Carrollian fluids and flat holography

Marios Petropoulos

CPHT - Ecole Polytechnique - CNRS

Recent Developments in High Energy Physics and Cosmology

HEP 2018 - NTUA

with L. Ciambelli, C. Marteau, A. Petkou, K. Siampos in memory of Ioannis Bakas

Foreword

Relativistic fluid/AdS gravity

Ricci-flat gravity/Carrollian fluid

Summary

Iannis liked gravitational instantons and dualities

Our papers

- Geometric flows in Horava-Lifshitz gravity, I. Bakas,
 F. Bourliot, D. Lüst and P.M. Petropoulos, JHEP 1004 (2010)
 131
- Mixmaster universe in Horava-Lifshitz gravity, I. Bakas,
 F. Bourliot, D. Lüst and P.M. Petropoulos, Class. Quantum Grav. 27 (2010) 045013
- Ricci flows and expansion in axion-dilaton cosmology, I. Bakas,
 D. Orlando and P.M. Petropoulos, JHEP 0701 (2007) 040

An inspiring paper

I. Bakas, E.G. Floratos and A. Kehagias, *Octonionic gravitational instantons*, Phys. Lett. **445B** (1998) 69

AdS/CFT

Holographic correspondence: microscopic duality with $g_{string} \leftrightarrow 1/g_{YM}$

type IIB string theory on
$$AdS_5 \times S^5$$

$$\updownarrow$$

$$N=4 \ Yang-Mills \ on \ D=4 \ conformal \ boundary \ of \ AdS_5$$

Anti-de Sitter space: homogeneous spacetime with $\Lambda \neq 0$

Figure: AdS₄ Penrose–Carter diagram

Thoughts on flat or de Sitter extensions

Minkowski spacetime:

Figure: Minkowski Penrose-Carter diagram

Asymptotically flat holographic correspondence:

- \blacktriangleright microscopically: perhaps in 2 + 1 dimensions or higher spins?
- ► macroscopically: better prospects

Macroscopic approach: fluid/gravity correspondence

Branch of AdS/CFT: Einstein's and relativistic Euler's equations

[Bhattacharyya, Haack, Hubeny, Loganayagam, Minwalla, Rangamani, Yarom, ... '07]

Einstein locally AdS spacetime & with $\Lambda \neq 0$

relativistic fluid on $\mathscr{I} = \partial \mathscr{E} \equiv \text{ conformal boundary}$

<u>Historically:</u> non-relativistic incompressible-fluid equations emerge from perturbations of the black-hole horizon [Damour '79]

Scrutinizing the flat-spacetime holography:

- 1. Which surface $\mathcal S$ would replace the AdS conf. bry. $\mathcal S$ and what is its geometry?
- 2. Which are the degrees of freedom hosted by \mathcal{S} , what is their dynamics, how are the observables packaged?

Wide dispersion – mixing sometimes AdS [Strominger et al '10; Caldarelli, Taylor, Skenderis

et al '13; Klemm et al '14]

- ► Minkowski, surface at finite r..., relativistic, Rindler ...
- ► incompressible classical fluids, relativistic fluids, Brown—York tensor, conserved energy—momentum tensor...

Our aim: unravel a clear pattern (3 + 1 dim)

<u>Method:</u> setting $k \to 0$ inside the expansion that reconstructs the bulk from the boundary $(\Lambda = -3k^2)$

Ricci-flat spacetime \leftrightarrow conformal Carrollian fluid on $\mathscr{S} \times \mathbb{R}$ at \mathscr{I}^+

Foreword

Relativistic fluid/AdS gravity

Ricci-flat gravity/Carrollian fluid

Summary

The bulk reconstruction

Given the "initial data"

- ▶ boundary metric ds² (neither flat nor conformally flat)
- ► conserved energy–momentum tensor **T** (generally viscous)

Two options exist to get perturbatively the asymptotically AdS bulk:

- 1. Fefferman-Graham expansion: mathematically robust
- Derivative expansion: designed for fluid/gravity correspondence requires an extra piece of bry. data – time-like hydrodynamic congruence u

Fefferman—Graham: expansion of the 3+1-dim Einstein metric for large r in a specific gauge (no lapse/shift): [Fefferman, Graham '85]

- metric: leading term
- energy-momentum: subleading term

$$ds_{\text{bulk}}^2 = \frac{dr^2}{k^2r^2} + r^2ds_{\text{bry.}}^2 + \dots + \frac{16\pi G}{3(kr)}T_{\mu\nu}dx^{\mu}dx^{\nu} + \dots$$

Caveats

- not resummable
- does not discriminate locally vs. globally AdS bulks
- ▶ the limit $k \to 0$ is singular $(\Lambda = -3k^2)$

The derivative expansion – fluid/gravity [Bhattacharyya et al '07]

- Guideline: Weyl covariance the bulk metric must be invariant under boundary conformal transformations
- ► Tool: Weyl connection $A = \frac{1}{k^2} \left(a \frac{\Theta}{2} u \right)$ and Weyl covariant derivative $\mathscr{D} = \nabla + wA$ (a is the acceleration and $\Theta = \nabla \cdot u$)
- ➤ Output: ds²_{bulk} = complicated expression based on the boundary data & their derivatives – order by order

