00		

B-L Higgs Inflation in Supergravity with Several Consequences

C. PALLIS

SCHOOL OF TECHNOLOGY ARISTOTLE UNIVERSITY OF THESSALONIKI

BASED ON:

• C.P., Universe 4, No.1, 13 (2018) [arXiv:1710.05759].

OUTLINE

HIGGS INFLATION IN SUGRA

- GENERAL FRAMEWORK
- INFLATING WITH A SUPERHEAVY HIGGS

EMBEDDING IN A B - L GUT

- B L Breaking, μ Term & Neutrino Masses
- The Inflationary Scenario

INFLATION ANALYSIS

- INFLATIONARY OBSERVABLES GRAVITATIONAL WAVES
- FITTING THE DATA

POST-INFLATIONARY EVOLUTION

- Inflaton Decay & non-Thermal Leptogenesis
- RESULTS
- CONCLUSIONS

HEP 2018: RECENT DEVELOPMENTS IN HIGH ENERGY PHYSICS AND COSMOLOGY.

HIGGS INFLATION IN SUGRA	Embedding In A $B - L$ GUT OO OO	Post-Inflationary Evolution 000 0	
General Framework			

• The General Einstein Frame Action For The Scalar Fields z^{lpha} Plus Gravity In Four Dimensional, $\mathcal{N}=1$ SUGRA is:

$$S = \int d^4x \sqrt{-\widehat{g}} \left(-\frac{1}{2} \widehat{\mathcal{R}} + K_{\alpha \overline{\beta}} \widehat{g}^{\mu\nu} D_{\mu} z^{\alpha} D_{\nu} z^{*\beta} - \widehat{V} \right) \quad \text{Where We Use Units With } m_{\text{P}} = 1.$$

ALSO K IS THE KÄHLER POTENTIAL WITH $K_{a\bar{\beta}} = \frac{\partial^2 K}{\partial z^{\alpha} \partial z^{*\bar{\beta}}} > 0$ and $K^{\beta\alpha} K_{a\bar{\gamma}} = \delta_{\bar{\gamma}}^{\bar{\beta}}$; $D_{\mu}z^{\alpha} = \partial_{\mu}z^{\alpha} + igA_{\mu}^{a}T_{a\beta}^{a}z^{\beta}$, Where A_{μ}^{a} is the Vector Gauge Fields and T_{a} are the Generators of the Gauge Transformations OF z^{α} ; Finally, $\widehat{V} = \widehat{V}_{F} + \widehat{V}_{D}$ With $\widehat{V}_{F} = e^{K} \left(K^{a\bar{\beta}}F_{\alpha}F_{\bar{\beta}}^{*} - 3|W|^{2} \right)$ With W the Superpotential and $F_{\alpha} = W_{z^{\alpha}} + K_{z^{\alpha}}W$; $\widehat{V}_{D} = \frac{1}{2}g^{2}D_{a}^{2}$ with $D_{a} = z_{\alpha} (T_{a})_{\beta}^{a}K_{z\beta}$. • We Concentrate on Higgs Inflation (HI) Driven by \widehat{V}_{F} Since We Can Easily Assure $\widehat{V}_{D} = 0$ During HI.

Therefore, HI Within SUGRA Requires The Appropriate Selection of the Functions W and K

HIGGS INFLATION IN SUGRA	Embedding In A $B - L$ GUT OO OO	Post-Inflationary Evolution 000 0	
General Framework			

• The General Einstein Frame Action For The Scalar Fields z^{lpha} Plus Gravity In Four Dimensional, $\mathcal{N}=1$ SUGRA is:

$$S = \int d^4x \sqrt{-\widehat{g}} \left(-\frac{1}{2} \widehat{\mathcal{R}} + K_{\alpha \beta} \widehat{g}^{\mu \nu} D_{\mu} z^{\alpha} D_{\nu} z^{*\beta} - \widehat{V} \right) \quad \text{Where We Use Units With } m_{\text{P}} = 1.$$

ALSO K IS THE KÄHLER POTENTIAL WITH $K_{a\bar{\beta}} = \frac{\partial^2 K}{\partial z^{\alpha} \partial z^{*\bar{\beta}}} > 0$ and $K^{\beta\alpha} K_{a\bar{\gamma}} = \delta_{\bar{\gamma}}^{\bar{\beta}}$; $D_{\mu}z^{\alpha} = \partial_{\mu}z^{\alpha} + igA_{\mu}^{a}T_{a\beta}^{a}z^{\beta}$, Where A_{μ}^{a} is the Vector Gauge Fields and T_{a} are the Generators of the Gauge Transformations OF z^{α} ; Finally, $\widehat{V} = \widehat{V}_{F} + \widehat{V}_{D}$ With $\widehat{V}_{F} = e^{K} \left(K^{a\bar{\beta}}F_{a}F_{\bar{\beta}}^{*} - 3|W|^{2} \right)$ With W the Superpotential and $F_{\alpha} = W_{z^{\alpha}} + K_{z^{\alpha}}W$; $\widehat{V}_{D} = \frac{1}{2}g^{2}D_{a}^{2}$ with $D_{a} = z_{\alpha} (T_{a})_{\beta}^{a}K_{z^{\beta}}$. • We Concentrate on Higgs Inflation (HI) Driven by \widehat{V}_{F} Since We Can Easily Assure $\widehat{V}_{D} = 0$ During HI.

THEREFORE, HI WITHIN SUGRA REQUIRES THE APPROPRIATE SELECTION OF THE FUNCTIONS W AND K

DIFFICULTIES AND POSSIBLE WAYS OUT

• The η Problem. Coefficients of Order Unity in K May Spoil The Flatness of \widehat{V}_{F} Due to The Factor e^{K} . This Can Be Evaded IF We Impose A Shift Symmetry so That $K = K(\Phi - \Phi^{*}) = K(\mathrm{Im}(\Phi))$ and the Inflaton be $\phi = \sqrt{2} \mathrm{Re}(\Phi)$.

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト

HIGGS INFLATION IN SUGRA	Embedding In A $B - L$ GUT OO OO	Post-Inflationary Evolution 000 0	
General Framework			

• The General Einstein Frame Action For The Scalar Fields z^{lpha} Plus Gravity In Four Dimensional, $\mathcal{N}=1$ SUGRA is:

$$S = \int d^4x \sqrt{-\widehat{g}} \left(-\frac{1}{2} \widehat{\mathcal{R}} + K_{\alpha \overline{\beta}} \widehat{g}^{\mu\nu} D_{\mu} z^{\alpha} D_{\nu} z^{*\beta} - \widehat{V} \right) \quad \text{Where We Use Units With } m_{\text{P}} = 1.$$

ALSO K IS THE KÄHLER POTENTIAL WITH $K_{a\bar{\beta}} = \frac{\partial^2 K}{\partial z^{\alpha} \partial z^{*\bar{\beta}}} > 0$ and $K^{\bar{\beta}\alpha} K_{a\bar{\gamma}} = \delta^{\bar{\beta}}_{\bar{\gamma}}; \quad D_{\mu}z^{\alpha} = \partial_{\mu}z^{\alpha} + igA^a_{\mu}T^a_{a\beta}z^{\beta},$ Where A^a_{μ} is the Vector Gauge Fields and T_a are the Generators of the Gauge Transformations OF z^{α} ; Finally, $\widehat{V} = \widehat{V}_F + \widehat{V}_D$ with $\widehat{V}_F = e^K \left(K^{\alpha\bar{\beta}}F_{\alpha}F^*_{\beta} - 3|W|^2 \right)$ with W the Superpotential and $F_{\alpha} = W_{z^{\alpha}} + K_{z^{\alpha}}W; \quad \widehat{V}_D = \frac{1}{2}g^2D^2_{\alpha}$ with $D_a = z_{\alpha}(T_a)^{\alpha}_{\beta}K_{z^{\beta}}.$ • We Concentrate on Higgs Inflation (HI) Driven by \widehat{V}_F . Since We Can Easily Assure $\widehat{V}_D = 0$ During HI.

THEREFORE, HI WITHIN SUGRA REQUIRES THE APPROPRIATE SELECTION OF THE FUNCTIONS W AND K

• DIFFICULTIES AND POSSIBLE WAYS OUT

- The η Problem. Coefficients of Order Unity in K May Spoil The Flatness of \widehat{V}_F Due to The Factor e^K . This Can Be Evaded IF We Impose A Shift Symmetry so That $K = K(\Phi - \Phi^*) = K(\operatorname{Im}(\Phi))$ and the Inflaton be $\phi = \sqrt{2}\operatorname{Re}(\Phi)$.
- The Runaway Problem. The Term $-3|W|^2$ May Render \widehat{V}_F Unbounded From Below. To Avoid This We May Adopt a WWhere the Inflaton is Multiplied With A Stabilizer Field S Which Has To Be Stabilized At Zero During Inflation.

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト

HIGGS INFLATION IN SUGRA O	Embedding In A $B - L$ GUT OO OO	Post-Inflationary Evolution 000 0	
General Framework			

• The General Einstein Frame Action For The Scalar Fields z^{lpha} Plus Gravity In Four Dimensional, $\mathcal{N}=1$ SUGRA is:

$$S = \int d^4x \sqrt{-\widehat{g}} \left(-\frac{1}{2} \widehat{\mathcal{R}} + K_{\alpha \overline{\beta}} \widehat{g}^{\mu\nu} D_{\mu} z^{\alpha} D_{\nu} z^{*\beta} - \widehat{V} \right) \quad \text{Where We Use Units With } m_{\text{P}} = 1.$$

ALSO K IS THE KÄHLER POTENTIAL WITH $K_{a\bar{\beta}} = \frac{\partial^2 K}{\partial z^{\alpha} \partial z^{*\bar{\beta}}} > 0$ and $K^{\beta\alpha} K_{a\bar{\gamma}} = \delta_{\bar{\gamma}}^{\bar{\beta}}$; $D_{\mu}z^{\alpha} = \partial_{\mu}z^{\alpha} + igA_{\mu}^{a}T_{a\beta}^{a}z^{\beta}$, Where A_{μ}^{a} is the Vector Gauge Fields and T_{a} are the Generators of the Gauge Transformations OF z^{α} ; Finally, $\widehat{V} = \widehat{V}_{F} + \widehat{V}_{D}$ With $\widehat{V}_{F} = e^{K} \left(K^{a\bar{\beta}}F_{a}F_{\bar{\beta}}^{*} - 3|W|^{2} \right)$ With W the Superpotential and $F_{\alpha} = W_{z^{\alpha}} + K_{z^{\alpha}}W$; $\widehat{V}_{D} = \frac{1}{2}g^{2}D_{a}^{2}$ with $D_{a} = z_{\alpha} (T_{a})_{\beta}^{a}K_{z^{\beta}}$. • We Concentrate on Higgs Inflation (HI) Driven by \widehat{V}_{F} Since We Can Easily Assure $\widehat{V}_{D} = 0$ During HI.

