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The reduced density matrix

When a composite system lies in an entangled state, there is no answer to
the question “what is the state of the subsystem A?”
The expected values of the measurables of a given subsystem cannot be
reproduced by any state, however they are reproduced by the reduced
density matrix

𝜌A = trAC𝜌 = trAC |𝜓⟩ ⟨𝜓| ,

which in general describes a mixed state, even though the overall system lies
in a pure one.
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The more entangled the state the more dispersed the spectrum of the
reduced density matrix.
Thus, a good measure of entanglement is Shannon’s entropy applied to the
spectrum of the reduced density matrix

SEE = −tr𝜌A ln 𝜌A,

known as entanglement entropy.
However, the whole information on entanglement is contained in the full
spectrum of the reduced density matrix and not just SEE .
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Entanglement entropy in Field Theory

Modern approaches for the calculation of the entanglement entropy involve
the replica trick and holographic calculations (Ryu-Takayanagi conjecture),
mainly applied to conformal field theories.
There are some older more direct approaches for the calculation of
entanglement entropy in quantum field theory:

I In 1986 Bombelli et.al.1 sketched a method to calculate SEE in free
scalar field theory on a curved background and argued that it would be
proportional to the area of the surface separating the two subsystems.

I In 1993, Srednicki2 actually performed this calculation numerically, on a
flat background and indeed found that SEE is proportional to the area of
the entangling surface.

1L. Bombelli, R. K. Koul, J. Lee and R. D. Sorkin, “A Quantum Source of Entropy for Black
Holes”, Phys. Rev. D 34, 373 (1986)

2M. Srednicki, “Entropy and Area”, Phys. Rev. Lett. 71, 666 (1993) hep-th/9303048
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Relation with Quantum Gravity?

This similarity of entanglement entropy with black hole entropy has initiated
discussions on whether the latter can be attributed totally or at least partially
to the former.
Such an approach would also imply that gravity itself could be an entropic
force related not to thermal statistics but rather to quantum statistics due to
quantum entanglement.
Holography and the Ryu-Takayanagi conjecture are also in line with such
interpretation3.
So we’d better understand entanglement in field theory in a more direct way

3N. Lashkari, M. B. McDermott and M. Van Raamsdonk, “Gravitational Dynamics from
Entanglement Thermodynamics” JHEP 1404, 195 (2014) arXiv:1308.3716 [hep-th]
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We extend Srendicki’s calculation:
I We consider a free real massive scalar field.
I We develop of a perturbative expansion for the analytical calculation of

entanglement entropy and the reduced density matrix.
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Systems of Coupled Oscillators
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Two Coupled Oscillators

Let’s start out considerations with the simple example of two coupled
harmonic oscillators.
The Hamiltonian of the system is

H =
1
2

(︁
p2

1 + p2
2 + k0(x2

1 + x2
2 ) + k1(x1 − x2)2

)︁
The ground state of the system is obviously

|0⟩ = |0⟩+ ⊗ |0⟩−

One may mistakenly think that there is no entanglement in this state, since it
can be written as a tensor product.
However, it is not a tensor product of states describing each of the “local”
oscillators 1 and 2 but of the normal modes. This state is actually entangled.
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Reduced Density Matrix

The reduced density matrix is

𝜌(x , x ′) =

∫︁ ∞

−∞
dy𝜓(x , y)𝜓*(x ′, y) =

√︂
𝛾 − 𝛽

𝜋
e− 𝛾

2 (x2+x′2)+𝛽xx′

where

𝛽 − (𝜔+ − 𝜔−)2

4 (𝜔+ + 𝜔−)
, 𝛾 =

𝜔2
+ + 𝜔2

− + 6𝜔+𝜔−

4 (𝜔+ + 𝜔−)
, 𝛾 − 𝛽 =

2𝜔+𝜔−

𝜔+ + 𝜔−
.