Advantages [Leigh et al '10; Caldarelli et al '12; Mukhopadhyay et al '13; Gath et al '15]

- potentially resummable
- controls locally vs. globally AdS bulks
- ▶ the limit $k \rightarrow 0$ is regular: flat holography

Relativistic fluids

Obey $\nabla_{\mu} T^{\mu\nu} = 0$ with

$$T^{\mu\nu} = (\varepsilon + p) \frac{u^{\mu}u^{\nu}}{k^{2}} + pg^{\mu\nu} + \tau^{\mu\nu} + \frac{u^{\mu}q^{\nu}}{k^{2}} + \frac{u^{\nu}q^{\mu}}{k^{2}}$$

- $\|\mathbf{u}\|^2 = -k^2$, $u^0 = \gamma k$, $u^i = \gamma v^i$
- \triangleright ε , p: energy density and pressure
- $ightharpoonup au^{\mu\nu}$, q^{μ} : viscous stress tensor and heat current transverse

$$u^{\mu}q_{\mu}=0$$
 $u^{\mu}\tau_{\mu\nu}=0$

 q^i and τ^{ij}

- carry all information on heat exchange and friction processes
- are usually expressed in terms of a u-derivative expansion

Assuming u shear-free a resummation is performed:

$$\mathrm{d} s_{\mathrm{res.~Einstein}}^2 = 2 \tfrac{\mathrm{u}}{\mathrm{k}^2} (\mathrm{d} r + r \mathrm{A}) + r^2 \mathrm{d} s^2 + \tfrac{\mathrm{S}}{\mathrm{k}^4} + \tfrac{\mathrm{u}^2}{\mathrm{k}^4 \rho^2} \left(8 \pi G \varepsilon r + c \gamma \right)$$

- ▶ boundary metric $ds^2 = -k^2 \left(\Omega dt b_i dx^i\right)^2 + a_{ij} dx^i dx^j$
- $\mathbf{u} = -k^2 \left(\Omega dt b_i dx^i \right) \Leftrightarrow \mathbf{u} = \frac{1}{\Omega} \partial_t \text{ with } \|\mathbf{u}\|^2 = -k^2$
- $\varepsilon = 2p$: conformal-fluid energy density

- $\triangleright \ \mathscr{R} = R + 4\nabla_{\mu}A^{\mu} 2A_{\mu}A^{\mu},$
- c: Cotton (3rd-order derivative of the metric) $abla^{\lambda} C_{\lambda\mu} = 0$

$$C_{\mu\nu} = \frac{3c}{2} \frac{u_\mu u_\nu}{k} + \frac{ck}{2} g_{\mu\nu} - \frac{c_{\mu\nu}}{k} + \frac{u_\mu c_\nu}{k} + \frac{u_\nu c_\mu}{k}$$

Resummability conditions (on top of the absence of shear)

lacktriangle transverse duality (with $\eta_{\mu
u} = -rac{u^{
ho}}{k} \eta_{
ho \mu
u}$)

$$q_{\mu}=rac{1}{8\pi G}\eta^{
u}_{\phantom{
u}\mu}c_{
u}\quad au_{\mu
u}=-rac{1}{8\pi G k^2}\eta^{
ho}_{\phantom{
u}\mu}c_{
ho
u}$$

boundary "electric-magnetic gravitational duality" [Bakas '08]

• energy–momentum conservation $\nabla^{\lambda}T_{\lambda\mu}=0$ for the boundary data ε , a_{ij} , Ω and b_i

Output: algebraically special Einstein spacetimes – Goldberg–Sachs generalizations – asymptotically **locally** AdS

- Kerr–Taub–NUT (perfect fluids)
- Robinson–Trautman
- Plebański-Demiański

Foreword

Relativistic fluid/AdS gravity

Ricci-flat gravity/Carrollian fluid

Summary

Galilean vs. Carrollian contractions of Poincaré group

[Lévy-Leblond '65]

Both non-relativistic limits with decoupling of time

Lorentz boosts:
$$\begin{cases} \Delta t' = \gamma \left(\Delta t - \beta_i \frac{\Delta x^i}{c} \right) \\ \Delta x^{i'} = \gamma \left(\Delta x^i - \beta^i c \Delta t \right) \end{cases}$$

with
$$\beta^i = v^i/c$$
 and $\gamma = 1/\sqrt{1-\beta^2}$

- ► Galilean limit $c \to \infty$: $\begin{cases} \Delta t' = \Delta t \\ \Delta x^{i\prime} = \Delta x^i v^i \Delta t \end{cases}$
- ► Carrollian limit $c \to 0$: everything is at rest $\Rightarrow \begin{cases} \beta_i \to 0 \\ \gamma \to 1 \end{cases}$ but $\lim_{c \to 0} \beta_i/c = b_i \Rightarrow \begin{cases} \Delta t' = \Delta t b_i \Delta x^i \\ \Delta x'' = \Delta x^i \end{cases}$