THEREFORE, HI WITHIN SUGRA REQUIRES THE APPROPRIATE SELECTION OF THE FUNCTIONS W AND K

DIFFICULTIES AND POSSIBLE WAYS OUT

- The η Problem. Coefficients of Order Unity in K May Spoil The Flatness of \widehat{V}_{F} Due to The Factor e^{K} . This Can Be Evaded If We Impose A Shift Symmetry so That $K = K(\Phi - \Phi^*) = K(\mathrm{Im}(\Phi))$ and the Inflaton be $\phi = \sqrt{2}\mathrm{Re}(\Phi)$.
- The Runaway Problem. The Term $-3|W|^2$ May Render \widehat{V}_F Unbounded From Below. To Avoid This We May Adopt a WWhere the Inflaton is Multiplied With A Stabilizer Field S Which Has To Be Stabilized At Zero During Inflation.
- Complementarily, From Models of non-Minimal Chaotic Inflation (nMI) in SUGRA We know that \widehat{V}_F is Sufficiently Flat, IF We Adopt $K = -N \ln (1 + c_{\mathcal{R}}(\Phi^p + \Phi^{*p})) + \cdots$ and Tune N > 0 and n With The Exponent m of Φ in $W = \lambda S \Phi^q$. E.g.,

If we Select
$$W = \lambda S \Phi^2$$
 and $K = -2 \ln \left(1 + 2c_R (\Phi^2 + \Phi^{*2})\right) - (\Phi - \Phi^*)^2 / 2 + |S|^2$
We Obtain $\widehat{V}_{\mathrm{F}} = e^K K^{SS^*} |W_S|^2 = \lambda^2 \phi^4 / 4(1 + c_R \phi^2)^2 \sim \text{const for } c_R \gg 1$.

How WE CAN APPLY THESE GENERAL IDEAS TO HI?

HIGGS INFLATION IN SUGRA O •	Embedding In A $B - L$ GUT OO OO	Post-Inflationary Evolution 000 0	
INFLATING WITH A SUPERHEAVY HIGGS			

- WE Use 3 Superfields $z^1 = \Phi$, $z^2 = \overline{\Phi}$, Charged Under a Local Symmetry, e.g. $U(1)_{B-L}$, and $z^3 = S$ ("Stabilizer" Field). • SUPERPOTENTIAL $W = \lambda S \left(\bar{\Phi} \Phi - M^2 / 4 \right)$ CHARGE ASSIGNMENTS
- W Is Uniquely Determined Using $U(1)_{B-L}$ and an R Symmetry AND LEADS TO A GRAND UNIFIED THEORY (GUT) PHASE TRANSITION

At The SUSY Vacuum $\langle S \rangle = 0, |\langle \Phi \rangle| = |\langle \bar{\Phi} \rangle| = M/2,$ SINCE IN THE SUSY LIMIT, AFTER HI, WE GET

SUPERFIELDS:	S	Φ	$\bar{\Phi}$
$U(1)_R$	1	0	0
$U(1)_{B-L}$	0	1	-1

イロト イポト イヨト イヨト

 $V_{\rm SUSY} = \lambda^2 \left| \bar{\Phi} \Phi - M^2 / 4 \right|^2 + \frac{1}{c (1 - 2r_*)} \lambda^2 |S|^2 \left(|\Phi|^2 + |\bar{\Phi}|^2 \right) + D - \text{terms} \quad (c_- \text{ and } r_{\pm} \text{ are Defined Below})$

¹ C.P. and N. Toumbas (2016, 2017).

Higgs Inflation in SUGRA O •	Embedding In A $B - L$ GUT OO OO	Post-Inflationary Evolution 000 0	
INFLATING WITH A SUPERHEAVY HIGGS			

- WE Use 3 Superfields $z^1 = \Phi$, $z^2 = \overline{\Phi}$, Charged Under a Local Symmetry, e.g. $U(1)_{B-L}$, and $z^3 = S$ ("Stabilizer" Field). • SUPERPOTENTIAL $W = \lambda S \left(\bar{\Phi} \Phi - M^2 / 4 \right)$ CHARGE ASSIGNMENTS
- W Is Uniquely Determined Using $U(1)_{R-I}$ and an R Symmetry AND LEADS TO A GRAND UNIFIED THEORY (GUT) PHASE TRANSITION

At The SUSY Vacuum $\langle S \rangle = 0, |\langle \Phi \rangle| = |\langle \bar{\Phi} \rangle| = M/2.$ SINCE IN THE SUSY LIMIT. AFTER HI. WE GET

SUPERFIELDS:	S	Φ	$\overline{\Phi}$
$U(1)_R$	1	0	0
$U(1)_{B-L}$	0	1	-1

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト

 $V_{\text{SUSY}} = \lambda^2 \left| \bar{\Phi} \Phi - M^2 / 4 \right|^2 + \frac{1}{c (1 - 2r_*)} \lambda^2 |S|^2 \left(|\Phi|^2 + |\bar{\Phi}|^2 \right) + D - \text{terms} \quad (c_- \text{ and } r_{\pm} \text{ are Defined Below})$

- Possible Kähler Potentials Softly Broken Shift Symmetry For Higgs Fields
- The Shift Symmetry Can Be Formulated By The Functions $F_{\pm} = |\Phi \pm \bar{\Phi}^*|^2$ With Coefficients c_+ and $c_-, c_+ \le c_-$.
- HI can be Obtained Selecting the Following K's Which Are Quadratic and Invariant Under $U(1)_{R-L}$ and R Symmetries:

 $K_1 = -2\ln(1 + c_+F_+) + c_-F_- + F_{1S}(|S|^2), \quad K_2 = -2\ln(1 + c_+F_+) + F_{2S}(F_-,|S|^2)$ Where We Choose The Functions¹

 $F_{1S} = N_S \ln(1 + |S|^2/N_S)$ And $F_{2S} = N_S \ln(1 + c_F_/N_S + |S|^2/N_S)$ With $N_S > 0$

Since the Simplest Kinetic Term for S, $|S|^2$, Leads to $m_S^2 < 0$ or $m_S^2 < \widehat{H}_{\rm HI}^2$ Along the Inflationary Path.

¹ C.P. and N. Toumbas (2016, 2017).

Higgs Inflation in SUGRA O •	Embedding In A $B - L$ GUT OO OO	Post-Inflationary Evolution 000 0	
INFLATING WITH A SUPERHEAVY HIGGS			

- WE Use 3 Superfields $z^1 = \Phi$, $z^2 = \overline{\Phi}$, Charged Under a Local Symmetry, e.g. $U(1)_{B-L}$, and $z^3 = S$ ("Stabilizer" Field). • SUPERPOTENTIAL $W = \lambda S \left(\bar{\Phi} \Phi - M^2 / 4 \right)$ CHARGE ASSIGNMENTS
- W Is Uniquely Determined Using $U(1)_{R-I}$ and an R Symmetry AND LEADS TO A GRAND UNIFIED THEORY (GUT) PHASE TRANSITION

At The SUSY Vacuum $\langle S \rangle = 0, |\langle \Phi \rangle| = |\langle \bar{\Phi} \rangle| = M/2.$ SINCE IN THE SUSY LIMIT AFTER HI WE GET

SUPERFIELDS:	S	Φ	$\overline{\Phi}$
$U(1)_R$	1	0	0
$U(1)_{B-L}$	0	1	-1

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト

 $V_{\text{SUSY}} = \lambda^2 \left| \bar{\Phi} \Phi - M^2 / 4 \right|^2 + \frac{1}{c (1 - 2r_*)} \lambda^2 |S|^2 \left(|\Phi|^2 + |\bar{\Phi}|^2 \right) + \text{D-terms} \quad (c_- \text{ and } r_{\pm} \text{ are Defined Below})$

Possible Kähler Potentials – Softly Broken Shift Symmetry For Higgs Fields

- The Shift Symmetry Can Be Formulated By The Functions $F_{\pm} = \left| \Phi \pm \bar{\Phi}^* \right|^2$ With Coefficients c_+ and c_- , $c_+ \le c_-$.
- HI can be Obtained Selecting the Following K's Which Are Quadratic and Invariant Under $U(1)_{R-L}$ and R Symmetries:

$$\begin{split} K_1 &= -2\ln\left(1 + c_+F_+\right) + c_-F_- + F_{1S}(|S|^2), \quad K_2 = -2\ln\left(1 + c_+F_+\right) + F_{2S}(F_-,|S|^2) \quad \text{Where We Choose The Functions} \\ F_{1S} &= N_S\ln(1 + |S|^2/N_S) \quad \text{And} \quad F_{2S} = N_S\ln(1 + c_-F_-/N_S + |S|^2/N_S) \quad \text{With} \quad N_S > 0 \end{split}$$

Since the Simplest Kinetic Term for S, $|S|^2$, Leads to $m_S^2 < 0$ or $m_S^2 < \widehat{H}_{\rm HI}^2$ Along the Inflationary Path. • For $c_{+} \ll c_{-}$. Our Models are Completely Natural, Because The Theory Enjoys The Following Enhanced Symmetries:

$$\bar{\Phi} \to \bar{\Phi} + c^*, \ \Phi \to \ \Phi + c \ (c \in \mathbb{C}) \ \text{ and } \ S \to \ e^{i\alpha}S \ , \ \text{ in the Limits } \ c_+ \to 0 \ \& \ \lambda \to 0 \ .$$

¹ C.P. and N. Toumbas (2016, 2017).

Higgs Inflation in SUGRA O •	Embedding In A $B - L$ GUT OO OO	Post-Inflationary Evolution 000 0	
INFLATING WITH A SUPERHEAVY HIGGS			

- WE Use 3 Superfields $z^1 = \Phi$, $z^2 = \overline{\Phi}$, Charged Under a Local Symmetry, e.g. $U(1)_{B-L}$, and $z^3 = S$ ("Stabilizer" Field). • SUPERPOTENTIAL $W = \lambda S \left(\bar{\Phi} \Phi - M^2 / 4 \right)$ CHARGE ASSIGNMENTS
- W Is Uniquely Determined Using $U(1)_{R-I}$ and an R Symmetry AND LEADS TO A GRAND UNIFIED THEORY (GUT) PHASE TRANSITION

At The SUSY Vacuum $\langle S \rangle = 0$, $|\langle \Phi \rangle| = |\langle \bar{\Phi} \rangle| = M/2$. SINCE IN THE SUSY LIMIT. AFTER HI. WE GET

SUPERFIELDS:	S	Φ	$\overline{\Phi}$
$U(1)_R$	1	0	0
$U(1)_{B-L}$	0	1	-1

・ ロ ト ・ 西 ト ・ 日 ト ・ 日 ト

 $V_{\text{SUSY}} = \lambda^2 \left| \bar{\Phi} \Phi - M^2 / 4 \right|^2 + \frac{1}{c_-(1-2r_-)} \lambda^2 |S|^2 \left(|\Phi|^2 + |\bar{\Phi}|^2 \right) + \text{D-terms} \quad (c_- \text{ and } r_{\pm} \text{ are Defined Below})$

Possible Kähler Potentials – Softly Broken Shift Symmetry For Higgs Fields

- THE SHIFT SYMMETRY CAN BE FORMULATED BY THE FUNCTIONS $F_{+} = |\Phi \pm \bar{\Phi}^{*}|^{2}$ With Coefficients c_{+} and c_{-} , $c_{+} \leq c_{-}$.
- HI CAN BE OBTAINED SELECTING THE FOLLOWING K'S WHICH ARE QUADRATIC AND INVARIANT UNDER $U(1)_{R-I}$ and R Symmetries:

 $K_1 = -2\ln(1 + c_+F_+) + c_-F_- + F_{1S}(|S|^2), \quad K_2 = -2\ln(1 + c_+F_+) + F_{2S}(F_-,|S|^2)$ Where We Choose The Functions¹

 $F_{1S} = N_S \ln(1 + |S|^2/N_S)$ And $F_{2S} = N_S \ln(1 + c_-F_-/N_S + |S|^2/N_S)$ With $N_S > 0$

Since the Simplest Kinetic Term for S, $|S|^2$, Leads to $m_S^2 < 0$ or $m_S^2 < \widehat{H}_{\rm HI}^2$ Along the Inflationary Path. • For $c_+ \ll c_-$, Our Models are Completely Natural, Because The Theory Enjoys The Following Enhanced Symmetries:

 $\bar{\Phi} \to \bar{\Phi} + c^*, \ \Phi \to \Phi + c \ (c \in \mathbb{C}) \text{ and } S \to e^{i\alpha}S \ , \text{ in the Limits } c_+ \to 0 \ \& \ \lambda \to 0 \ .$

• The Free Parameters, are $r_{+} = c_{+}/c_{-}$ and λ/c_{-} (not c_{+}, c_{-} and λ) Since IF We Perform the Rescalings

 $\Phi\to \Phi/\sqrt{c_-}, \ \bar\Phi\to \bar\Phi/\sqrt{c_-}, \ \text{ and } \ S\to S, \ \text{ we see That } W \text{ Depends on } \lambda/c_- \text{ and } K \text{ on } r_\pm \,.$

э

¹ C.P. and N. Toumbas (2016, 2017).

