 597 + 10 + 2Q ;
—V,-E'j - quEI' =0
> HI = 50:Q+ Q0 — VT — g% =0
Remark

@i, 0, ¢jj, @j;: kinematic observables (relativistic origin:
acceleration, expansion, shear, vorticity)



The Ricci-flat derivative expansion

The limit of the Einstein derivative expansion is well-defined and
Weyl-covariant

l!il;nodsr?es. Einstein dsrzes_ flat
= -2 (th—b) (dr—|— ra—|—@dt)+r2d£2

2
+s+ (Qd;;b) (8Ger + c % @)

» di2, Q) b, : Carrollian-geometric data
» ¢ = 2p: conformal Carrollian-fluid energy density

» c: descendent of the Cotton



The boundary Cotton tensor P conformal Carrollian 3rd-derivative
—

¢, Xi» ¥i, Xjj, ¥jj obeying equations similar to the those for ¢, Q;,
TTj, Z,:,', E,‘j

The Carrollian-boundary resummability conditions: ;; = 0

- 1
H .
—

i = 87176’7//‘1’/1

i = =X Zij = s—=1 ;X
Q 87'[617 IXJ y 87TG77, lj

Output : algebraically special Ricci-flat spactimes — Goldberg—Sachs
In general: asymptotically locally flat



Example I: stationary

Boundary data: df* = 2dgdZ, O = 1, b = byd{ + bzd(
gi=0¢;=006=0@=3db

Perfect fluid: e, T =0,Q = g2z x x =0, X = ﬁ*xzo,
E=gicx¥=0

fluid equations: e = M/4xG, P({, (), b;(T,0), bz (2. Q)
Resummation: Ricci-flat Kerr-Taub—NUT family



Example II: time-dependent

Boundary data: d0?> = 2d7d, QO =1, b; =0
> i =0@;=0 ¢ =00=—23InP
> "Cotton” ¢ =0, % =0, x = 5 (3;Kd{ — d;KdZ), ¥ =0,
X =4 (ag (P?3:9; In P) dg? — 9; (P28t85 In P) dg‘2)
(K = 2P23:9;In P)
=0

[

Fluid data: e, T =0, Q = g2z % X, & = gig * X,

» momentum equation: d;¢ = 0 = ¢(t) = M(t)/azc
> energy equation: AAInP + 12Md¢In P —49,M =0

Resummation: Ricci-flat Robinson-Trautman
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About flat holography and Carrollian fluids

1. Which surface . would replace the AdS conf. bry. .# and
what is its geometry? Spatial surface at .# " equipped with
Carrollian geometry

2. Which are the degrees of freedom hosted by .#, what is their
dynamics, how are the observables packaged? Carrollian
conformal fluid with ¢, Q;, 7t;, Xj;, Ej obeying Carrollian fluid
equations

+ + Carrollian

conformal fluid

relativistic
‘/confovmal fluid

AdS bulk [ F —— flat bulk !




Confirms scattered observations

» Ricci-flat limit is related to some ultra-relativistic contraction of
POZTZCW’é Ellgebi’a [Barnich et al. 10; Bagchi et al. "10-12; Duval et al. "14; Jensen, Karch '15]

» Null infinity plays a privileged role for hosting the degrees of

ﬁ’eedom [He, Kapec, Mitra, Pasterski, Raclariu, Shao, Strominger '16-"17]

Raises fundamental questions

» Carrollian fluids: understand the microscopic behaviour at
¢ — 0: Boltzmann equation, QFT

» Flat holography: is there a genuine microscopic perspective?
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Galilean covariance in d spatial dimensions

Geometry: di? = a,-j(t, x)dx'dx, Q=0(t), w=w(t x)o;

v

Galilean diffs.: ' = ¢/(t), x = (t X)
Jacobian: J(t) = %— Ji(t,x) =
transfs.. al; = agJ~ 1,-kJ_1J(, QO =

absolute Newtonian time (invariant

v

v

v

[Cartan, Bekaert, Bergshoeff, Duval, Gibbons, Gomis, Hartong, Horvathy, Longhi, Morand, Obers]