The Ricci-flat limit $\Lambda = -3k^2 \rightarrow 0$

In the boundary data: $k \equiv speed$ *of light*

$$\mathrm{d} s^2 = -k^2 \left(\Omega \mathrm{d} t - b_i \mathrm{d} x^i\right)^2 + a_{ij} \mathrm{d} x^i \mathrm{d} x^j \quad \|u\|^2 = -k^2$$

$$\underset{k \to 0}{\longrightarrow} \text{ Carrollian limit: } \mathscr{I} \to \mathscr{S} \times \mathbb{R} \text{ reached at } \mathscr{I}^+$$

The boundary conformal fluid $\underset{k\to 0}{\longrightarrow}$ conformal Carrollian fluid

- ▶ data: $\varepsilon = 2p$, $q_i = Q_i + k^2 \pi_i + O(k^4)$, $\tau_{ij} = \frac{1}{k^2} \Sigma_{ij} + \Xi_{ij} + O(k^2)$
- dynamics: conformal Carrollian $\lim_{k\to 0} \nabla_{\mu} T^{\mu\nu} = 0$

$$\begin{cases} 0 = \frac{k}{\Omega} \nabla_{\mu} T^{\mu}_{0} = \frac{1}{k^{2}} \mathcal{F} + \mathcal{E} + O(k^{2}) \\ 0 = \nabla_{\mu} T^{\mu i} = \frac{1}{k^{2}} \mathcal{H}^{i} + \mathcal{G}^{i} + O(k^{2}) \end{cases}$$

Carrollian hydrodynamics

Scalar equations

$$\blacktriangleright \ \mathcal{E} = -\frac{1}{\Omega} \partial_t \varepsilon - (\varepsilon + \mathbf{p}) \theta - \hat{\nabla}_i Q^i - 2 \varphi_i Q^i + \Xi^{ij} \xi_{ij} + \frac{1}{2} \Xi^i{}_i \theta = 0$$

Vector equations

$$\mathcal{G}_{j} = \hat{\partial}_{j} \mathbf{p} + (\varepsilon + \mathbf{p}) \varphi_{j} + \frac{1}{\Omega} \partial_{t} \pi_{j} + \pi_{j} \theta + 2 Q^{i} \omega_{ij} - \hat{\nabla}_{i} \Xi^{i}_{j} - \varphi_{i} \Xi^{i}_{j} = 0$$

$$\blacktriangleright \mathcal{H}^{i} = \frac{a^{y}}{\Omega} \partial_{t} Q_{j} + Q^{i} \theta - \hat{\nabla}_{j} \Sigma^{ji} - \varphi_{j} \Sigma^{ji} = 0$$

Remark

 φ_i , θ , ξ_{ij} , ω_{ij} : kinematic observables (relativistic origin: acceleration, expansion, shear, vorticity)

The Ricci-flat derivative expansion

The limit of the Einstein derivative expansion is well-defined and Weyl-covariant

$$\begin{array}{ll} \lim_{k \to 0} \mathrm{d} s_{\mathrm{res. \; Einstein}}^2 & = & \mathrm{d} s_{\mathrm{res. \; flat}}^2 \\ & = & -2 \left(\Omega \mathrm{d} t - \boldsymbol{b} \right) \left(\mathrm{d} r + r \boldsymbol{\alpha} + \frac{r \theta \Omega}{2} \mathrm{d} t \right) + r^2 \mathrm{d} \ell^2 \\ & + \boldsymbol{s} + \frac{\left(\Omega \mathrm{d} t - \boldsymbol{b} \right)^2}{\rho^2} \left(8 \pi G \varepsilon r + c * \varpi \right) \end{array}$$

- ▶ $d\ell^2$, Ω , **b**, α , **s**, θ , $*\omega$: Carrollian-geometric data
- ho $\varepsilon=2p$: conformal Carrollian-fluid energy density
- c: descendent of the Cotton

The boundary Cotton tensor $\xrightarrow{k\to 0}$ conformal Carrollian 3rd-derivative $c, \chi_i, \psi_i, X_{ij}, \Psi_{ij}$ obeying equations similar to the those for $\varepsilon, Q_i, \pi_i, \Sigma_{ii}, \Xi_{ii}$

The Carrollian-boundary resummability conditions: $\xi_{ii} = 0$

$$Q_i = \frac{1}{8\pi G} \eta^j_{\ i} \chi_j \quad \Sigma_{ij} = \frac{1}{8\pi G} \eta^l_{\ i} X_{lj} \quad \Xi_{ij} = \frac{1}{8\pi G} \eta^l_{\ i} \Psi_{lj}$$

Output : algebraically special Ricci-flat spactimes – Goldberg–Sachs In general: asymptotically **locally** flat