	Embedding In A $B - L$ GUT				
	•0				
	00				
$B - L$ Breaking, μ Term & Neutrino Masses					

THE RELEVANT SUPER- & KÄHLER POTENTIALS

• Promoting To Local The Already Existing $U(1)_{B-L}$ Global Symmetry of the MSSM, We Obtain a Superpotential Invariant under the $G_{SM} \times U(1)_{B-L}$ Gauge Group:

3

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

	Embedding In A $B - L$ GUT $\bigcirc \bigcirc$ $\bigcirc \bigcirc$		Post-Inflationary Evolution 000 0		
$B-L$ Breaking, μ Term & Neutrino Masses					

THE RELEVANT SUPER- & KÄHLER POTENTIALS

• Promoting To Local The Already Existing $U(1)_{B-L}$ Global Symmetry of the MSSM, We Obtain a Superpotential Invariant under the $G_{SM} \times U(1)_{B-L}$ Gauge Group:

 $W = \lambda S \left(\bar{\Phi} \Phi - M^2 / 4 \right)$ to Achieve HI & Break $U(1)_{B-L}$ $+ \lambda_{\mu}S H_u H_d$ To Generate $\mu \sim 1$ TeV $+ \lambda_{ijv} \bar{\Phi} N_i^c N_j^c$ To Generate Majorana Masses for Neutrinos
& Ensure The Inflaton Decay $+ h_{ijN} N_i^c L_j H_u$ $K = h_{ijN} V_i^c L_j H_u$

TO GENERATE DIRAC MASSES FOR NEUTRINOS

+ $W_{\rm MSSM}$ with $\mu = 0$

(Note that 3 Right-Handed Neutrinos, N_i^c , Are Necessary To Cancel the B - L Gauge Anomaly)

MATTER FIELDS					
e_i^c	(1,1,1,1)	0	0	-1	
N_i^c	(1 , 1 , 0, 1)	0	0	-1	
L_i	(1, 1, -1/2, -1)	2	0	1	
u_i^c	(3 , 2 , -2/3, -1/3)	1	-1/3	0	
d_i^c	(3 , 2 , 1/3, -1/3)	1	-1/3	0	
$\dot{Q_i}$	(3 , 2 , 1/6, -1/3)	1	1/3	0	
	HIGGS FIELDS				
H_d	(1 , 2 , -1/2, 0)	0	0	0	
H_u	(1 , 2 , 1/2, 0)	0	0	0	
S	(1, 1, 0, 0)	4	0	0	
$\bar{\Phi}$	(1, 1, 0, 2)	0	0	-2	
Φ	$(1 \ 1 \ 0 \ -2)$	0	0	2	

ヘロト 人間 トメヨトメヨト

GLOBAL SYMMETRIES

В

L

R

	Embedding In A $B - L$ GUT $\bigcirc \bigcirc$ $\bigcirc \bigcirc$		Post-Inflationary Evolution 000 0		
B – L Breaking, μ Term & Neutrino Masses					

THE RELEVANT SUPER- & KÄHLER POTENTIALS

• Promoting To Local The Already Existing $U(1)_{B-L}$ Global Symmetry of the MSSM, We Obtain a Superpotential Invariant under the $G_{SM} \times U(1)_{B-L}$ Gauge Group:

- - + $h_{ijN}N_i^c L_j H_u$ to Generate Dirac Masses for Neutrinos
 - + $W_{\rm MSSM}$ with $\mu = 0$

(Note that 3 Right-Handed Neutrinos, N_i^c , Are Necessary To Cancel the B - L Gauge Anomaly)

FIELDS	UNDER $OSM \times O(1)B-L$					
Matter Fields						
e_i^c	(1 , 1 , 1, 1)	0	0	-1		
N_i^c	(1 , 1 , 0, 1)	0	0	-1		
L_i	(1 , 1 , −1/2, −1)	2	0	1		
u_i^c	(3 , 2 , -2/3, -1/3)	1	-1/3	0		
d_i^c	(3 , 2 , 1/3, -1/3)	1	-1/3	0		
$\dot{Q_i}$	(3 , 2 , 1/6, -1/3)	1	1/3	0		
	HIGGS FIELDS					
H_d	(1 , 2 , -1/2, 0)	0	0	0		
H_u	(1 , 2 , 1/2, 0)	0	0	0		
S	(1, 1, 0, 0)	4	0	0		
$\bar{\Phi}$	(1, 1, 0, 2)	0	0	-2		
Φ	(1, 1, 0, -2)	0	0	2		

GLOBAL SYMMETRIES

• THE ABOVE W MAY COOPERATE WITH THE FOLLOWING KÄHLER POTENTIAL POTENTIALS WHICH RESPECT THE IMPOSED SYMMETRIES

 $K_1 = -2\ln\left(1 + c_+F_+\right) + c_-F_- + F_{1X}(|X|^2), \quad K_2 = -2\ln\left(1 + c_+F_+\right) + F_{2X}(F_-, |X|^2) \quad \text{Where}$

$$F_{1S} = N_X \ln(1 + X^{\alpha} X_{\alpha}/N_X)$$
 And $F_{2S} = N_X \ln(1 + X^{\alpha} X_{\alpha}/N_X + c_-F_-/N_X)$ With $N, N_X > 0$

and $X^{\alpha} = S, H_u, H_d, N_i^c - Placing X^{\alpha}X_{\alpha}$ Inside the Argument of \ln , We Obtain Similar Results,

	Embedding In A $B - L$ GUT $\bigcirc \bigcirc$ $\bigcirc \bigcirc$		Post-Inflationary Evolution 000 0		
$B-L$ Breaking, μ Term & Neutrino Masses					

Generating the $\mu\text{-}\mathsf{Term}$ of MSSM

 \bullet The Origin of the μ Term Can be Explained IF We Combine the ${\rm Terms}^2$

$$W_{\rm HI} + W_{\mu} = \lambda S \left(\bar{\Phi} \Phi - M^2 / 4 \right) + \lambda_{\mu} S H_u H_d . \quad (: 1)$$

・ロ・・日本・ ・ 日本・ ・ 日本

²G. Dvali, G. Lazarides and Q. Shafi (1999).

³ P. Athron et al. [GAMBIT Collaboration] (2017).

	Embedding In A $B - L$ GUT				
	00				
	00				
$B-L$ Breaking, μ Term & Neutrino Masses					

Generating the $\mu\text{-}\mathsf{Term}$ of <code>MSSM</code>

• The Origin of the μ Term Can be Explained IF We Combine the ${\rm Terms}^2$

$$W_{\rm HI} + W_{\mu} = \lambda S \left(\bar{\Phi} \Phi - M^2 / 4 \right) + \lambda_{\mu} S H_u H_d . (:1)$$

• The Soft SUSY Breaking Terms Corresponding to $W_{\rm HI}$ + W_{μ} Are Included In

$$V_{\text{soft}} = \left(\lambda A_{\lambda} S \bar{\Phi} \Phi + \lambda_{\mu} A_{\mu} S H_{u} H_{d} - a_{S} S \lambda M^{2} / 4 + \text{h.c.}\right) + m_{\tilde{\alpha}}^{2} \left| z^{\tilde{\alpha}} \right|^{2} \quad \text{with} \quad z^{\tilde{\alpha}} = \Phi, \bar{\Phi}, S, H_{u}, H_{d}$$

where $m_{\alpha}, A_{\lambda}, A_{\mu}$ and a_S are Soft SUSY Breaking Mass Parameters.

・ロト ・ 御 ト ・ ヨト ・ ヨト

²G. Dvali, G. Lazarides and Q. Shafi (1999).

³ P. Athron et al. [GAMBIT Collaboration] (2017).

	Embedding In A $B - L$ GUT				
	00				
	00				
B – L Breaking, µ Term & Neutrino Masses					

Generating the μ -Term of MSSM

• The Origin of the μ Term Can be Explained IF We Combine the Terms²

$$W_{\rm HI} + W_{\mu} = \lambda S \left(\bar{\Phi} \Phi - M^2 / 4 \right) + \lambda_{\mu} S H_u H_d . \quad (: 1)$$

• The Soft SUSY Breaking Terms Corresponding to $W_{\rm HI} + W_{\mu}$ Are Included In

$$V_{\text{soft}} = \left(\lambda A_{\lambda} S \,\bar{\Phi} \Phi + \lambda_{\mu} A_{\mu} S \,H_{u} H_{d} - \mathbf{a}_{S} S \,\lambda M^{2} / 4 + \text{h.c.}\right) + m_{\tilde{a}}^{2} \left| z^{\tilde{\alpha}} \right|^{2} \quad \text{with} \ z^{\tilde{\alpha}} = \Phi, \bar{\Phi}, S, H_{u}, H_{d}$$

where $m_{\alpha}, A_{\lambda}, A_{\mu}$ and a_{S} are Soft SUSY Breaking Mass Parameters.

• Minimizing $V_{
m tot} = V_{
m SUSY} + V_{
m soft}$ and Substituting in $V_{
m soft}$ the SUSY v.e.vs of Φ and $\bar{\Phi}$ we get

 $\langle V_{\rm tot}(S)\rangle = \lambda^2 \, M^2 S^2 / 2 c_- (1-2r_\pm) - \lambda a_\mu M^2 S, \ \text{where} \ m_S \ll M \ \text{and} \ (|A_\lambda| + |a_S|) = 2 a_\mu m_{3/2} + 2 a_\mu m_{3$

With $m_{3/2}$ being the Gravitino Mass. The Minimized $\langle V_{tot}(S) \rangle$ w.r.t S leads to a non-Vanishing $\langle S \rangle$ as Follows:

$$d\langle V_{\rm tot}(S)\rangle/dS = 0 \implies \langle S\rangle \simeq a_{\mu}c_{-}(1-2r_{\pm})m_{3/2}/\lambda \simeq 10^{5}a_{\mu}m_{3/2}\mathcal{F}(r_{\pm}).$$

²G. Dvali, G. Lazarides and Q. Shafi (1999).

³ P. Athron et al. [GAMBIT Collaboration] (2017).

	Embedding In A $B - L$ GUT				
	00				
	00				
B – L Breaking, µ Term & Neutrino Masses					

Generating the μ -Term of MSSM

• The Origin of the μ Term Can be Explained IF We Combine the Terms²

$$W_{\rm HI} + W_{\mu} = \lambda S \left(\bar{\Phi} \Phi - M^2 / 4 \right) + \lambda_{\mu} S H_u H_d . \quad (: 1)$$

• The Soft SUSY Breaking Terms Corresponding to $W_{\rm HI} + W_{\mu}$ Are Included In

$$V_{\text{soft}} = \left(\lambda A_{\lambda} S \bar{\Phi} \Phi + \lambda_{\mu} A_{\mu} S H_{u} H_{d} - a_{S} S \lambda M^{2} / 4 + \text{h.c.}\right) + m_{\tilde{\alpha}}^{2} \left| z^{\tilde{\alpha}} \right|^{2} \quad \text{with} \quad z^{\tilde{\alpha}} = \Phi, \bar{\Phi}, S, H_{u}, H_{d}$$

where $m_{\alpha}, A_{\lambda}, A_{\mu}$ and a_S are Soft SUSY Breaking Mass Parameters.

