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Motivation-Beyond the standard model

Standard Model is a successful theory: measurements are in agreement with prediction.

o the standard model does not include

* Dark matter
Weakly Interactive Massive Particle (WIMPs)

* Grand Unification
Color and EWK forces parts of one " Grand Unified” group?

* Gravity
Not described in SM at all

* Neutrino Mass.
neutrino oscillation experiments have shown that neutrinos do have mass.

* Hierarchy problem
why the weak force is 10%* times as strong as gravity?
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...
Why Supersymmetry (SUSY)
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o predicts the existence of supersymmetric particles (sleptons , squarks, neutralinos
and charginos)
@ each SM particle would have a superpartner whose spin differs by 1/2

@ is not observed yet
Motivation for SUSY

@ provides solution to the hierarchy problem
o provides a dark matter candidate — LSP is stable
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Analysis Overview

Analysis Overview

Search for general gauge mediated (GGM) supersymmetry breaking in final states
involving photons.
GGM supersymmetry breaking can produce events with double photons, jets and
significant missing energy (E7").

e T5gg model: simplified model of GGM

@ R-parity conservation

o SUSY particles are produced in pairs

@ Branching ratio: 100%

@ Assume gluino pair production where the NLSP neutralino decays to a gravitino and
photon ( x9 — G~ ), resulting in events with two photons and missing transverse

energy.
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Backgrounds

Quantum Chromodynamics (QCD) background

@ most significant background due to huge QCD cross section

@ can have real photons in the final state or we can get electromagnetically-rich jet
fragmentation mimicking the response of a photon

o E7" comes from mis-measured hadronic activity.

Electroweak (EWK) background

@ includes W~ and W + jet events

o W — ev the electron is misidentified as a photon
o W + jet events, one of the jets fakes a photon

o genuine ET"° from the neutrino

Irreducible Zvy~ — vvyvy background
miss

@ process with genuine EY

@ two real photons in the final state

@ modeled via simulation
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Analysis Ove

Dataset Trigger Requirements

We used data from proton-proton collisions collected by the CMS detector in 2016 with

center of mass energy /s = 13TeV and integrated luminosity 35.88fb~!.

The data was selected after they satisfied a diphoton trigger.

Primary photon Et > 30 GeV
Secondary photon Et > 18 GeV
@ Invariant mass of the two photons M, > 95 GeV

Satisfy Isolation and Shape requirements

Trigger efficiency was measured: 97.2 % efficient.
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Analysis Overview

Object Selection-Photons-FElectrons

Photons

From PF photon Collection
Pr > 40GeV
I < 1.4442

Passes medium photon ID

Passes Pixel seed veto

Electrons
o From PF photon collection
o Pr > 40GeV

I < 1.4442

o Passes medium photon ID

Fails pixel seed veto
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Analysis Overview

Object Selection -Fake Photons- E?iss

‘Fake Photons' are photons that fail isolation or shape requirements.
Primarily composed of electromagnetically-rich jets reconstructed as photons

o Control Sample with fakes are used to model the QCD background

o Make Fakes orthogonal to Photons by inverting charged hadron isolation or shape
requirements of the medium photon ID.

Missing Transverse Energy (ET™*)
o results from LSP escaping the detector without interacting
@ corrections are applied

o all recommended filters are applied
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Analysis Overview

Lepton Veto is applied:

@ Veto on electrons passing medium ID requirements that do not overlap with one of
our photon candidates (e,f v )

@ Veto on muons passing loosing ID requirements

Object Cleaning
o AR(v,e) > 0.3
o AR(fake,y) > 0.3 and AR(fake,e) > 0.3

Events are sorted into three categories depending on the selection of their hightest-pr
electromagnetic objects ( v, ff, ey ).
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Analysis Ove

Control and Candidate Sample

Electron-Gamma Sample (e)

@ passes primary trigger

e Require mey > 105GeV

@ Require AR > 0.6 between electron and photon
Double fake sample (ff)

o Passes the primary trigger

e require mg > 105GeV

o require AR > 0.6 between fakes.
Candidate DiPhoton Sample (y7)