Example I: stationary

Boundary data:
$$d\ell^2 = \frac{2}{P^2}d\zeta d\bar{\zeta}$$
, $\Omega = 1$, $\boldsymbol{b} = b_{\zeta}d\zeta + b_{\bar{\zeta}}d\bar{\zeta}$
 $\xi_{ij} = 0$, $\varphi_i = 0$, $\theta = 0$, $\boldsymbol{\omega} = \frac{1}{2}d\boldsymbol{b}$
Perfect fluid: ε , $\boldsymbol{\pi} = 0$, $\boldsymbol{Q} = \frac{1}{8\pi G} * \chi = 0$, $\boldsymbol{\Sigma} = \frac{1}{8\pi G} * \boldsymbol{X} = 0$, $\boldsymbol{\Xi} = \frac{1}{8\pi G} * \boldsymbol{\Psi} = 0$
fluid equations: $\varepsilon = M/4\pi G$, $P(\zeta, \bar{\zeta})$, $b_{\zeta}(\zeta, \bar{\zeta})$, $b_{\bar{\zeta}}(\zeta, \bar{\zeta})$

Resummation: Ricci-flat Kerr-Taub-NUT family

Example II: time-dependent

Boundary data:
$$d\ell^2 = \frac{2}{P^2} d\zeta d\bar{\zeta}$$
, $\Omega = 1$, $b_i = 0$

- $ightharpoonup \xi_{ij} = 0$, $\omega_{ij} = 0$, $\varphi_i = 0$, $\theta = -2\partial_t \ln P$
- ► "Cotton": c = 0, $\boldsymbol{\psi} = 0$, $\boldsymbol{\chi} = \frac{\mathrm{i}}{2} \left(\partial_{\zeta} K \mathrm{d} \zeta \partial_{\bar{\zeta}} K \mathrm{d} \bar{\zeta} \right)$, $\boldsymbol{\Psi} = 0$, $\boldsymbol{\chi} = \frac{\mathrm{i}}{P^2} \left(\partial_{\zeta} \left(P^2 \partial_t \partial_{\bar{\zeta}} \ln P \right) \mathrm{d} \zeta^2 \partial_{\bar{\zeta}} \left(P^2 \partial_t \partial_{\bar{\zeta}} \ln P \right) \mathrm{d} \bar{\zeta}^2 \right)$

$$(K=2P^2\partial_{\bar{\zeta}}\partial_{\zeta}\ln P)$$

Fluid data:
$$\varepsilon$$
, $\boldsymbol{\pi} = 0$, $\boldsymbol{Q} = \frac{1}{8\pi G} * \chi$, $\boldsymbol{\Sigma} = \frac{1}{8\pi G} * \boldsymbol{X}$, $\boldsymbol{\Xi} = 0$

- ▶ momentum equation: $\partial_i \varepsilon = 0 \Rightarrow \varepsilon(t) = M(t)/4\pi G$
- energy equation: $\Delta\Delta \ln P + 12M\partial_t \ln P 4\partial_t M = 0$

Resummation: Ricci-flat Robinson-Trautman

Foreword

Relativistic fluid/AdS gravity

Ricci-flat gravity/Carrollian fluid

Summary

About flat holography and Carrollian fluids

- 1. Which surface $\mathscr S$ would replace the AdS conf. bry. $\mathscr S$ and what is its geometry? Spatial surface at $\mathscr S^+$ equipped with Carrollian geometry
- 2. Which are the degrees of freedom hosted by \mathscr{S} , what is their dynamics, how are the observables packaged? Carrollian conformal fluid with ε , Q_i , π_i , Σ_{ij} , Ξ_{ij} obeying Carrollian fluid equations

Confirms scattered observations

- ► Ricci-flat limit is related to some ultra-relativistic contraction of Poincaré algebra [Barnich et al. '10; Bagchi et al. '10-12; Duval et al. '14; Jensen, Karch '15]
- ► Null infinity plays a privileged role for hosting the degrees of freedom [He, Kapec, Mitra, Pasterski, Raclariu, Shao, Strominger '16-'17]

Raises fundamental questions

- ▶ Carrollian fluids: understand the microscopic behaviour at $c \rightarrow 0$: Boltzmann equation, QFT
- ► Flat holography: is there a genuine microscopic perspective?

Galilean covariance

Galilean fluids

Carrollian covariance

Carrollian fluids

Conformal Carrollian geometry and conformal Carrollian fluids

Curvature and Cotton

Galilean covariance in d spatial dimensions

Geometry:
$$d\ell^2 = a_{ij}(t, \mathbf{x}) dx^i dx^j$$
, $\Omega = \Omega(t)$, $\mathbf{w} = \mathbf{w}^i(t, \mathbf{x}) \partial_i$

- ► Galilean diffs.: t' = t'(t), $\mathbf{x}' = \mathbf{x}'(t, \mathbf{x})$
- ▶ Jacobian: $J(t) = \frac{\partial t'}{\partial t}$, $j^i(t, \mathbf{x}) = \frac{\partial x^{ii}}{\partial t}$, $J^i_j(t, \mathbf{x}) = \frac{\partial x^{ii}}{\partial x^j}$
- ▶ transfs.: $a'_{ij} = a_{kl}J^{-1k}_{\quad i}J^{-1l}_{\quad j}$, $\Omega' = \frac{\Omega}{J}$, $w'^k = \frac{1}{J}\left(J^k_iw^i + j^k\right)$
- ▶ absolute Newtonian time (invariant): $\Omega(t)dt$