• Minimizing $V_{
m tot} = V_{
m SUSY} + V_{
m soft}$ and Substituting in $V_{
m soft}$ the SUSY v.e.vs of Φ and $\bar{\Phi}$ we get

 $\langle V_{\rm tot}(S\,)\rangle = \lambda^2\,M^2S^2/2c_-(1-2r_\pm) - \lambda {\rm a}_\mu M^2S, \ \text{where} \ m_S \,\ll\, M \ \text{and} \ (|A_\lambda|+|{\rm a}_S|) = 2{\rm a}_\mu m_{3/2}$

With $m_{3/2}$ being the Gravitino Mass. The Minimized $\langle V_{tot}(S) \rangle$ w.r.t S leads to a non-Vanishing $\langle S \rangle$ as Follows:

$$d\langle V_{\text{tot}}(S)\rangle/dS = 0 \implies \langle S\rangle \simeq a_{\mu}c_{-}(1-2r_{\pm})m_{3/2}/\lambda \simeq 10^{5}a_{\mu}m_{3/2}\mathcal{F}(r_{\pm}).$$

• Therefore, the Generated μ Parameter From W_{μ} is $\mu = \lambda_{\mu}(S) \simeq \lambda_{\mu}m_{3/2}a_{\mu}c_{-}(1-2r_{\pm})/\lambda \simeq 10^5 m_{3/2}\lambda_{\mu}\mathcal{F}(r_{\pm}),$ Where the Prefactor is Absorbed Since Successful HI Needs $\lambda_{\mu} \leq 9 \cdot 10^{-6}$ For Stability Reasons – See Below.

²G. Dvali, G. Lazarides and Q. Shafi (1999).

³ P. Athron et al. [GAMBIT Collaboration] (2017).

	Embedding In A $B - L$ GUT					
	00					
	00					
$B-L$ Breaking, μ Term & Neutrino Masses						

Generating the μ -Term of MSSM

• The Origin of the μ Term Can be Explained IF We Combine the Terms²

$$W_{\rm HI} + W_{\mu} = \lambda S \left(\bar{\Phi} \Phi - M^2 / 4 \right) + \lambda_{\mu} S H_u H_d . \quad (: 1)$$

• The Soft SUSY Breaking Terms Corresponding to $W_{\rm HI} + W_{\mu}$ Are Included In

$$V_{\text{soft}} = \left(\lambda A_{\lambda} S \,\bar{\Phi} \Phi + \lambda_{\mu} A_{\mu} S \,H_{u} H_{d} - \mathbf{a}_{S} S \,\lambda M^{2} / 4 + \text{h.c.}\right) + m_{\tilde{\alpha}}^{2} \left| \boldsymbol{z}^{\tilde{\alpha}} \right|^{2} \quad \text{with} \quad \boldsymbol{z}^{\tilde{\alpha}} = \Phi, \bar{\Phi}, S, H_{u}, H_{d}$$

where $m_{\alpha}, A_{\lambda}, A_{\mu}$ and a_{S} are Soft SUSY Breaking Mass Parameters.

• Minimizing $V_{tot} = V_{SUSY} + V_{soft}$ and Substituting in V_{soft} the SUSY v.e.vs of Φ and $\overline{\Phi}$ we get

 $\langle V_{\rm tot}(S)\rangle = \lambda^2 \, M^2 S^2 / 2 c_- (1-2r_\pm) - \lambda a_\mu M^2 S, \ \text{where} \ m_S \ll M \ \text{and} \ (|A_\lambda| + |a_S|) = 2 a_\mu m_{3/2} + 2 a_\mu m_{3$

With $m_{3/2}$ being the Gravitino Mass. The Minimized $\langle V_{tot}(S) \rangle$ w.r.t S leads to a non-Vanishing $\langle S \rangle$ as Follows:

$$d\langle V_{\text{tot}}(S)\rangle/dS = 0 \implies \langle S\rangle \simeq a_{\mu}c_{-}(1-2r_{\pm})m_{3/2}/\lambda \simeq 10^5 a_{\mu}m_{3/2}\mathcal{F}(r_{\pm}).$$

• Therefore, the Generated μ Parameter From W_{μ} is $\mu = \lambda_{\mu}\langle S \rangle \simeq \lambda_{\mu}m_{3/2}a_{\mu}c_{-}(1 - 2r_{\pm})/\lambda \simeq 10^5 m_{3/2}\lambda_{\mu}\mathcal{F}(r_{\pm})$, Where the Prefactor is Absorbed Since Successful HI Needs $\lambda_{\mu} \leq 9 \cdot 10^{-6}$ For Stability Reasons – See Below. • The Allowed λ_{μ} Values Render Our Models Compatible With the Best-Fit Points in the CMSSM³ E.g., Setting

CMSSM REGION	$ A_0 $ (TeV)	m_0 (TeV)	$ \mu $ (TeV)	a _µ	$\lambda_{\mu} (10^{-6})$
A/H Funnel	9.9244	9.136	1.409	1.086	0.607
$\tilde{\tau}_1 - \chi$ Coannihilation	1.2271	1.476	2.62	0.831	9.12
$\tilde{t}_1 - \chi$ Coannihilation	9.965	4.269	4.073	2.33	1.75
$\tilde{\chi}_1^{\pm} - \chi$ Coannihilation	9.2061	9.000	0.983	1.023	0.456

$$m_0 = m_{3/2}$$
 and $|A_\lambda| = |a_S| = |A_0|$.

²G. Dvali, G. Lazarides and Q. Shafi (1999).

³ P. Athron et al. [GAMBIT Collaboration] (2017).

C. PALLIS

	Embedding In A $B - L$ GUT $\bigcirc \bigcirc$ $\bigcirc \bigcirc$	Post-Inflationary Evolution 000 0	
THE INFLATIONARY SCENARIO			

THE INFLATIONARY POTENTIAL

• IF WE Use The Parametrization: $\Phi = \phi e^{i\theta} \cos \theta_{\Phi} / \sqrt{2}$

$$\Phi = \phi e^{i\theta} \cos \theta_{\Phi} / \sqrt{2} \quad \text{and} \quad \bar{\Phi} = \phi e^{i\bar{\theta}} \sin \theta_{\Phi} / \sqrt{2} \quad \text{ with } \quad 0 \le \theta_{\Phi} \le \pi/2 \quad \text{and} \quad X^{\beta} = \left(x^{\beta} + i\bar{x}^{\beta} \right) / \sqrt{2},$$

Where $X^{\beta} = S, H_u, H_d, N_i^c$, We Can Show That A D-Flat Direction Is $\theta = \bar{\theta} = x^{\beta} = \bar{x}^{\beta} = 0$, and $\theta_{\Phi} = \pi/4$ (: I)

• The Only Surviving Term of $\widehat{V}_{\rm F}$ Along the Path in Eq. (I) is

$$\widehat{V}_{\rm HI} = e^{K} K^{SS^{*}} |W_{,S}|^{2} = \frac{\lambda^{2} (\phi^{2} - M^{2})^{2}}{16 f_{\mathcal{R}}^{2}} \text{ With } f_{\mathcal{R}} = 1 + c_{+} \phi^{2}$$

Playing The Role Of A Non-Minimal Coupling to Gravity. • Along the Inflationary Path $K_{\alpha\beta}$ Takes The Form

$$\left(K_{\alpha\bar\beta}\right) = {\rm diag}\left(M_{\pm},K_{SS^{\,\ast}}\right) \quad {\rm with} \quad M_{\pm} = \frac{1}{f_{\mathcal{R}}^2} \, \begin{pmatrix} \kappa & \bar\kappa \\ \bar\kappa & \kappa \end{pmatrix},$$

and $K_{SS^*}=1.$ Here $\kappa=c_-f_{\mathcal{R}}^2-2c_+$ and $\bar{\kappa}=2c_+^2\phi^2.$

・ロト ・四ト ・ヨト・ヨト・

	Embedding In A $B - L$ GUT $\bigcirc \bigcirc$ $\bigcirc \bigcirc$	Post-Inflationary Evolution 000 0	
THE INFLATIONARY SCENARIO			

THE INFLATIONARY POTENTIAL

• IF WE USE THE PARAMETRIZATION:

$$\Phi = \phi e^{i\theta} \cos \theta_{\Phi} / \sqrt{2} \quad \text{and} \quad \bar{\Phi} = \phi e^{i\bar{\theta}} \sin \theta_{\Phi} / \sqrt{2} \quad \text{ with } \quad 0 \le \theta_{\Phi} \le \pi/2 \quad \text{and} \quad X^{\beta} = \left(x^{\beta} + i\bar{x}^{\beta} \right) / \sqrt{2},$$

Where $X^{\beta} = S, H_u, H_d, N_i^c$, We Can Show That A D-Flat Direction Is $\theta = \bar{\theta} = x^{\beta} = \bar{x}^{\beta} = 0$, and $\theta_{\Phi} = \pi/4$ (: I)

• The Only Surviving Term of $\widehat{V}_{\rm F}$ Along the Path in Eq. (I) is

$$\widehat{V}_{\text{HI}} = e^{K} K^{SS^{*}} |W_{S}|^{2} = \frac{\lambda^{2} (\phi^{2} - M^{2})^{2}}{16 f_{R}^{2}} \text{ With } f_{R} = 1 + c_{+} \phi^{2}$$

Playing The Role Of A Non-Minimal Coupling to Gravity. • Along the Inflationary Path $K_{\alpha\beta}$ Takes The Form

$$\left(K_{\alpha\bar{\beta}}\right) = \operatorname{diag}\left(M_{\pm}, K_{SS^{\,*}}\right) \quad \text{with} \quad M_{\pm} = \frac{1}{f_{\mathcal{R}}^{2}} \, \begin{pmatrix} \kappa & \bar{\kappa} \\ \bar{\kappa} & \kappa \end{pmatrix}$$

and $K_{SS^*} = 1$. Here $\kappa = c_- f_{\mathcal{R}}^2 - 2c_+$ and $\bar{\kappa} = 2c_+^2 \phi^2$.