Do not confuse with the Galilean group of invariance present when
aj = 9j, QO =1, w' = constant

t'=t+ ty,
X'k = Rix + VKt 4 xk



Simple realization and relativistic uplift

Particle: x' = x'(t), v/ =dx'/at, v = v'0;

'k

> transfs.: v/* = (ka’ +J ) 5" d-dim vector

1
- J
> free dynamics: L(v,x, t) = 51>aj (vi —w') (v —w/)
Relativistic uplift: d + 1-dim Zermelo form
» ds? = —02c2dt? + g (dx' — widt) (dx/ — w/dt)

) J(t) 0
» form-invariant under J//(x) = %XT]; = <-i tx ; >
J (C ) J_j(t’ X)

» relevant limit: ¢ — oo
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Non-relativistic Galilean fluid

Relativistic fluid on Zermelo at ¢ — oo: Galilean fluid

o_ ¢ 1/c ":‘LI 1/c2
u Q+O(/) u Q—FO(/)

> v
> e p, 0O
> g — Q; and TU—)—Z,'J'

Galilean-covariant equations on a;(t,x), Q(t), w'(t,x)



Highlights

Carrollian covariance



Carrollian covariance in d spatial dimensions

Geometry on . d0? = a;(t,x)dx'dx)  Q(t,x) b= b;(t,x)dx’

» Carrollian diffs.: ¢/ = t'(t,x) x' =x'(x)
> Jacobian: J(t,x) = %t ji(t,x) = (% JJ’(x) = %
> transfs.: aj; = ak/J_ll-kJ_lj! Q=92 b= (b+%)JY

Do not confuse with the Carrollian group of invariance present when
aj = 6jj, 3 = 1, b; = constant (here realized in tangent space)

t' =t+ Bix' +ty,
1k _ pkyi k
X = Rx" 4+ xg



Simple realization and relativistic uplift

Extended object: t = t(x), B; = Qo;t — b;, B = Bidx’'

> transfs.: B}, = B;J"Y (d-dim form)
» free dynamics: L£(dt, t,x) = %a’j (Qojt — bj) (Q9;t — b;)

Relativistic uplift: d 4 1-dim Randers—Papapetrou form
> relevant limit: ¢ — 0
» ds? = —c? (Qdt — b,-dx")2 + ajdx'dx
» form-invariant under Carrollian diffeomorphisms (x° = ct)

axH J(t,x) c¢jj(t,x)
H(t,x) = FyT :< 0 Jin(x) )




More on Carrollian geometries

> isometries
» time and space connections, covariant derivatives, curvatures

» time and space Weyl connection, Weyl curvature

Example: Carrollian space derivative 0; =0+ %at
> transfs.: 9} = J 40,
il

» connection: '?J’-k == (ajalk +dkaj — alajk>

» covariant metric-compatible derivative: V = 0 +%

Similarly: Weyl-covariant metric-compatible derivatives 9;, 9,
built on ¢; = é (0¢b; +0;Q)) and 6 = 5at Iny/a
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Carrollian limit: Carrollian fluid

Relativistic fluid on Randers—Papapetrou at ¢ — 0: kinematics

v/ must vanish faster than c:
vi =20 +0 (c*)

avoids blow-ups without trivializing

» kinematic variable B’ = ?u’;’ —bi = "'/C2Q<1fngfj>
> 1% = yc=c/a+0(c?) u—’yv—c2ﬁ’+0(c)
> ug=—cO+0 (C3) up = c? (bi + ( 4)

[worth comparing with de Boer, Hartong, Obers, Sybesma, Vandoren '17]

Limit inside the fluid data (microscopic justification yet to come)

> &, p
» ¢ = Q + 2 and TV — —C—IZZU _ i



Inside the perfect-fluid enerqy—momentum tensor

14+ c?B-b 1 .
:gn—ﬁczpz_ﬂ( + /3 ([3+2b)+0(c)>

Tperfo0 = —e—c?(e+ p)B* (bx + Bx) + O (c*)
QT % = (e +p) (bi + Bi) + O (c*)

& Toerfo = —(e+p)p + 0 (c*)

Tt = pd) + (e + p)B (b + Bi) + 0 (c*)



Inside the relativistic-fluid equations

0=§VuTy=LF+£+0(c?)
0=V, TH=5H 4G +0(c?)