[Cartan, Bekaert, Bergshoeff, Duval, Gibbons, Gomis, Hartong, Horvathy, Longhi, Morand, Obers] Do not confuse with the Galilean group of invariance present when $a_{ij}=\delta_{ij}$, $\Omega=1$, $w^i=constant$

$$\begin{cases} t' = t + t_0, \\ x'^k = R^k_i x^i + V^k t + x_0^k \end{cases}$$

Simple realization and relativistic uplift

Particle:
$$x^i = x^i(t)$$
, $v^i = \frac{dx^i}{dt}$, $\mathbf{v} = v^i \partial_i$

- ► transfs.: $v'^k = \frac{1}{I} \left(J_i^k v^i + j^k \right)$, $\frac{\mathbf{v} \mathbf{w}}{\Omega}$ d-dim vector
- free dynamics: $\mathcal{L}(\mathbf{v},\mathbf{x},t)=\frac{1}{2\Omega^2}a_{ij}\left(v^i-w^i\right)\left(v^j-w^j\right)$

Relativistic uplift: d + 1-dim Zermelo form

- $ds^2 = -\Omega^2 c^2 dt^2 + a_{ij} \left(dx^i w^i dt \right) \left(dx^j w^j dt \right)$
- ▶ form-invariant under $J_{\nu}^{\mu}(x) = \frac{\partial x^{\mu}}{\partial x^{\nu}} = \begin{pmatrix} J(t) & 0\\ \frac{j^{i}(t,\mathbf{x})}{c} & J_{j}^{i}(t,\mathbf{x}) \end{pmatrix}$
- ▶ relevant limit: $c \to \infty$

Galilean covariance

Galilean fluids

Carrollian covariance

Carrollian fluids

Conformal Carrollian geometry and conformal Carrollian fluids

Curvature and Cotton

Non-relativistic Galilean fluid

Relativistic fluid on Zermelo at c $\rightarrow \infty$: *Galilean fluid*

$$u^0 = \frac{c}{\Omega} + O(1/c)$$
 $u^i = \frac{v^i}{\Omega} + O(1/c^2)$

- $\triangleright v^i$
- ▶ e, p, o
- $lackbox{ } q_i
 ightarrow Q_i ext{ and } au_{ij}
 ightarrow -\Sigma_{ij}$

Galilean-covariant equations on $a_{ij}(t, \mathbf{x})$, $\Omega(t)$, $w^{i}(t, \mathbf{x})$

Galilean covariance

Galilean fluids

Carrollian covariance

Carrollian fluids

Conformal Carrollian geometry and conformal Carrollian fluids

Curvature and Cotton

Carrollian covariance in d spatial dimensions

Geometry on \mathscr{S} : $d\ell^2 = a_{ij}(t, \mathbf{x}) dx^i dx^j \quad \Omega(t, \mathbf{x}) \quad \mathbf{b} = b_i(t, \mathbf{x}) dx^i$

- ► Carrollian diffs.: t' = t'(t, x) x' = x'(x)
- ▶ Jacobian: $J(t, \mathbf{x}) = \frac{\partial t'}{\partial t}$ $j_i(t, \mathbf{x}) = \frac{\partial t'}{\partial x^i}$ $J^i_j(\mathbf{x}) = \frac{\partial x^{i'}}{\partial x^j}$
- ▶ transfs.: $a'_{ij} = a_{kl}J^{-1k}_{i}J^{-1l}_{j}$ $\Omega' = \frac{\Omega}{J}$ $b'_{k} = \left(b_{i} + \frac{\Omega}{J}j_{i}\right)J^{-1i}_{k}$

Do not confuse with the Carrollian group of invariance present when $a_{ij} = \delta_{ij}$, $\Omega = 1$, $b_i = constant$ (here realized in tangent space)

$$\begin{cases} t' = t + B_i x^i + t_0, \\ x'^k = R_i^k x^i + x_0^k \end{cases}$$

Simple realization and relativistic uplift

Extended object:
$$t = t(\mathbf{x})$$
, $\beta_i = \Omega \partial_i t - b_i$, $\boldsymbol{\beta} = \beta_i dx^i$

- transfs.: $\beta'_{k} = \beta_{i} J^{-1}_{k} (d\text{-dim form})$
- free dynamics: $\mathcal{L}(\mathbf{\partial}t, t, \mathbf{x}) = \frac{1}{2} a^{ij} (\Omega \partial_i t b_i) (\Omega \partial_j t b_j)$