= 0.025

• THE EF CANONICALLY NORMALIZED FIELDS, WHICH ARE DENOTED BY HAT, CAN BE OBTAINED AS FOLLOWS:

$$\frac{d\phi}{d\phi} = J = \sqrt{\kappa_+}, \ \widehat{\theta}_+ = \frac{J\phi\theta_+}{\sqrt{2}}, \ \widehat{\theta}_- = \sqrt{\frac{\kappa_-}{2}}\phi\theta_-, \ \text{ and } \ \widehat{\theta}_\Phi = \phi\sqrt{\kappa_-}\left(\theta_\Phi - \frac{\pi}{4}\right), \ \left(\widehat{x}^\beta, \widehat{x}^\beta\right) = \left(x^\beta, \overline{x}^\beta\right), \ \left(x^\beta, \overline{x}^\beta\right) = \left(x^\beta, \overline{x}^\beta\right) = \left(x^\beta, \overline{x}^\beta\right), \ \left(x^\beta, \overline{x}^\beta\right) = \left(x^\beta, \overline{x}^\beta\right) =$$

Where $\theta_{\pm} = (\theta \pm \bar{\theta})/\sqrt{2}$, $\kappa_{+} = c_{-} (1 + 2r_{\pm}(c_{+}\phi^{2} - 1)/f_{R}^{2}) \simeq c_{-}$ and $\kappa_{-} = c_{-}(1 - 2r_{\pm}/f_{R}) > 0 \implies \mathbf{r}_{\pm} < 1/2$. • We Can Check the Stability of the Trajectory in Eq. (1) w.r.t the Fluctuations OF the Various Fields, i.e.

$$\frac{\partial V}{\partial \overline{\mathcal{C}^{\alpha}}}\Big|_{\text{Eq. (I)}} = 0 \quad \text{and} \quad \widehat{m}_{\overline{z}^{\alpha}}^2 > 0 \quad \text{Where} \quad \widehat{m}_{\overline{z}^{\alpha}}^2 = \text{Egv}\Big[\widehat{M}_{\alpha\beta}^2\Big] \quad \text{With} \quad \widehat{M}_{\alpha\beta}^2 = \frac{\partial^2 V}{\partial \overline{z^{\alpha}} \partial \overline{z^{\beta}}}\Big|_{\text{Eq. (I)}} \quad \text{and} \quad z_{\overline{z}}^{\alpha} = \theta_{-\overline{z}} \theta_{\underline{z}}, \theta_{0}, x_{\overline{z}}^{\beta}, \overline{x}^{\beta} = 0 \quad \text{with} \quad \widehat{M}_{\alpha\beta}^2 =$$

	Embedding In A $B - L$ GUT $\bigcirc \bigcirc$ $\bigcirc \bullet$	Post-Inflationary Evolution OOO O	
THE INFLATIONARY SCENARIO			

STABILITY AND RADIATIVE CORRECTIONS

THE MASS SPECTRUM ALONG THE INFLATIONARY TRAJECTORY

Fields	Eingestates	Masses Squared			
			$K = K_1$	$K = K_2$	
2 Real Scalars	$\widehat{\theta}_{+}$	$\widehat{m}_{\theta+}^2$	$6\widehat{H}_{\rm HI}^2$	$6(1+1/N_X)\widehat{H}_{HI}^2$	
	$\widehat{ heta}_{\Phi}$	$\widehat{m}_{\theta_{\Phi}}^2$	$M_{BL}^2 + 6 \widehat{H}_{HI}^2$	$M_{BL}^2 + 6(1 + 1/N_X)\widehat{H}_{HI}^2$	
1 Complex Scalars	$\widehat{s}, \widehat{\overline{s}}$	\widehat{m}_s^2		$6\widehat{H}_{\rm HI}^2/N_X$	
4 Complex Scalars	$h_{\pm}, ar{h}_{\pm}$	$\widehat{m}_{h\pm}^2$	$3\widehat{H}_{\mathrm{HI}}^2(1$	$+ 1/N_X \pm 4\lambda_\mu/\lambda\phi^2)$	
3 COMPLEX SCALARS	$ ilde{ u}_i^c, ar{ ilde{ u}}_i^c$	$m_{i\tilde{\nu}^{c}}^{2}$	$3\widehat{H}_{HI}^{2}(1 +$	$1/N_X + 16\lambda_{iN^c}/\lambda^2\phi^2)$	
1 Gauge boson	A_{BL}	M_{BL}^2	$g^{2}c_{-}$	$(1-2r_{\pm}/f_{\mathcal{R}})\phi^2$	
4 Weyl Spinors	$\widehat{\psi}_{\pm}$	$\widehat{m}_{\psi\pm}^2$	24	$4\widehat{H}_{\mathrm{HI}}^2/c\phi^2 f_{\mathcal{R}}^2$	
	ψ_{iN^c}	$\widehat{m}^2_{\psi_{iN^c}}$	48.	$\lambda_{iN^c}^2 \widehat{H}_{\mathrm{HI}}^2 / \lambda^2 \phi^2$	
	$\lambda_{BL}, \widehat{\psi}_{\Phi-}$	M_{BL}^2	$g^{2}c_{-}$	$(1-2r_{\pm}/f_{\mathcal{R}})\phi^2$	

• We can Obtain $\forall \alpha, \ \widehat{m}_{y\alpha}^2 > 0$. Especially

$$\widehat{m}_s^2 > 0 \ \Leftrightarrow \ N_X < 6 \text{ and } \widehat{m}_{H^-}^2 > 0 \ \Leftrightarrow \ \lambda_\mu \leq \lambda (1 + 1/N_X) \phi_{\rm f}/4 \ ({\rm E.g.} \ \lambda_\mu < 9 \cdot 10^{-6} \ {\rm for} \ r_\pm = 0.03) \, .$$

- We can Obtain $\forall \alpha, \widehat{m}_{y^{\alpha}}^2 > \widehat{H}_{HI}^2$ and So Any Inflationary Perturbations Of The Fields Other Than ϕ Are Safely Eliminated;
- $M_{BL} \neq 0$ Signals the Fact that That $U(1)_{B-L}$ Is Broken and so, no Topological Defects are Produced.
- THE ONE-LOOP RADIATIVE CORRECTIONS À LA COLEMAN-WEINBERG TO $\widehat{V}_{
 m HI}$ Can Be Kept Under Control Provided that
 - $M_{BL}^2 > m_{
 m P}^2$ and $\widehat{m}_{\theta_{\rm PD}}^2 > m_{
 m P}^2$ Are not Taken Into Account.
 - The Renormalization Group Mass Scale Λ Is Determined By Requiring $\Delta \widehat{V}_{HI}(\phi_{\star}) \doteq 0$ or $\Delta \widehat{V}_{HI}(\phi_{f}) = 0$.

	Embedding In A $B - L$ GUT OO OO	Inflation Analysis O	Post-Inflationary Evolution 000 0	
Inflationary Observables – Gravitation	al Waves			

• The Slow-Roll Parameters Are Determined Using the Standard Formulae Employing The Canonically Normalized $\widehat{\phi}$:

$$\widehat{\epsilon} = \frac{1}{2} \left(\frac{\widehat{V}_{\mathrm{HI},\widehat{\phi}}}{\widehat{V}_{\mathrm{HI}}} \right)^2 \simeq \frac{8}{c_- \phi^2 f_{\mathcal{R}}^2} \quad \text{and} \quad \widehat{\eta} = \frac{\widehat{V}_{\mathrm{HI},\widehat{\phi}\widehat{\phi}}}{\widehat{V}_{\mathrm{HI}}} = 12 \; \frac{1 - c_+ \phi^2}{c_- \phi^2 f_{\mathcal{R}}^2} \; .$$

3

	Embedding In A $B - L$ GUT OO OO	Inflation Analysis O	Post-Inflationary Evolution 000 0	
Inflationary Observables – Gravitation	al Waves			

• The <code>Slow-Roll Parameters</code> Are Determined Using the Standard Formulae Employing The Canonically Normalized $\widehat{\phi}$:

$$\widehat{\epsilon} = \frac{1}{2} \left(\frac{\widehat{V}_{\mathrm{HI},\widehat{\phi}}}{\widehat{V}_{\mathrm{HI}}} \right)^2 \simeq \frac{8}{c_- \phi^2 f_{\mathcal{R}}^2} \quad \text{and} \quad \widehat{\eta} = \frac{\widehat{V}_{\mathrm{HI},\widehat{\phi}\widehat{\phi}}}{\widehat{V}_{\mathrm{HI}}} = 12 \; \frac{1 - c_+ \phi^2}{c_- \phi^2 f_{\mathcal{R}}^2} \cdot \frac{1 - c_+ \phi^2}{c_- \phi^2 f_{\mathcal{R}}^2} \cdot \frac{1 - c_+ \phi^2}{c_- \phi^2 f_{\mathcal{R}}^2} \cdot \frac{1 - c_+ \phi^2}{c_- \phi^2 f_{\mathcal{R}}^2} = 12 \; \frac{1 - c_+ \phi^2}{c_- \phi^2 f_{\mathcal{R}}^2} \cdot \frac{1 - c_- \phi^2}{c_- \phi^2 f_{\mathcal{R}}^2} \cdot \frac{1 - c_+ \phi^2}{c_- \phi^2 f_{\mathcal{R}}^2} \cdot \frac{1 - c_+ \phi^2}{c_- \phi^2 f_{\mathcal{R}}^2} \cdot \frac{1 - c_- \phi^2}{c_- \phi^2} \cdot \frac{1 - c_- \phi^2}$$

• The Number of *e*-Foldings That $k_{\star} = 0.05 \text{ Mpc}$ Experiences During HI Is Calculated to be

$$\widehat{N}_{\star} = \int_{\widehat{\phi}_{\mathrm{f}}}^{\widehat{\phi}_{\star}} d\widehat{\phi} \; \frac{\widehat{V}_{\mathrm{HI}}}{\widehat{V}_{\mathrm{HI},\widehat{\phi}}} \simeq ((1 + c_{+}\phi_{\star}^{2})^{2} - 1)/16r_{\pm}$$

3

・ロト ・ 同ト ・ ヨト ・ ヨト

	Embedding In A $B - L$ GUT OO OO	Inflation Analysis O	Post-Inflationary Evolution 000 0	
Inflationary Observables – Gravitation	al Waves			

C. PALLIS

• The Slow-Roll Parameters Are Determined Using the Standard Formulae Employing The Canonically Normalized $\widehat{\phi}$:

$$\widehat{\epsilon} = \frac{1}{2} \left(\frac{\widehat{V}_{\mathrm{HI},\widehat{\phi}}}{\widehat{V}_{\mathrm{HI}}} \right)^2 \simeq \frac{8}{c_- \phi^2 f_{\mathcal{R}}^2} \quad \text{and} \quad \widehat{\eta} = \frac{\widehat{V}_{\mathrm{HI},\widehat{\phi}\widehat{\phi}}}{\widehat{V}_{\mathrm{HI}}} = 12 \; \frac{1 - c_+ \phi^2}{c_- \phi^2 f_{\mathcal{R}}^2} \; .$$

• The Number of *e*-Foldings That $k_{\star} = 0.05 \text{ Mpc}$ Experiences During HI Is Calculated to be

$$\widehat{N}_{\star} = \int_{\widehat{\phi}_{\mathrm{f}}}^{\widehat{\phi}_{\star}} d\widehat{\phi} \; \frac{\widehat{V}_{\mathrm{HI}}}{\widehat{V}_{\mathrm{HI},\widehat{\phi}}} \simeq ((1+c_+\phi_{\star}^2)^2-1)/16r_{\pm}$$

• There is a Lower Bound on c_- , Above Which $\phi_{\star} < 1$ – and so Terms $(\bar{\Phi}\Phi)^l$ with l > 1 Are Harmless. E.g.,

$$\phi_{\star} \leq 1 \quad \Rightarrow \quad c_{-} \geq (f_{\mathcal{R}\star} - 1)/r_{\pm} \simeq 100, \quad \text{with} \quad f_{\mathcal{R}\star} = \left(1 + 16r_{\pm}\widehat{N}_{\star}\right)^{1/2} \quad \text{and} \quad \widehat{N}_{\star} \simeq 58.$$

э

	Embedding In A $B - L$ GUT OO OO	Inflation Analysis O	Post-Inflationary Evolution 000 0	
Inflationary Observables – Gravitation	al Waves			