The eigenvalues and eigenfunctions of 𝜌 are:

pn = (1 − 𝜉)𝜉n, fn = Hn(
√
𝛼x)e−𝛼

2 x2
,

𝜉 =
𝛽

𝛼 + 𝛾
, 𝛼 =

√︀
𝛾2 − 𝛽2 =

√
𝜔+𝜔−
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Entanglement Entropy

Finally, the Entanglement Entropy equals

SEE = −
∞∑︁

n=0

pn ln pn = − ln(1 − 𝜉) − 𝜉

1 − 𝜉
ln 𝜉

At the limit the coupling between the two oscillators k1 goes to zero,
entanglement entropy goes to zero.
The dynamics of the problem are not determining the entanglement. This is
determined by the state. Any two-degrees of freedom system has the same
entanglement when in the same state. Dynamics pick a state (as the ground
state in this example) and determine the time evolution of entanglement.
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System of Coupled Oscillators

The same can be repeated for an arbitrary number N of harmonically coupled
oscillators,

H =
1
2

N∑︁
i=1

p2
i +

1
2

N∑︁
i,j=1

xiKijxj ,

where the matrix K is symmetric and positive definite.
We define the matrix Ω as the square root of K with positive eigenvalues

Ω =
√

K .

We define as subsystem A the N − n oscillators with index i > n. We define
the blocks of the matrix Ω,

Ω =

(︂
A B

BT C

)︂
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Reduced Density Matrix

It is matter of algebra to show that the reduced density matrix is given by

𝜌
(︀
x ; x ′)︀ =

[det (𝛾 − 𝛽)]
1
2

𝜋
N−n

2

e− xT 𝛾x+x′T 𝛾x′
2 +xT 𝛽x′

,

where
𝛽 =

1
2

BT A−1B, 𝛾 = C − 1
2

BT A−1B.

It has the eigenvalues:

pnn+1,...,nN =
N∏︁

i=n+1

(1 − 𝜉i ) 𝜉i
ni , 𝜉i =

𝛽Di

1 +
√︀

1 − 𝛽Di
2

where 𝛽Di are the eigenvalues of the matrix 𝛾−1𝛽
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Entanglement Entropy

It follows that the entanglement entropy equals:

S =
N∑︁

j=n+1

(︂
− ln (1 − 𝜉j ) −

𝜉j

1 − 𝜉j
ln 𝜉j

)︂
.

I The ground state is highly entangled.
I The specification of SEE requires a non-perturbative calculation (the

calculation of Ω and the diagonalization of 𝛾−1𝛽).
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QFT - Setting up the Problem

I We are interested in defining the subsystem A as the degrees of freedom
in some spatial region in space, i.e. outside a sphere of radius R.

I We consider the system at its ground state
I The fact that the field theory under study is free does not mean that

there is no entanglement at the ground state. Free means that different
momenta modes do not interact. Local degrees of freedom always
interact through the kinetic term.

I This problem is an appropriate continuous limit of the finite degrees of
freedom systems studied before.
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3+1 dimensions QFT discretization

The Hamiltonian of free scalar massive field theory in 3 + 1 dimensions reads:

H =
1
2

∫︁
d3x

[︂
𝜋2 (︀x⃗)︀+

⃒⃒⃒
∇⃗𝜙

(︀
x⃗
)︀⃒⃒⃒2

+ m2𝜙2(︀x⃗)︀]︂.
We define the modes

𝜙ℓm (x) = x
∫︁

dΩYℓm (𝜃, 𝜙)𝜙
(︀
x⃗
)︀

𝜋ℓm (x) = x
∫︁

dΩYℓm (𝜃, 𝜙)𝜋
(︀
x⃗
)︀
,
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Discretization Scheme

Only the radial coordinate is continuous. We introduce a lattice of spherical
shells with radii x = ja, j = 1, · · · ,N. The discretized Hamiltonian may be
found following the rules:

x → ja, 𝜙ℓm (ja) → 𝜙ℓm,j , 𝜋ℓm (ja) → 𝜋ℓm,j

a

𝜕𝜙ℓm (x)

𝜕x

⃒⃒⃒⃒
x=ja

→𝜙ℓm,j+1 − 𝜙ℓm,j

a
,

∫︁ (N+1)a

0
dx → a

N∑︁
j=1

.
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Regularization scheme

The regularization scheme is rather peculiar
I We introduced a UV radial cutoff 1/a.
I We introduced an IR radial cutoff 1/(Na).
I We introduced no angular cutoff. There is no obvious connection of a

with an energy cutoff.
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3+1 dimensions QFT discretization