@ passes primary trigger

e Require m,, > 105GeV

o AR > 0.6 between photons

Signal Region consists of all the events with
e EF*s > 100GeV and two photons.
@ 6 signal bins
Control Region events with EF™ < 100GeV (signal contamination < 1%)
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QCD Background Estimation

QCD Background Estimation - Backgrounds without true E?’“

Strategy

o Processes that lack genuine EF™*, but can emulate GGM signal topologies if the
hadronic activity in the event is poorly measured.

o Used double fakes control sample to estimate the EF™* distribution of QCD
backgrounds.

o But this sample has different amounts of hadronic activity than the candidate vy
sample.

@ Model the hadronic recoil of the event
with the di-EM pr of the event, where
di-EM pr is the vector sum of the Pr
of the two electromagnetic objects

o Reweight the control samples by
(di-EM pt)~~y /(di-EM p7)# to correct
for the differences in hadronic activity.

o Normalize the ff distribution to MET < 50GeV region of vy
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Unweighted ET™* Distribution

CMS 35.9 fbl (13 TeV)
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QCD Background Estimation

di-EM pr reweighted Ef"** Distribution
The reweighted ff ET™* is used as a central value for the QCD background estimate

35.9 fb* (13 TeV)
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QCD Background Estimation

Cross Check on di-EM pt- vy ff ratio method

@ assume that the relative fraction of 7+ and ff events does not depend sensitively on
the ET™

@ if so the ratio can be modeled as a simple function.

e multiply the function by the observed number of ff events in our signal region to get
an alternate QCD estimate

Ratio of number of yy to ff events
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QCD Background Estimation

o di-EM pr reweighting and gg/ff ratio method give overlapping predictions within the

uncertainties

o the difference between two methods is taken as a systematic uncertainty on the

miss

overall EF"* shape.

Reweighted ff estimate

Ratio method estimate
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Source of Systematic Uncertainties

Systematic Uncertainty of QCD background estimation

Sytematic uncertainty from reweighting procedure
@ measured using toy distributions

o each di-EM pr bin is varied with a Gaussian distribution whose sigma is equal to the
statistical uncertainty in each bin

EMss Shape uncertainty - uncertainties from the ratio method
e two estimates for the QCD background for each ET** bin

o the difference between the two estimates is taken as a symmetric systematic
uncertainty

ET™ (GeV) | QCD Estimate (Events) Stat. Un. Shape Un. | Reweighting Un.
100 — 115 69.23 +15.09, —12.57 +14.03 +1.66
115 — 130 30.89 +11.74,-8.79 +8.81 +1.67
130 — 150 25.98 +11.86, —8.50 +9.42 +1.40
150 — 185 20.49 +10.10, —7.09 +5.77 +0.55
185 — 250 8.74 +11.53, —5.65 +5.06 +1.66
> 250 5.13 +11.79, —4.24 +3.29 +1.26
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EWK background estimate

EWK background Estimate

EWK background in the signal region (E

miss

7% > 100GeV) comes mainly from W~ — evy

where the electron is misidentified as a photon.

o Fake rate fo_,, (AN-2016-470)

@ Tag and Probe method with Z — ee events

o Assigned 30% systematic

Fake rate is used to calculate a transfer factor which is applied to an ey control sample.
Transfer factor = fo_, /(1 — fe—y) = 0.0267 £ 30%.

ET* (GeV) EWK Background Estimate
100-115 8.17 £2.50
115-130 5.50 £1.70
130-150 4.78 £1.48
150-185 3.95 +£1.24
185-250 3.55 +1.11
> 250 2.11 £0.69
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EWK background estimate

Irreducible Z~y — vvyy Background

@ small contribution from Z~~ where Z decays to neutrinos

two photons and true Efss

modeled via simulation

@ assigned a flat uncertainty of 50%

E7*bin (GeV) | Expected number of Zy+y events

100 — 115 1.30 £ 0.65
115 — 130 1.14 + 0.57
130 — 150 1.12 +0.56
150 — 185 1.32 £ 0.66
185 — 250 1.28 £ 0.64