• The Slow-Roll Parameters Are Determined Using the Standard Formulae Employing The Canonically Normalized $\widehat{\phi}$:

$$\widehat{\epsilon} = \frac{1}{2} \left(\frac{\widehat{V}_{\mathrm{HI},\widehat{\phi}}}{\widehat{V}_{\mathrm{HI}}} \right)^2 \simeq \frac{8}{c_- \phi^2 f_{\mathcal{R}}^2} \quad \text{and} \quad \widehat{\eta} = \frac{\widehat{V}_{\mathrm{HI},\widehat{\phi}\widehat{\phi}}}{\widehat{V}_{\mathrm{HI}}} = 12 \; \frac{1 - c_+ \phi^2}{c_- \phi^2 f_{\mathcal{R}}^2} \; .$$

• The Number of *e*-Foldings That $k_{\star} = 0.05 \text{ Mpc}$ Experiences During HI Is Calculated to be

$$\widehat{N}_{\star} = \int_{\widehat{\phi}_{\mathrm{f}}}^{\widehat{\phi}_{\star}} d\widehat{\phi} \; \frac{\widehat{V}_{\mathrm{HI}}}{\widehat{V}_{\mathrm{HI},\widehat{\phi}}} \simeq ((1 + c_{\pm}\phi_{\star}^2)^2 - 1)/16r_{\pm}$$

• There is a Lower Bound on c_{-} , Above Which $\phi_{\star} < 1$ – and so Terms $(\bar{\Phi}\Phi)^l$ with l > 1 Are Harmless. E.g.,

$$\phi_{\star} \leq 1 \quad \Rightarrow \quad c_{-} \geq (f_{\mathcal{R}\star} - 1)/r_{\pm} \simeq 100, \quad \text{with} \quad f_{\mathcal{R}\star} = \left(1 + 16r_{\pm}\widehat{N}_{\star}\right)^{1/2} \quad \text{and} \quad \widehat{N}_{\star} \simeq 58$$

• The Power Spectrum Normalization Implies A Dependence of λ on c_- for Every r_\pm

$$\sqrt{A_{\rm s}} = \frac{1}{2\sqrt{3}\pi} \frac{\widetilde{V}_{\rm HI}(\widehat{\phi}_{\star})^{3/2}}{|\widehat{V}_{\rm HI}\widehat{\phi}(\widehat{\phi}_{\star})|} = \frac{\lambda\sqrt{c_{-}}}{32\sqrt{3\pi}} \phi_{\star}^3 \implies \lambda = 32\sqrt{3A_{\rm s}}\pi c_{-}r_{\pm}^{3/2} \frac{1}{(f_{\mathcal{R}\star} - 1)^{3/2}} \implies c_{-} \simeq 10^5 \lambda \mathcal{F}(r_{\pm}) \, .$$

3

・ロト ・ 同ト ・ ヨト ・ ヨト

	Embedding In A $B - L$ GUT OO OO	Inflation Analysis O	Post-Inflationary Evolution 000 0	
Inflationary Observables – Gravitation	al Waves			

• The Slow-Roll Parameters Are Determined Using the Standard Formulae Employing The Canonically Normalized $\widehat{\phi}$:

$$\widehat{\epsilon} = \frac{1}{2} \left(\frac{\widehat{V}_{\mathrm{HI},\widehat{\phi}}}{\widehat{V}_{\mathrm{HI}}} \right)^2 \simeq \frac{8}{c_- \phi^2 f_{\mathcal{R}}^2} \quad \text{and} \quad \widehat{\eta} = \frac{\widehat{V}_{\mathrm{HI},\widehat{\phi}\widehat{\phi}}}{\widehat{V}_{\mathrm{HI}}} = 12 \; \frac{1 - c_+ \phi^2}{c_- \phi^2 f_{\mathcal{R}}^2} \cdot \frac{1 - c_+ \phi^2}{c_- \phi^2 f_{\mathcal{R}}^2} \cdot \frac{1 - c_+ \phi^2}{c_- \phi^2 f_{\mathcal{R}}^2} \cdot \frac{1 - c_+ \phi^2}{c_- \phi^2 f_{\mathcal{R}}^2} = 12 \; \frac{1 - c_+ \phi^2}{c_- \phi^2 f_{\mathcal{R}}^2} \cdot \frac{1 - c_- \phi^2}{c_- \phi^2} \cdot \frac{1 - c_- \phi^2}$$

• The Number of *e*-Foldings That $k_{\star} = 0.05 \text{ Mpc}$ Experiences During HI Is Calculated to be

$$\widehat{N}_{\star} = \int_{\widehat{\phi}_{\mathrm{f}}}^{\widehat{\phi}_{\star}} d\widehat{\phi} \; \frac{\widehat{V}_{\mathrm{HI}}}{\widehat{V}_{\mathrm{HI},\widehat{\phi}}} \simeq ((1 + c_{\pm}\phi_{\star}^2)^2 - 1)/16r_{\pm}$$

• There is a Lower Bound on c_- , Above Which $\phi_{\star} < 1$ – and so Terms $(\bar{\Phi}\Phi)^l$ with l > 1 Are Harmless. E.g.,

$$\phi_{\star} \leq 1 \quad \Rightarrow \quad c_{-} \geq (f_{\mathcal{R}\star} - 1)/r_{\pm} \simeq 100, \quad \text{with} \quad f_{\mathcal{R}\star} = \left(1 + 16r_{\pm}\widehat{N}_{\star}\right)^{1/2} \quad \text{and} \quad \widehat{N}_{\star} \simeq 58$$

• The Power Spectrum Normalization Implies A Dependence of λ on c_- for Every r_\pm

$$\sqrt{A_s} = \frac{1}{2\sqrt{3}\pi} \frac{\widetilde{V}_{\rm HI}(\widehat{\phi}_{\star})^{3/2}}{|\widehat{V}_{\rm HI,\widehat{\phi}}(\widehat{\phi}_{\star})|} = \frac{\lambda\sqrt{c_-}}{32\sqrt{3\pi}} \phi_{\star}^3 \implies \lambda = 32\sqrt{3A_s}\pi c_- r_{\pm}^{3/2} \frac{1}{(f_{\mathcal{R}\star} - 1)^{3/2}} \implies c_- \simeq 10^5 \lambda \mathcal{F}(r_{\pm}) \,.$$

• A Clear Dependence of The Observables (Spectral Index n_s and Tensor-To-Scalar Ratio, r) On r_{\pm} and n Arises, I.e.,

$$n_{\rm s}=1-6\widehat{\epsilon}_{\star}\ +\ 2\widehat{\eta}_{\star}\simeq 1-\frac{3}{2\widehat{N}_{\star}}-\frac{3}{8(\widehat{N}_{\star}^3r_{\pm})^{1/2}}\ ,\ r=16\widehat{\epsilon}_{\star}\simeq +\frac{1}{2\widehat{N}_{\star}^2r_{\pm}}+\frac{2}{(\widehat{N}_{\star}^3r_{\pm})^{1/2}}\ ,$$

With Negligible n_s Running, α_s . The Variables With Subscript \star Are Evaluated at $\widehat{\phi} = \widehat{\phi}_{\star}$.

э

	Embedding In A $B - L$ GUT OO OO	Inflation Analysis O •	Post-Inflationary Evolution 000 0	
Fitting the Data				

TESTING AGAINST OBSERVATIONS

• THE COMBINED BICEP2/Keck Array and Planck Results⁴ Although Do Not Exclude Inflationary Models With Negligible *r*'s, They Seem to Favor Those With *r*'s of Order 0.01 Which Imply Observable Gravitational Waves.

Current Data: $r = 0.028^{+0.026}_{-0.025} \implies 0.003 \lesssim r \lesssim 0.054$ at 68% c.l. And $r \le 0.07$ at 95% c.l.

3

⁴ Planck Collaboration (2015); BICEP2/Keck Array and Planck Collaborations (2015)

	Embedding In A $B - L$ GUT OO OO	Inflation Analysis O O	Post-Inflationary Evolution 000 0	
FITTING THE DATA				

TESTING AGAINST OBSERVATIONS

• THE COMBINED BICEP2/Keck Array and Planck Results⁴ Although Do Not Exclude Inflationary Models With Negligible r's, They Seem to Favor Those With r's of Order 0.01 Which Imply Observable Gravitational Waves.

Current Data: $r = 0.028^{+0.026}_{-0.025} \implies 0.003 \lesssim r \lesssim 0.054$ at 68% c.l. And $r \le 0.07$ at 95% c.l.

• Enforcing $\widehat{N}_{\star} \simeq 58$ and $\sqrt{A_s} = 4.627 \cdot 10^{-5}$, we Obtain the Allowed Curve [Region] In the $n_s - r_{0.002}$ Plane:

• For Quite Natural r_{\pm} 's We can Obtain Results Within the 1- σ Observationally Favored Range, I.e.,

 $9.63 \leq n_{\rm s}/0.1 \leq 9.72$ and $0.7 \leq r/0.01 \leq 8.1$.

Also, $3.46 \leq \widehat{m}_{\delta\phi} / 10^{10} \text{GeV} \leq 420.$

- For $n_{\rm s} = 0.968$ We Obtain r = 0.043;
- Best-Fit Point: $r_{\pm} = 0.025 \implies (n_{\rm s}, r) = (0.969, 0.033)$ and $\widehat{m}_{\delta\phi} \simeq 8.63 \cdot 10^{10} {\rm GeV}.$

• The Effective Theory is Valid Since $\widehat{V}_{\rm HI}^{1/4} \leq \Lambda_{\rm UV}.$

⁴ Planck Collaboration (2015); BICEP2/Keck Array and Planck Collaborations (2015)

	Embedding In A $B - L$ GUT OO OO	Inflation Analysis O O	Post-Inflationary Evolution 000 0	
FITTING THE DATA				

TESTING AGAINST OBSERVATIONS

• THE COMBINED BICEP2/Keck Array and Planck Results⁴ Although Do Not Exclude Inflationary Models With Negligible r's, They Seem to Favor Those With r's of Order 0.01 Which Imply Observable Gravitational Waves.

Current Data: $r = 0.028^{+0.026}_{-0.025} \implies 0.003 \lesssim r \lesssim 0.054$ at 68% c.l. And $r \le 0.07$ at 95% c.l.

• Enforcing $\widehat{N}_{\star} \simeq 58$ and $\sqrt{A_s} = 4.627 \cdot 10^{-5}$, we Obtain the Allowed Curve [Region] In the $n_s - r_{0.002}$ Plane:

• For Quite Natural r_{\pm} 's We can Obtain Results Within the 1- σ Observationally Favored Range, I.e.,

 $9.63 \leq n_{\rm s}/0.1 \leq 9.72$ and $0.7 \leq r/0.01 \leq 8.1$.

Also, $3.46 \leq \hat{m}_{\delta\phi}/10^{10} \text{GeV} \leq 420$. • For $n_s = 0.968 \text{ We Obtain } r = 0.043$; • Best-Fit Point: $r_{\pm} = 0.025 \Rightarrow (n_s, r) = (0.969, 0.033) \text{ and } \hat{m}_{\delta A} \approx 8.63 \cdot 10^{10} \text{GeV}.$

• The Effective Theory is Valid Since $\widehat{V}_{\rm HI}^{1/4} \leq \Lambda_{\rm UV}.$

• The Ultraviolet (UV) Cut-off Scale is $\Lambda_{\rm UV} = m_{\rm P}$ Since The Expansions Abound $\langle \phi \rangle = 0$ Are Just r_{\pm} Dependent:

$$J^2 \dot{\phi}^2 \simeq \left(1 + 6r_{\pm}^2 \widehat{\phi}^2 - 10r_{\pm}^3 \widehat{\phi}^4 + \cdots\right) \dot{\widehat{\phi}}^2 \quad \text{and} \quad \widehat{V}_{\text{HI}} \simeq \frac{\lambda^2 \widehat{\phi}^4}{16c^2} \left(1 - 2r_{\pm} \widehat{\phi}^2 + 3r_{\pm}^2 \widehat{\phi}^4 - \cdots\right).$$

Consequently, No Problem With The Perturbative Unitarity Emerges for $r_{\pm} \leq 1$, Even IF c_{\pm} and c_{-} Are Large.