The discretized Hamiltonian assumes the form:

H =
1

2a

∑︁
ℓ,m

N∑︁
j=1

[︃
𝜋2
ℓm,j +

(︂
j +

1
2

)︂2(︂
𝜙ℓm,j+1

j + 1
− 𝜙ℓm,j

j

)︂2

+

(︂
ℓ (ℓ+ 1)

j2 + m2a2
)︂
𝜙2

ℓm,j

]︂
≡ 1

2a

∑︁
ℓ,m

Hℓ

As a result the entanglement entropy can be found as:

SEE (N, n) =
∞∑︁
ℓ=0

(2ℓ+ 1) Sℓ (N, n),

where Sℓ is the entanglement entropy at the ground state of the Hamiltonian
Hℓ.
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The couplings matrix

The discretized Hamiltonian Hℓ corresponds to a problem of finite
harmonically coupled oscillators like those treated above. The corresponding
couplings matrix reads

K (3+1)
ij =

{︂
2 +

ℓ(ℓ+ 1) + 1/2
i2 + m2a2

}︂
𝛿i,j

− (i + 1/2)2

i (i + 1)
𝛿i+1,j −

(j + 1/2)2

j (j + 1)
𝛿i,j+1
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A perturbative expansion

We consider as subsystem A the degrees of freedom with j > nR . These are
the degrees of freedom outside a sphere of radius R = nRa.

I We are left with the problem of specifying the square root of the
couplings matrix specified above. Is there a limit where we may calculate
it perturbatively?

I The answer is yes. When the diagonal elements of the couplings matrix
are much larger than the non-diagonal ones, the latter can be treated as
a perturbation.

I This clearly corresponds to very massive fields. At this limit, the local
oscillators can be considered decoupled and the ground state of the
system is disentangled. Thus, the zero-th order entanglement entropy in
this approach vanishes.

I This expansion converges when the relative matrices are diagonally
dominant, i.e. the sum of the absolute values of all non-diagonal
elements does not exceed the diagonal one in all rows and columns.
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The perturbative expansion at leading order

The matrix K is of the form

Kij = Ki𝛿ij + Li (𝛿i+1,j + 𝛿i,j+1) ,

where Ki is of order m2 and Li is of order 1. We define

Ki :=
k2

i

𝜀2 Li := li (ki + ki+1) .

Thus, 𝜀 is our expansive parameter. Expansion in 𝜀 is a semiclassical
expansion, since recovering the fundamental constants yields

𝜀 ∼ ~/ (mac) .

The above is consistent with the vanishing zero-th order result.
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The perturbative expansion at leading order

Now it is a matter of simple algebra to show that at first non-vanishing order
the matrix Ω equals

Ωij = ki𝛿ij𝜀
−1 + li (𝛿i+1,j + 𝛿i,j+1) 𝜀+ 𝒪

(︁
𝜀3
)︁
.

𝛽ij =
l2
n

2kn
𝛿i,1𝛿j,1𝜀

3 + 𝒪
(︁
𝜀5
)︁
,(︁

𝛾−1𝛽
)︁

ij
=

l2
n

2knkn+1
𝛿i,1𝛿j,1𝜀

4 + 𝒪
(︁
𝜀6
)︁
.

The sole non-vanishing element of 𝛾−1𝛽 is obviously its sole non-vanishing
eigenvalue. Thus, the entanglement entropy at first non-vanishing order
equals

SEEℓ =
l2
n

4knkn+1

(︂
1 − ln

l2
n𝜀

4

4knkn+1

)︂
𝜀4 + 𝒪

(︁
𝜀8
)︁
.
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Locality

Locality got imprinted in the above result to the fact that the matrix 𝛾−1𝛽
contains only one non-vanishing element corresponding to the coupling
between the degrees of freedom just inside and just outside the entangling
surface. This fact leads to the area law.
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Third non-vanishing order

At third order a second non-vanishing eigenvalue emerges. Indicatively, the
part of the eigenvalues that is relevant for the Area Law (the dominant part for
large entangling sphere radii) is