Relativistic uplift: d + 1-dim Randers—Papapetrou form

- ightharpoonup relevant limit: $c \rightarrow 0$
- $ds^2 = -c^2 \left(\Omega dt b_i dx^i\right)^2 + a_{ij} dx^i dx^j$
- form-invariant under Carrollian diffeomorphisms $(x^0 = ct)$

$$J_{\nu}^{\mu}(t,\mathbf{x}) = \frac{\partial x^{\mu\prime}}{\partial x^{\nu}} = \begin{pmatrix} J(t,\mathbf{x}) & cj_{j}(t,\mathbf{x}) \\ 0 & J_{i}^{j}(\mathbf{x}) \end{pmatrix}$$

More on Carrollian geometries

- ► isometries
- ▶ time and space connections, covariant derivatives, curvatures
- ► time and space Weyl connection, Weyl curvature

Example: Carrollian space derivative $\hat{\partial}_i = \partial_i + \frac{b_i}{\Omega} \partial_t$

- transfs.: $\hat{\partial}'_i = J^{-1j}_{i} \hat{\partial}_j$
- ightharpoonup connection: $\hat{\gamma}^i_{jk} = \frac{a^{il}}{2} \left(\hat{\partial}_j a_{lk} + \hat{\partial}_k a_{lj} \hat{\partial}_l a_{jk} \right)$
- lacktriangle covariant metric-compatible derivative: $\hat{m{
 abla}}=\hat{m{\partial}}+\hat{m{\gamma}}$

Similarly: Weyl-covariant metric-compatible derivatives $\hat{\mathcal{D}}_i$, $\hat{\mathcal{D}}_t$ built on $\varphi_i = \frac{1}{\Omega} (\partial_t b_i + \partial_i \Omega)$ and $\theta = \frac{1}{\Omega} \partial_t \ln \sqrt{a}$

Galilean covariance

Galilean fluids

Carrollian covariance

Carrollian fluids

Conformal Carrollian geometry and conformal Carrollian fluids

Curvature and Cotton

Carrollian limit: Carrollian fluid

Relativistic fluid on Randers—Papapetrou at $c \rightarrow 0$: kinematics v^i must vanish faster than c:

$$v^{i} = c^{2} \Omega \beta^{i} + O\left(c^{4}\right)$$

avoids blow-ups without trivializing

$$lacktriangledown$$
 kinematic variable $eta^i = -rac{\Omega u_i}{cu_0} - b_i = v_i/c^2\Omega\Big(1-rac{v^jb_j}{\Omega}\Big)$

•
$$u^{0} = \gamma c = c/\Omega + O(c^{3})$$
 $u^{i} = \gamma v^{i} = c^{2}\beta^{i} + O(c^{4})$

►
$$u_0 = -c\Omega + O(c^3)$$
 $u_i = c^2(b_i + \beta_i) + O(c^4)$

[worth comparing with de Boer, Hartong, Obers, Sybesma, Vandoren '17]

Limit inside the fluid data (microscopic justification yet to come)

$$ightharpoonup q^i
ightarrow Q^i + c^2 \pi^i$$
 and $au^{ij}
ightarrow - rac{1}{c^2} \Sigma^{ij} - \Xi^{ij}$

Inside the perfect-fluid energy—momentum tensor

$$\gamma = \frac{1 + c^2 \boldsymbol{\beta} \cdot \boldsymbol{b}}{\Omega \sqrt{1 - c^2 \boldsymbol{\beta}^2}} = \frac{1}{\Omega} \left(1 + \frac{c^2}{2} \boldsymbol{\beta} \cdot (\boldsymbol{\beta} + 2\boldsymbol{b}) + O\left(c^4\right) \right)$$
$$\int T_{\text{perf} \ 0} = -\varepsilon - c^2 (\varepsilon + p) \beta^k \left(b_k + \beta_k \right) + O\left(c^4\right)$$

$$\gamma = \frac{1}{\Omega \sqrt{1 - c^2 \boldsymbol{\beta}^2}} = \frac{1}{\Omega} \left(1 + \frac{1}{2} \boldsymbol{\beta} \cdot (\boldsymbol{\beta} + 2\boldsymbol{b}) + O(c^4) \right)$$

$$\begin{cases} T_{\text{perf}} {}^0_0 = -\varepsilon - c^2 (\varepsilon + p) \beta^k \left(b_k + \beta_k \right) + O(c^4) \\ c \Omega T_{\text{perf}} {}^0_i = c^2 (\varepsilon + p) \left(b_i + \beta_i \right) + O(c^4) \\ \frac{c}{\Omega} T_{\text{perf}} {}^j_0 = -c^2 (\varepsilon + p) \beta^j + O(c^4) \\ T_{\text{perf}} {}^j_i = p \delta^j_i + c^2 (\varepsilon + p) \beta^j \left(b_i + \beta_i \right) + O(c^4) \end{cases}$$

Inside the relativistic-fluid equations

$$\begin{cases} 0 = \frac{c}{\Omega} \nabla_{\mu} T^{\mu}_{0} = \frac{1}{c^{2}} \mathcal{F} + \mathcal{E} + O\left(c^{2}\right) \\ 0 = \nabla_{\mu} T^{\mu i} = \frac{1}{c^{2}} \mathcal{H}^{i} + \mathcal{G}^{i} + O\left(c^{2}\right) \end{cases}$$