3

⁴ Planck Collaboration (2015); BICEP2/Keck Array and Planck Collaborations (2015)

	Embedding In A $B - L$ GUT OO OO	Post-Inflationary Evolution • OO O	
INFLATON DECAY & NON-THERMAL LEPTOG	ienesis		

PERTURBATIVE REHEATING

• At the SUSY Vacuum, The Inflaton And The RHNs, N_i^c , Acquire Masses $\widehat{m}_{\delta\phi}$ and M_{iN^c} Respectively Given by

$$\widehat{m}_{\delta\phi} \simeq \frac{\lambda M}{\sqrt{2c_{-}(1-2r_{\pm})}} \quad (\text{E.g. } 9 \cdot 10^{10} \text{ GeV for } r_{\pm} = 0.03) \text{ and } M_{lN^{C}} = \lambda_{lN^{C}} M + 10^{10} \text{ GeV for } r_{\pm} = 0.03 \text{ (E.g. } 10^{10} \text{ GeV for } r_{\pm} = 0.03)$$

Where We Restore $m_{
m P}$ in the Formulas. $\widehat{m}_{\delta\phi}$ is only N and r_{\pm} Dependent IF We Impose a GUT Condition – See Below.

э

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

	Embedding In A $B - L$ GUT OO OO	Post-Inflationary Evolution	
Inflaton Decay & non-Thermal Leptog	ENESIS		

PERTURBATIVE REHEATING

• At the SUSY Vacuum, The Inflaton And The RHNs, N_i^c , Acquire Masses $\widehat{m}_{\delta\phi}$ and M_{iN^c} Respectively Given by

$$\widehat{m}_{\delta\phi}\simeq \frac{\lambda M}{\sqrt{2c_-(1-2r_\pm)}} ~(\text{E.g.}~9\cdot 10^{10}~\text{GeV}~\text{for}~r_\pm=0.03)~~\text{and}~~M_{iN^c}=\lambda_{iN^c}M\,,$$

Where We Restore m_P in the Formulas. $\hat{m}_{\delta\phi}$ is only N and r_{\pm} Dependent IF We Impose a GUT Condition – See Below. • The Inflaton Can Decay Perturbatively Into:

A Pair of RHNs (N^c_i) With Majorana Masses M_{jN^c} Through The Following Decay Width

$$\widehat{\Gamma}_{\delta\phi\to N_{i}^{c}} = \frac{\lambda_{iN^{c}}^{2}}{16\pi} \widehat{m}_{\delta\phi} \left(1 - \frac{4M_{iN^{c}}^{2}}{\widehat{m}_{\delta\phi}^{2}} \right)^{3/2} \quad \text{With} \quad \lambda_{iN^{c}} = \frac{M_{iN^{c}}}{2\langle J \rangle M} \left(1 - 3c_{+} \frac{M^{2}}{m_{\rm P}^{2}} \right) \text{ Arising from } \mathcal{L}_{\delta\phi\to N_{i}^{c}} = \lambda_{iN^{c}} \widehat{\delta\phi} N_{i}^{c} N_{i}^{c}$$

• H_u and H_d Through The Following Decay Width

$$\widehat{\Gamma}_{\delta\phi\to H} = \frac{2}{8\pi} \lambda_{H}^{2} \widehat{m}_{\delta\phi} \quad \text{with} \quad \lambda_{H} = \frac{\lambda_{\mu}}{\sqrt{2}} \left(1 - 2c_{+} \frac{M^{2}}{m_{P}^{2}} \right) \text{ Arising from } \mathcal{L}_{\delta\phi\to H_{u}H_{d}} = -\lambda_{H} \widehat{m}_{\delta\phi} \widehat{\delta\phi} H_{u}^{*} H_{d}^{*} \, .$$

• MSSM (s)-PARTICLES XYZ THROUGH THE FOLLOWING C+-DEPENDENT 3-BODY DECAY WIDTH

$$\widehat{\Gamma}_{\delta\phi\to XYZ} = \lambda_y^2 \frac{14}{512\pi^3} \; \frac{\widehat{m}_{\delta\phi}^2}{m_{\rm P}^2} \; \; \mbox{With} \; \; \lambda_y = Ny_3 c_+ \frac{M}{\langle J \rangle m_{\rm P}} \; \; \mbox{and} \; \; y_3 = h_{t,b,\tau}(\widehat{m}_{\delta\phi}) \simeq 0.5 \, . \label{eq:gamma_static_stat$$

This Decay Arises From $\mathcal{L}_{\widehat{\delta\phi} \to XYZ} = -\lambda_y (\widehat{\delta\phi}/m_{\rm P}) (X\psi_Y\psi_Z + Y\psi_X\psi_Z + Z\psi_X\psi_Y) + \text{h.c.}$

・ロト ・ 一下・ ・ ヨト・ ・ ヨト・

	Embedding In A $B - L$ GUT OO OO	Post-Inflationary Evolution	
Inflaton Decay & non-Thermal Leptog	ENESIS		

PERTURBATIVE REHEATING

• At the SUSY Vacuum, The Inflaton And The RHNs, N_i^c , Acquire Masses $\widehat{m}_{\delta\phi}$ and M_{iN^c} Respectively Given by

$$\widehat{m}_{\delta\phi}\simeq \frac{\lambda M}{\sqrt{2c_-(1-2r_\pm)}} ~(\text{E.g.}~9\cdot 10^{10}~\text{GeV}~\text{for}~r_\pm=0.03)~~\text{and}~~M_{iN^c}=\lambda_{iN^c}M\,,$$

Where We Restore m_P in the Formulas. $\hat{m}_{\delta\phi}$ is only N and r_{\pm} Dependent IF We Impose a GUT Condition – See Below. • The Inflaton Can Decay Perturbatively Into:

A Pair of RHNs (N^c_i) With Majorana Masses M_{jN^c} Through The Following Decay Width

$$\widehat{\Gamma}_{\delta\phi\to N_{i}^{c}} = \frac{\lambda_{iN^{c}}^{2}}{16\pi} \widehat{m}_{\delta\phi} \left(1 - \frac{4M_{iN^{c}}^{2}}{\widehat{m}_{\delta\phi}^{2}}\right)^{3/2} \quad \text{With} \quad \lambda_{iN^{c}} = \frac{M_{iN^{c}}}{2\langle J \rangle M} \left(1 - 3c_{+}\frac{M^{2}}{m_{p}^{2}}\right) \text{ Arising from } \mathcal{L}_{\delta\phi\to N_{i}^{c}} = \lambda_{iN^{c}} \widehat{\delta\phi} N_{i}^{c} N_{i}^{c}$$

• H_u and H_d Through The Following Decay Width

$$\widehat{\Gamma}_{\delta\phi\to H} = \frac{2}{8\pi} \lambda_{H}^{2} \widehat{m}_{\delta\phi} \quad \text{with} \quad \lambda_{H} = \frac{\lambda_{\mu}}{\sqrt{2}} \left(1 - 2c_{+} \frac{M^{2}}{m_{\rm P}^{2}} \right) \text{ Arising from } \mathcal{L}_{\delta\phi\to H_{u}H_{d}} = -\lambda_{H} \widehat{m}_{\delta\phi} \widehat{\delta\phi} H_{u}^{*} H_{d}^{*} \, .$$

• MSSM (s)-PARTICLES XYZ THROUGH THE FOLLOWING C+-DEPENDENT 3-BODY DECAY WIDTH

$$\widehat{\Gamma}_{\delta\phi\to XYZ} = \lambda_y^2 \frac{14}{512\pi^3} \; \frac{\widehat{m}_{\delta\phi}^2}{m_{\rm P}^2} \; \; \mbox{With} \; \; \lambda_y = Ny_3 c_+ \frac{M}{\langle J\rangle m_{\rm P}} \; \; \mbox{and} \; \; y_3 = h_{t,b,\tau}(\widehat{m}_{\delta\phi}) \simeq 0.5 \, . \label{eq:gamma_star}$$

This Decay Arises From $\mathcal{L}_{\widehat{\delta\phi} \to XYZ} = -\lambda_y (\widehat{\delta\phi}/m_P) (X\psi_Y\psi_Z + Y\psi_X\psi_Z + Z\psi_X\psi_Y) + h.c.$

• The Reheating Temperature, $T_{\rm rh}$, is given by

$$T_{\rm rh} = \left(72/5\pi^2 g_*\right)^{1/4} \widehat{\Gamma}_{\delta\phi}^{1/2} m_{\rm P}^{1/2} \quad \text{with} \quad \widehat{\Gamma}_{\delta\phi} = \widehat{\Gamma}_{\delta\phi \to N_I^c} + \widehat{\Gamma}_{\delta\phi \to H} + \widehat{\Gamma}_{\delta\phi \to XZ}, \quad \text{with} \quad g_* \simeq 228.75.$$

	Embedding In A $B - L$ GUT OO OO	Post-Inflationary Evolution O • O O	
Inflaton Decay & non-Thermal Leptog	ENESIS		

• THE OUT-OF-EQUILIBRIUM DECAY OF N^c_i can Generate an L Asymmetry Which Can Be Converted to the B Yield:

$$Y_B = -0.35 \ 2 \ \frac{5}{4} \ \frac{T_{\mathrm{rh}}}{\widehat{m}_{\delta\phi}} \frac{\widehat{\Gamma}_{\delta\phi\to N_i^{\mathbb{C}}}}{\widehat{\Gamma}_{\delta\phi}} \varepsilon_i \quad \text{Where} \quad \varepsilon_i = \sum_{j\neq i} \frac{\mathrm{Im}\left[(m_{\mathrm{D}}^{\dagger}m_{\mathrm{D}})_{ij}^2\right]}{8\pi \langle H_u \rangle^2 (m_{\mathrm{D}}^{\dagger}m_{\mathrm{D}})_{ii}} \Big(F_{\mathrm{S}}\left(x_{ij}, y_i, y_j\right) + F_{\mathrm{V}}(x_{ij}) \Big).$$

With $x_{ij} := M_{jN^c}/M_{iN^c}$ and $y_i := \Gamma_{iN^c}/M_{iN^c} = (m_D^{\dagger}m_D)_{ii}/8\pi\langle H_u \rangle^2$ and $\widehat{m}_{\delta\phi} < 2M_{iN^c}$ For Some *i* with i = 1, 2, 3. • Here F_V and F_S Represent, Respectively. The Contributions From Vertex And Self-Energy Diagrams

$$F_{\rm V}(x) = -x \ln(1+x^{-2})$$
 and $F_{\rm S}(x,y,z) = -2x(x^2-1)/(x^2-1)^2 + (x^2z-y)^2$

< <p>> < <p>A

⁵ M. Kawasaki, K. Kohri, and T. Moroi (2005); J.R. Ellis, K.A. Olive, and E. Vangioni (2005).