𝜆1 =
1

8K 2
r

+
5

16K 4
r

+
1875

2048K 6
r

and
𝜆2 =

1
2048K 6

r

This is a persisting pattern. A new eigenvalue emerges every second order,
while the previous ones accept corrections at any new order. In general the
effect of the corrections is more important than the effect of the new
eigenvalues.
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Section 4

Entanglement and Area
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Expanding for large entangling sphere radii

Our first goal is understanding the scaling properties of entanglement entropy
with the size of the entangling sphere.
We consider that the entangling sphere lies exactly in the middle between the
sites n and n + 1 such that R = ra, r = n + 1/2. In order to specify the
entanglement entropy, we have to sum all the ℓ sectors. Of course the
discrete sum cannot be analytically performed, however, it may be
approximated by an integral,

SEE =
∞∑︁
ℓ=0

(2ℓ+ 1) SEEℓ (n, ℓ (ℓ+ 1))

≃
∫︁ ∞

0
dℓ (2ℓ+ 1) SEEℓ (n, ℓ (ℓ+ 1)).
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The “Area law”

At third order in 𝜀 we find that the leading contribution for large r is:

SArea =

(︃
3 + 2 ln

(︀
4(2 + m2a2)

)︀
16(2 + m2a2)

+
167 + 492 ln

(︀
4(2 + m2a2)

)︀
4608(2 + m2a2)3

+
−11 + 2940 ln

(︀
4(2 + m2a2)

)︀
15360(2 + m2a2)5 + 𝒪

(︁
m−14

)︁)︃
r 2 + 𝒪

(︁
r 0
)︁

This is the so called area law behaviour of entanglement entropy, analytically
calculated for the first time directly in quantum field theory.
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The Euler MacLaurin formula

The approximation of the series with an integral can be performed more
formally with the use of Euler MacLaurin summation formula

b∑︁
n=a

f (n) =

∫︁ b

a
f (x)dx+

f (b) + f (a)

2

+
∞∑︁

k=1

B2k

(2k)!

(︁
f (2k−1)(b) − f (2k−1)(a)

)︁
,

where Bk are the Bernoulli numbers defined so that B1 = 1/2.
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First subleading term

For example at r 0 order, apart from the S0/2 term, we have only one more
contribution at r 0 order, namely the k = 1 term, and speciffically the part of
this term where the derivative acts on the factor 2ℓ+ 1 and not on Sℓ.
Bearing in mind that B2 = 1/6, the contribution to the constant term by the
terms of Euler-Maclaurin formula apart from the integral one are S0/3,

S =

∫︁ ∞

0
(2ℓ+ 1)Sℓdℓ+

S0

3
.

One can easily see that only the integral term can contribute to the “area law”
term (∼ r 2).
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3+1 dimensions

Area law term

SArea =

(︃
3 + 2 ln

(︀
4(2 + m2a2)

)︀
16(2 + m2a2)

+
167 + 492 ln

(︀
4(2 + m2a2)

)︀
4608(2 + m2a2)3

+
−11 + 2940 ln

(︀
4(2 + m2a2)

)︀
15360(2 + m2a2)5 + 𝒪

(︁
m−14

)︁)︃
r 2

Constant Term

Sconst = − 1
48 (2 + m2a2)

−
1 + 2 log

(︀
4
(︀
2 + m2a2)︀)︀

96 (2 + m2a2)2

+

(︃
−127 + 90 log

(︀
4
(︀
2 + m2a2)︀)︀

9600 (2 + m2a2)3 −
1 + 164 log

(︀
4
(︀
2 + m2a2)︀)︀

3072 (2 + m2a2)4 𝒪
(︁

m−10
)︁)︃
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3+1 dimensions comparison with numerical
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3+1 dimensions massless limit

Interestingly enough, the perturbative expansion appears to converge even in
the massless limit to the numerical results.
This happens because the parameter of expansion is not exactly the inverse
of the square of the mass, but rather it is equal to

𝜀 ≃ 1√
m2a2 + 2

.