\rightarrow *Carrollian equations*

- scalar equations: $\mathcal{E} = 0$ $\mathcal{F} = 0$
- vector equations: $\mathcal{G}^j = 0$ $\mathcal{H}^i = 0$
- \rightarrow Covariant under Carrollian diffs.
 - $\mathcal{E}' = \mathcal{E}$ $\mathcal{F}' = \mathcal{F}$
 - $\blacktriangleright \ \mathcal{G}'^i = J^i_i \mathcal{G}^j \quad \mathcal{H}'^i = J^i_i \mathcal{H}^j$

Carrollian hydrodynamics with $\beta = 0$

Scalar equations

$$\mathcal{E} = -\frac{1}{\Omega} \partial_t \varepsilon - (\varepsilon + p) \theta - \hat{\nabla}_i Q^i - 2 \varphi_i Q^i + \Xi^{ij} \xi_{ij} + \frac{1}{2} \Xi^i{}_i \theta = 0$$

$$\mathcal{F} = \Sigma^{ij} \xi_{ii} + \frac{1}{2} \Sigma^i{}_i \theta = 0$$

Vector equations

$$\mathcal{G}_{j} = \hat{\partial}_{j} p + (\varepsilon + p) \varphi_{j} + \frac{1}{\Omega} \partial_{t} \pi_{j} + \pi_{j} \theta + 2 Q^{i} \omega_{ij} - \hat{\nabla}_{i} \Xi^{i}_{j} - \varphi_{i} \Xi^{i}_{j} = 0$$

$$\mathcal{H}^{i} = \frac{a^{ij}}{\Omega} \partial_{t} Q_{j} + Q^{i} \theta - \hat{\nabla}_{j} \Sigma^{ji} - \varphi_{j} \Sigma^{ji} = 0$$

Remarks

- more involved for $\beta^i \neq 0$
- ► more elegant for conformal fluids

 φ_i , θ , ξ_{ii} , ω_{ii} : kinematic observables

Relativistic origin: acceleration, expansion, shear, vorticity

$$\bullet \Theta = \frac{1}{\Omega} \partial_t \ln \sqrt{a} + O(c^2) = \theta + O(c^2)$$

$$\blacktriangleright \ \sigma_{ij} = \frac{1}{\Omega} \left(\frac{1}{2} \partial_t a_{ij} - \frac{1}{d} a_{ij} \partial_t \ln \sqrt{a} \right) + \mathcal{O} \left(c^2 \right) = \xi_{ij} + \mathcal{O} \left(c^2 \right)$$

Remarks

- all Carrollian-covariant
- purely geometric
- more terms if $\beta^i \neq 0$

Highlights

Galilean covariance

Galilean fluids

Carrollian covariance

Carrollian fluids

Conformal Carrollian geometry and conformal Carrollian fluids

Curvature and Cotton

Conformal Carrollian geometry

Weyl transformation on Carrollian geometry

$$a_{ij}
ightarrow rac{a_{ij}}{\mathcal{B}^2} \quad b_i
ightarrow rac{b_i}{\mathcal{B}} \quad \Omega
ightarrow rac{\Omega}{\mathcal{B}}$$

Spatial Weyl derivative for a weight-w vector V^I

$$\hat{\mathcal{D}}_{j}V^{\prime} = \hat{\nabla}_{j}V^{\prime} + (w-1)\varphi_{j}V^{\prime} + \varphi^{\prime}V_{j} - \delta_{j}^{\prime}V^{i}\varphi_{i}$$

Temporal Weyl derivative for a weight-w vector V^I

$$\frac{1}{\Omega}\hat{\mathcal{D}}_t V^I = \frac{1}{\Omega}\partial_t V^I + \frac{w}{2}\theta V^I + \xi^I_i V^i$$

Conformal Carrollian fluids $\beta = 0$

From relativistic to Carrollian conformal properties

$$\triangleright \ \varepsilon = dp \text{ and } \tau^{\mu}_{\ \mu} = 0 \xrightarrow[c \to 0]{} \Xi^{i}_{\ i} = \Sigma^{i}_{\ i} = 0$$

$$\begin{array}{c} \bullet \quad \varepsilon \to \mathcal{B}^{d+1}\varepsilon, \ \pi_i \to \mathcal{B}^d\pi_i, \ Q_i \to \mathcal{B}^dQ_i, \\ \Xi_{ij} \to \mathcal{B}^{d-1}\Xi_{ij}, \ \Sigma_{ij} \to \mathcal{B}^{d-1}\Sigma_{ij} \end{array}$$