> 250 1.14 + 0.57
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CMS 35.9 fb! (13 TeV)
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Ermiss bin (GeV) | Total expected | Observed
100 — 115 78.69 %% 65
115 — 130 37.53735% 27
130 — 150 31.8811%% 17
150 — 185 25.7615% 13
185 — 250 13.557 3% 8

> 250 8.381 %% 10
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Conclusions

@ an analysis of SUSY search is presented on 13TeV using 2016 data

o with 35.9 fb~! we improved our sensitivity compared to a similar analysis with 2015
data.

@ no excess is observed with respect to the standard model expectation

@ next step — to produce exclusion limit plots to exclude gluino masses
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Back Up
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Photon Performance

Spring 16 Medium Cut-based Photon ID
H/E 0.0396
Tinin 0.01022
ISOcy | 0.441
ISOny | 2.725 + 0.0148pT + 0.000017p%.
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Photon Selection Efficiency

Scale Factors from EGM POG are calulated in bins of photons pr and n
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H — ~~ SF Measurements

Efficiencies using a tag and probe method with Z — ee

Data ‘ Simulation | Ratio
Eff. [ Stat | Syst | Eff. | Stat. | Eff. | Unc.

Barrel; Ry >0.85 0.9423 | 0.0004 | 0.0018 | 0.9374 | 0.0007 | 1.0052 | 0.0009
Barrel; Ry <0.85 0.8225 | 0.0012 | 0.0008 | 0.8258 | 0.0007 | 0.9960 | 0.0017
Endcap; Ry >0.90 | 0.9153 | 0.0007 | 0.0005 | 0.9127 | 0.0009 | 1.0028 | 0.0013
Endcap; Ry <0.90 | 0.5011 | 0.0005 | 0.0139 | 0.5024 | 0.0008 | 0.9974 | 0.0019

Efficiencies using a tag and probe method with Z — ptpu~ v

Data Simulation Ratio
Eff. Stat. Eff. Stat. Eff. Unc.
Barrel; Ry >0.85 0.9934 | 0.0008 | 0.9973 | 0.0008 | 0.9961 | 0.0012
Barrel; Ry <0.85 0.9737 | 0.0026 | 0.9826 | 0.0041 | 0.9910 | 0.0049
Endcap; Rg >0.90 | 0.9846 | 0.0019 | 0.9853 | 0.0026 | 0.9994 | 0.0033
Endcap; Ry <0.90 | 0.9558 | 0.0107 | 0.9617 | 0.0126 | 0.9939 | 0.0171
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Weighted Average over the mass points

Average photon scale factor per mass point Average photon SF uncertainty per mass point
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Photon Selection Efficiency

Use official scale factors by the EGM POG for Moriond 2017

e tag and probe method using Z — ee events

o weighted average over all photons passing our selection criteria in each SUSY signal
mass point.

@ Photon Scale Factor = 1.002 + 0.013

@ this value is consistent with H — ~~ measurement using the same trigger and
R9 < 0.5 cut (HIG-16-020)

o tag and probe method on Z — u* ™+ events to calculate the efficiency of the pixel
veto

o Pixel Seed Veto Scale Factor = 0.998 + 0.013

Require two photons in the final state, two factors of both values are used.
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MET filters

Primary Vertex filter

Beam Halo Filter

HBHE nose filter

HBHEiso noise filter

ECAL trigger primitive filter
ee badSC noise filter

Bad PF muon filter

Bad charged hadron filter

b S S . S . S

Dublicate muon filter
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Trigger Efficiencies

@ measured using a tag and probe method
e control trigger: HLT _Ele27_WPTight_Gsf
o calculate the leading and subleading efficiencies
o calculate the efficency with respect to the invariant mass cut
Efficiency of Trailing Filter vs Photon Pt . Efficiency of Leading Filter vs Photon Pt . Efficiency of HLT Path vs DiPhoton InvMass
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Overall the trigger is 97.2 % efficient.
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