The series converges even at m = 0,

S ≃
(︂

3 + 2 ln 8
32

+
167 + 492 ln 8

36864
+

−11 + 2940 ln 8
491520

)︂
r 2

S ≃ (0.224 + 0.032 + 0.012) r 2 = 0.268r 2

allowing us to compare to the famous result by Srendicki, who numerically
found

S ≃ 0.30r 2.
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3+1 dimensions subleading term

The perturbative result for the subleading term is also in good agreement with
the numerical results.
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2+1 dimensions
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Universal terms

In 3 + 1 dimensions, the first subleading term is a constant even in the
massless case.
The usual treatment of entanglement entropy in 3 + 1 dimensions in either
conformal field theory or in theories with holographic duals through the
Ryu-Takayanagi conjecture predicts an expansion for entanglement entropy
of the form

SEE = c2
R2

a2 + c0 + c ln
a
R

+ 𝒪
(︁

a−2
)︁
.

So, how is the absence of the logarithmic term in our expansion explained?
The reason is quite complicated and related to the failure to capture the
leading entanglement entropy contribution in 1 + 1 dimensions.
In a similar manner our perturbation theory is unable to capture the constant
term in massless 2 + 1 field theory.
These terms that we cannot capture are universal, they depend on the global
characteristics of the entangling surface and play the role of order parameter
in geometric phase transitions.
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Universal terms

The formulae used in our perturbation theory for the square root of matrix K ,
as well as the formulae for the inverse of matrices A and C, present some
“edge effects”.
Such “edge effects” can be treated analytically in our expansion as long as
the order of the expansion is kept lower than the dimension of the matrices.
If this is not the case, these “edge effects” will get reflected at the ends of the
matrices and spread all over the matrix elements.
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Universal terms

I The reflections of these “edge effects” lead to matrix elements that
depend on all the elements of the matrix K thus, contributions to the
entanglement entropy that depend on the global characteristics of the
entangling surface.

I Such “universal” terms cannot be captured at any finite order in our
perturbation series. They are rather non-perturbative effects in this
expansion. Of course they are visible in the numerical calculations.
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Universal terms

I The terms we capture depend on the local characteristics of the
entangling surface. This is depicted to the fact that the perturbative
expressions for the elements of the matrices Ω, A−1 and C−1 depend on
a finite number of the elements of matrix K .

I This is the reason our method is appropriate to capture the “area law”,
as well as subleading terms that scale with smaller powers of the
entangling sphere radius. Our method is appropriate to study the
dependence of such terms on local geometric characteristics of the
entangling surface, such as curvature.

I The introduction of a mass exponentially dumps the propagation of
these “edge effects”. As a result, our expansive calculations accurately
converge to the numerical calculations.

Georgios Pastras An Inverse Mass Expansion for Entanglement Entropy



Introduction
Systems of Coupled Oscillators

Perturbation Theory
Entanglement and Area

Discussion

Expanding for large entangling sphere radii
Subleading Terms
Results and comparison with numerical calculations
Not-perturbative contributions
Dependence on the Regularization Scheme

The regularization scheme

In our analysis, we have applied a peculiar, inhomogeneous regularization.
We have imposed a cutoff in the radial direction, but not in the angular
directions.
Thus, the measurables that we have calculated, are those measured by a
peculiar observer who has access to radial excitations of the theory up to an
energy scale 1/a and to arbitrary high energy azimuthal excitations.
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An angular cutoff

We could have applied a different more homogeneous regularization
imposing an azimuthal cutoff by constraining the summation series in ℓ to a
maximum value equal to ℓmax. Such a prescription would make our approach
more similar to a traditional square lattice regularization.
Locality enforces the area law term to depend on the characteristics of the
underlying theory in the region of the entangling surface.
Therefore, a natural selection for an azimuthal cutoff ℓmax, when considering a
d-dimensional entangling surface should have the following property: the
total number of harmonics with ℓ ≤ ℓmax should equal the area of the
entangling surface divided by ad . Such a cutoff is of the form ℓmax = cR/a,
where c is a constant.
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The expansion with an angular cutoff