Scalar equations

$$\triangleright \mathcal{E} = -\frac{1}{\Omega} \hat{\mathcal{D}}_t \varepsilon - \hat{\mathcal{D}}_i Q^i + \Xi^{ij} \xi_{ij} = 0$$

$$\blacktriangleright \ \mathcal{F} = \Sigma^{ij} \xi_{ij} = 0$$

Vector equations

$$\blacktriangleright \mathcal{G}_{j} = \frac{1}{d} \hat{\mathcal{D}}_{j} \varepsilon + \frac{1}{\Omega} \hat{\mathcal{D}}_{t} \pi_{j} + \pi_{i} \xi^{i}_{j} + 2 Q^{i} \omega_{ij} - \hat{\mathcal{D}}_{i} \Xi^{i}_{j} = 0$$

$$\blacktriangleright \mathcal{H}_j = \frac{1}{\Omega} \hat{\mathcal{D}}_t Q_j + Q_i \xi^i_{\ j} - \hat{\mathcal{D}}_i \Sigma^i_{\ j} = 0$$

Highlights

Galilean covariance

Galilean fluids

Carrollian covariance

Carrollian fluids

Conformal Carrollian geometry and conformal Carrollian fluids

Curvature and Cotton

The Conformal Carrollian curvature tensors in 2 dim

The Ricci tensor (space)

$$\hat{\mathcal{R}}_{ij} = \hat{\mathcal{R}}^{k}_{ikj} = \hat{r}_{ij} + a_{ij} \hat{\nabla}_{k} \varphi^{k} = \hat{s}_{ij} + \hat{\mathcal{K}} a_{ij} + \hat{\mathcal{A}} \eta_{ij}$$
$$\hat{\mathcal{K}} = \frac{1}{2} a^{ij} \hat{\mathcal{R}}_{ij} = \hat{K} + \hat{\nabla}_{k} \varphi^{k}, \quad \hat{\mathcal{A}} = \frac{1}{2} \eta^{ij} \hat{\mathcal{R}}_{ij}$$

 \hat{r}_{ij} is the Ricci of $\hat{
abla}_k$ and $2\hat{K}=\hat{r}=a^{ij}\hat{r}_{ij}$

The vector (time)

$$\hat{\mathscr{R}}_i = rac{1}{\Omega} \partial_t arphi_i - rac{1}{2} \left(\hat{\partial}_i + arphi_i
ight) heta$$

Reminder: the Cotton tensor

In 3 dim the Weyl tensor vanishes – conformal properties are captured by the Cotton tensor

$$C_{\mu
u} = \eta_{\mu}^{
ho\sigma}
abla_{
ho} \left(R_{
u\sigma} - rac{R}{4} g_{
u\sigma}
ight)$$

$$(\eta_{\mu\nu\sigma}=\sqrt{-g}\epsilon_{\mu\nu\sigma})$$

- symmetric and traceless
- conformally covariant of weight 1
- identically conserved: $\nabla_{\mu}C^{\mu\nu}=0$

Decomposition wrt u

$$C_{\mu\nu} = \frac{3c}{2} \frac{u_{\mu} u_{\nu}}{k} + \frac{ck}{2} g_{\mu\nu} - \frac{c_{\mu\nu}}{k} + \frac{u_{\mu} c_{\nu}}{k} + \frac{u_{\nu} c_{\mu}}{k}$$

At large k with $u = \frac{1}{\Omega} \partial_t$

$$c_i = \chi_i + k^2 \psi_i$$

$$c_{ij} = X_{ij} + k^2 \Psi_{ij}$$

weight 2 and 1 respectively

The "Cotton" in two-dimensional Carrollian geometry

$$\begin{cases} c = (\hat{\mathcal{D}}_l \hat{\mathcal{D}}^l + 2\hat{\mathcal{K}}) * \omega \\ \chi_j = \frac{1}{2} \eta^l_j \hat{\mathcal{D}}_l \hat{\mathcal{K}} + \frac{1}{2} \hat{\mathcal{D}}_j \hat{\mathcal{A}} - 2 * \omega \hat{\mathcal{R}}_j \\ \psi_j = 3 \eta^l_j \hat{\mathcal{D}}_l * \omega^2 \\ X_{ij} = \frac{1}{2} \eta^l_j \hat{\mathcal{D}}_l \hat{\mathcal{R}}_i + \frac{1}{2} \eta^l_i \hat{\mathcal{D}}_j \hat{\mathcal{R}}_l \\ \Psi_{ij} = \hat{\mathcal{D}}_i \hat{\mathcal{D}}_j * \omega - \frac{1}{2} a_{ij} \hat{\mathcal{D}}_l \hat{\mathcal{D}}^l * \omega - \eta_{ij} \frac{1}{\Omega} \hat{\mathcal{D}}_t * \omega^2 \end{cases}$$

Conservation identities

$$\begin{cases} \frac{1}{\Omega} \hat{\mathcal{D}}_t c + \hat{\mathcal{D}}_i \chi^i = 0 \\ \frac{1}{2} \hat{\mathcal{D}}_j c + 2 \chi^i \omega_{ij} + \frac{1}{\Omega} \hat{\mathcal{D}}_t \psi_j - \hat{\mathcal{D}}_i \Psi^i_j = 0 \\ \frac{1}{\Omega} \hat{\mathcal{D}}_t \chi_j - \hat{\mathcal{D}}_i X^i_j = 0 \end{cases}$$