— Carrollian equations
» scalar equations: £ =0 F =0
» vector equations: G/ =0 H' =0
— Covariant under Carrollian diffs.

» =€ F=F
> G =JIg0 H =



Carrollian hydrodynamics with B = 0

Scalar equations

> E=—pde— (e+p)0-ViQ —20;Q + Eif; + 180 =0

» F=X0g; +157.0 =0

Vector equations
> Gj=0;p+ (e+p)gj+§0: + 10 +2Q @y
" —VIE’_,' B4
> H = 20,Q+ Q10— VT — g;57 =0
Remarks

» more involved for B’ # 0

» more elegant for conformal fluids

. H



@i, 9, Cjj, wjj: kinematic observables

Relativistic origin: acceleration, expansion, shear, vorticity
= é (atb,' + a,Q) +0 (C2) = @i+ 0 (C2)

3
» ©=240:In\/a+0(c?) =60+0(c?)
o= & (o~ Joln v3) +0() =2 40 ()

& = 9pb + 090+ bdeby) 0 (¢?) = @; +0 (c?)

>

Remarks
» all Carrollian-covariant
» purely geometric
» more terms if B/ # 0
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Conformal Carrollian geometry

Weyl transformation on Carrollian geometry

ajj b,' @)
—>§ b,-—>E Q—>E

ajj

Spatial Weyl derivative for a weight-w vector V!

A A

GV =V V4 (w=1)g;V! + ¢V, = 5lVig;
Temporal Weyl derivative for a weight-w vector V!

1 . 1
—.@tVI - =

I Wty i
a Qatv+29v+§,v



Conformal Carrollian fluids p = 0

From relativistic to Carrollian conformal properties

> s:dpandr”VZO—gEf,:zf,.:o
c—

» ¢ — BItle, 1 — B, Qi — BYQ;,
E,’j — Bdfla,’j, Z,’j — Bd*12;j

Scalar equations
> £ = —é@ts—.@;({)" —|—EU§U =0
» F=X0g; =0

Vector equations

> G = %.@js—i—é.@tﬂj + 7Ti€ij + 2infj - ‘@"Eij -
» H; = %-@tQj + Qiéij - Qiz‘ij =0
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The Conformal Carrollian curvature tensors in 2 dim

The Ricci tensor (space)



Reminder: the Cotton tensor

In 3 dim the Weyl tensor vanishes — conformal properties are captured
by the Cotton tensor

R
CP“’ - Wﬂpavp (Rva - 4g1/(7>

(77‘111/0 = _gew/a)

» symmetric and traceless
» conformally covariant of weight 1
> identically conserved: V,CH =0



Decomposition wrt u

Bcupuy ¢k CGu | UG UyCy
B K K

Cuv =

At large k with u = 50,

> ¢ = Xi+ K
> cj = Xj+ k2‘f,'j
> weight 2 and 1 respectively




The “Cotton” in two-dimensional Carrollian geometry

c= (9/@’+2,}£7) * (0

Xj = %1]/1.@/% + %.@Jﬂf— 2 % COQJ'

P = 317’1-9/ * (02

Xij = 31", D% + 51,95

T,‘j = @,@J * @0 — %a,-j@/@’ * @0 — Wuégt * (02

Conservation identities
%-@tc + -@i)(i =0
%QJC + 2}(i(17,'J"—|— %Qtl,bj — .@,’llfij =0
%@t?(j — 9,‘X'j =0
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