It is not difficult to repeat our analysis including this azimuthal cutoff. The only
extra necessary steps are the introduction of a finite upper bound in the
definite integral and similarly the inclusion of the terms calculated at x = ℓmax

in the Euler-Maclaurin formula.
As an indicative example, in 3 + 1 dimensions, the area law term calculated
at second order in the inverse mass expansion assumes the form

SEE =

(︃
3 + 2 ln

[︀
4
(︀
𝜇2a2 + 2

)︀]︀
(𝜇2a2 + 2)

−
3 + 2 ln

[︀
4
(︀
𝜇2a2 + 2 + c2)︀]︀

(𝜇2a2 + 2 + c2)
+

167 + 492 ln
[︀
4
(︀
𝜇2a2 + 2

)︀]︀
4608(𝜇2a2 + 2)3

−
167 + 492 ln

[︀
4
(︀
𝜇2a2 + 2 + c2)︀]︀

4608(𝜇2a2 + 2 + c2)3 + 𝒪
(︁
𝜇−10

)︁)︃ R2

a2 .
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Comparison with numerical results

An azimuthal cutoff of the form ℓmax = cR/a preserves the dominance of the
area law term in entanglement entropy. The inverse mass expansion is still a
good approximation when such a regularization scheme is chosen.
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I The area law term, as well as the subleading terms, are strongly affected
by the regularization scheme. This is the expected behaviour. The only
terms that do not depend on the regularization scheme are the universal
terms, which cannot be captured by our perturbation theory.

I The introduction of an azimuthal cutoff would also set the perturbative
calculation of the entanglement entropy finite at higher number of
dimensions, where the respective integral term diverges as ℓmax → ∞.

I Srednicki’s calculation, which is equivalent to the specific choice c → ∞,
is an upper bound for the area law coefficient. The fact that the integral
terms in more than 3 + 1 dimensions diverge, implies that such an upper
bound exists only in 2 + 1 and 3 + 1 dimensions.
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Section 5

Discussion
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Summary

I We managed to find a perturbative method to calculate SEE analytically,
using as expansive parameter the inverse mass of the field.

I The calculation indicates that the major contribution to entanglement
entropy is a term proportional to the area of the entangling surface, i.e.
the “area law” term. The perturbative calculation of the coefficient of this
term agrees with the numerical calculation of entanglement entropy.
Subleading terms can also be perturbatively calculated.

I The inverse mass expansion and the entangling sphere radius
expansions can be performed simultaneously, but they are not parallel in
any sense. The leading term in the entangling sphere radius expansion,
i.e. the area law term, as well as the subleading terms, receive
contributions at all orders in the inverse mass expansion.
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Summary

I The area law term, as well as the subleading ones are dependent on the
regularization scheme. Universal terms that depend on the global
characteristics of the entangling surface are non-perturbative
contributions in this expansive approach.

I The coefficient of the area law term in 2 + 1 and 3 + 1 dimensions has
an upper bound, for any regularization scheme. The latter does not exist
in higher dimensions.

I The perturbation series converges even in the massless field case. In
the case of free massless scalar field in 3 + 1 dimensions the inverse
mass series for the coefficient of the area law term approaches the value
0.295 found in the literature.
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Summary

I The perturbative method is not limited to the calculation of SEE , but it
provides the full spectrum of the reduced density matrix. The latter,
unlike SEE , contains the full information of the entanglement between the
considered subsystems.
This is clearly an advantage in comparison to holographic or replica trick
calculations.

I Locality is encoded into the couplings matrix K as the absence of
non-diagonal elements apart from the elements of the superdiagonal
and subdiagonal. This results in an hierarchy for the eigenvalues of 𝜌A.
This hierarchy in the spectrum of 𝜌A depicts the fact that locality enforces
entanglement between the interior and the exterior of the sphere to be
dominated by the entanglement between pairs of neighbouring degrees
of freedom that are separated by the entangling surface.
The latter are clearly proportional to the area and not the volume of the
entangling sphere.
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Future Directions

I Field theory at finite temperature. Cosmological implications.
I Field theory at excited states.
I More general entangling surfaces. For example entangling surfaces that

correspond to the elliptic minimal surfaces found in AdS4.
I Field theory on a curved background, e.g. dS or AdS.
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Thank you!
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