	Embedding In A $B - L$ GUT OO OO	Post-Inflationary Evolution 0 • 0 0	
Inflaton Decay & non-Thermal Leptog	ENESIS		

• THE OUT-OF-Equilibrium Decay of N^c_i can Generate an L Asymmetry Which Can Be Converted to the B Yield:

$$Y_B = -0.35 \ 2 \ \frac{5}{4} \ \frac{T_{\rm rh}}{\widehat{m}_{\delta\phi}} \frac{\widehat{\Gamma}_{\delta\phi\to N_i^{\mathbb{C}}}}{\widehat{\Gamma}_{\delta\phi}} \varepsilon_i \quad \text{Where} \quad \varepsilon_i = \sum_{j\neq i} \frac{\text{Im}\left[(m_{\rm D}^{\dagger}m_{\rm D})_{ij}^2\right]}{8\pi \langle H_u \rangle^2 (m_{\rm D}^{\dagger}m_{\rm D})_{ii}} \Big(F_{\rm S}\left(x_{ij}, y_i, y_j\right) + F_{\rm V}(x_{ij})\Big).$$

With $x_{ij} := M_{jN^c}/M_{iN^c}$ and $y_i := \Gamma_{iN^c}/M_{iN^c} = (m_D^{\dagger}m_D)_{ii}/8\pi\langle H_{u}\rangle^2$ and $\widehat{m}_{\delta\phi} < 2M_{iN^c}$ For Some *i* with i = 1, 2, 3. • Here F_V and F_S Represent, Respectively, The Contributions From Vertex And Self-Energy Diagrams

$$F_{\rm V}(x) = -x \ln(1+x^{-2})$$
 and $F_{\rm S}(x,y,z) = -2x(x^2-1)/(x^2-1)^2 + (x^2z-y)^2$

• The Thermally Produced \widetilde{G} Yield At The Onset of BBN Is Estimated To Be: $Y_{\widetilde{G}} \simeq 1.9 \cdot 10^{-22} T_{\rm rh}/{\rm GeV}$.

⁵ M. Kawasaki, K. Kohri, and T. Moroi (2005); J.R. Ellis, K.A. Olive, and E. Vangioni (2005).

	Embedding In A $B - L$ GUT OO OO	Post-Inflationary Evolution 0 • 0 0	
Inflaton Decay & non-Thermal Leptogi	ENESIS		

• The Out-Of-Equilibrium Decay of N_i^c can Generate an L Asymmetry Which Can Be Converted to the B Yield:

$$Y_{B} = -0.35 \ 2 \ \frac{5}{4} \ \frac{T_{\mathrm{rh}}}{\widehat{m}_{\delta\phi}} \frac{\widehat{\Gamma}_{\delta\phi\to N_{i}^{\mathbb{C}}}}{\widehat{\Gamma}_{\delta\phi}} \varepsilon_{i} \quad \text{Where} \quad \varepsilon_{i} = \sum_{j\neq i} \frac{\mathrm{Im}\left[(m_{\mathrm{D}}^{\dagger}m_{\mathrm{D}})_{ij}^{2}\right]}{8\pi \langle H_{u}\rangle^{2}(m_{\mathrm{D}}^{\dagger}m_{\mathrm{D}})_{ii}} \Big(F_{\mathrm{S}}\left(x_{ij}, y_{i}, y_{j}\right) + F_{\mathrm{V}}(x_{ij})\Big).$$

With $x_{ij} := M_{jN^c}/M_{iN^c}$ and $y_i := \Gamma_{iN^c}/M_{iN^c} = (m_D^{\dagger}m_D)_{ii}/8\pi\langle H_u \rangle^2$ and $\widehat{m}_{\delta\phi} < 2M_{iN^c}$ For Some *i* with i = 1, 2, 3. • Here F_V and F_S Represent, Respectively. The Contributions From Vertex And Self-Energy Diagrams

$$F_{\rm V}(x) = -x \ln\left(1 + x^{-2}\right)$$
 and $F_{\rm S}(x, y, z) = -2x(x^2 - 1)/\left(x^2 - 1\right)^2 + \left(x^2 z - y\right)^2$

• The Thermally Produced \widetilde{G} Yield At The Onset of BBN Is Estimated To Be: $Y_{\widetilde{G}} \simeq 1.9 \cdot 10^{-22} T_{\rm rh}/{\rm GeV}$.

POST-INFLATIONARY REQUIREMENTS

(1) Gauge Unification. Although $U(1)_{B-L}$ Gauge Symmetry Does Not Disturb This Gauge Coupling Unification Within MSSM We Determine M Demanding That The Unification Scale $M_{GUT} \simeq 2/2.433 \times 10^{-2}$ is identified with M_{BL} at the Vacuum, I.E.

 $\sqrt{c_-(\langle f_\mathcal{R}\rangle - 2r_\pm)}gM/\sqrt{\langle f_\mathcal{R}\rangle} = M_{\rm GUT} \ \Rightarrow \ M \simeq M_{\rm GUT}/g\sqrt{c_-(1-2r_\pm)} \sim 10^{15} \ {\rm GeV} \ \ \text{with} \ \ g \simeq 0.7 \ \ ({\rm GUT \ Gauge \ Coupling}).$

・ロト ・同ト ・モト ・モト

⁵ M. Kawasaki, K. Kohri, and T. Moroi (2005); J.R. Ellis, K.A. Olive, and E. Vangioni (2005).

	Embedding In A $B - L$ GUT OO OO	Post-Inflationary Evolution 0 • 0 0	
Inflaton Decay & non-Thermal Leptogi	ENESIS		

• The Out-Of-Equilibrium Decay of N_i^c can Generate an L Asymmetry Which Can Be Converted to the B Yield:

$$Y_{B} = -0.35 \ 2 \ \frac{5}{4} \ \frac{T_{\mathrm{rh}}}{\widehat{m}_{\delta\phi}} \frac{\widehat{\Gamma}_{\delta\phi\to N_{i}^{\mathbb{C}}}}{\widehat{\Gamma}_{\delta\phi}} \varepsilon_{i} \quad \text{Where} \quad \varepsilon_{i} = \sum_{j\neq i} \frac{\mathrm{Im}\left[(m_{\mathrm{D}}^{\dagger}m_{\mathrm{D}})_{ij}^{2}\right]}{8\pi \langle H_{u}\rangle^{2}(m_{\mathrm{D}}^{\dagger}m_{\mathrm{D}})_{ii}} \Big(F_{\mathrm{S}}\left(x_{ij}, y_{i}, y_{j}\right) + F_{\mathrm{V}}(x_{ij})\Big).$$

With $x_{ij} := M_{jN^c}/M_{iN^c}$ and $y_i := \Gamma_{iN^c}/M_{iN^c} = (m_D^{\dagger}m_D)_{ii}/8\pi\langle H_u \rangle^2$ and $\widehat{m}_{\delta\phi} < 2M_{iN^c}$ For Some *i* with i = 1, 2, 3. • Here F_V and F_S Represent, Respectively, The Contributions From Vertex And Self-Energy Diagrams

$$F_{\rm V}(x) = -x \ln(1+x^{-2})$$
 and $F_{\rm S}(x,y,z) = -2x(x^2-1)/(x^2-1)^2 + (x^2z-y)^2$

• The Thermally Produced \tilde{G} Yield At The Onset of BBN Is Estimated To Be: $Y_{\tilde{G}} \simeq 1.9 \cdot 10^{-22} T_{\rm th}/{\rm GeV}$.

POST-INFLATIONARY REQUIREMENTS

(1) Gauge Unification. Although $U(1)_{B-L}$ Gauge Symmetry Does Not Disturb This Gauge Coupling Unification Within MSSM We Determine M Demanding That The Unification Scale $M_{GUT} \simeq 2/2.433 \times 10^{-2}$ is identified with M_{BL} at the Vacuum, I.E.

 $\sqrt{c_{-}(\langle f_R \rangle - 2r_{\pm})}gM/\sqrt{\langle f_R \rangle} = M_{GUT} \Rightarrow M \simeq M_{GUT}/g\sqrt{c_{-}(1 - 2r_{\pm})} \sim 10^{15} \text{ GeV}$ with $g \simeq 0.7$ (GUT Gauge Coupling). (ii) Constraints on $M_{iN}c_{-}$. To Avoid Any Erasure Of The Produced Y_L and Ensure That The ϕ Decay To ε_i is Kinematically Allowed and $M_{iN}c_{-}$ are Theoretically Acceptable, We Have To Impose The Constraints:

(a) $M_{1N^c} \gtrsim 10T_{\rm rh}$, (b) $\widehat{m}_{\delta\phi} \ge 2M_{1N^c}$ and (c) $M_{iN^c} \lesssim 7.1M \Leftrightarrow \lambda_{iN^c} \lesssim 3.5$.

⁵ M. Kawasaki, K. Kohri, and T. Moroi (2005); J.R. Ellis, K.A. Olive, and E. Vangioni (2005).

	Embedding In A $B - L$ GUT OO OO	Post-Inflationary Evolution ©	
INFLATON DECAY & NON-THERMAL LEPTOGI	ENESIS		

• The Out-Of-Equilibrium Decay of N_i^c can Generate an L Asymmetry Which Can Be Converted to the B Yield:

$$Y_{B} = -0.35 \ 2 \ \frac{5}{4} \ \frac{T_{\mathrm{rh}}}{\widehat{m}_{\delta\phi}} \frac{\widehat{\Gamma}_{\delta\phi\to N_{i}^{\mathbb{C}}}}{\widehat{\Gamma}_{\delta\phi}} \varepsilon_{i} \quad \text{Where} \quad \varepsilon_{i} = \sum_{j\neq i} \frac{\mathrm{Im}\left[(m_{\mathrm{D}}^{\dagger}m_{\mathrm{D}})_{ij}^{2}\right]}{8\pi \langle H_{u}\rangle^{2}(m_{\mathrm{D}}^{\dagger}m_{\mathrm{D}})_{ii}} \Big(F_{\mathrm{S}}\left(x_{ij}, y_{i}, y_{j}\right) + F_{\mathrm{V}}(x_{ij})\Big).$$

With $x_{ij} := M_{jN^c}/M_{iN^c}$ and $y_i := \Gamma_{iN^c}/M_{iN^c} = (m_D^{\dagger}m_D)_{ii}/8\pi\langle H_u \rangle^2$ and $\widehat{m}_{\delta\phi} < 2M_{iN^c}$ For Some *i* with i = 1, 2, 3. • Here F_V and F_S Represent, Respectively, The Contributions From Vertex And Self-Energy Diagrams

$$F_{\rm V}(x) = -x \ln(1+x^{-2})$$
 and $F_{\rm S}(x,y,z) = -2x(x^2-1)/(x^2-1)^2 + (x^2z-y)^2$

• The Thermally Produced \widetilde{G} Yield At The Onset of BBN Is Estimated To Be: $Y_{\widetilde{G}} \simeq 1.9 \cdot 10^{-22} T_{\rm th}/{\rm GeV}$.

POST-INFLATIONARY REQUIREMENTS

(1) Gauge Unification. Although $U(1)_{B-L}$ Gauge Symmetry Does Not Disturb This Gauge Coupling Unification Within MSSM We Determine M Demanding That The Unification Scale $M_{GUT} \simeq 2/2.433 \times 10^{-2}$ is identified with M_{BL} at the Vacuum, I.E.

 $\sqrt{c_{-}(\langle f_R \rangle - 2r_{\pm})}gM/\sqrt{\langle f_R \rangle} = M_{GUT} \Rightarrow M \simeq M_{GUT}/g\sqrt{c_{-}(1 - 2r_{\pm})} \sim 10^{15} \text{ GeV}$ with $g \simeq 0.7$ (GUT Gauge Coupling). (ii) Constraints on $M_{iN}c_{-}$. To Avoid Any Erasure Of The Produced Y_L and Ensure That The ϕ Decay To ε_i is Kinematically Allowed and $M_{iN}c_{-}$ are Theoretically Acceptable, We Have To Impose The Constraints:

 $(a) \ M_{1N^c} \gtrsim 10 T_{\rm rh}, \ (b) \ \widehat{m}_{\delta\phi} \ge 2 M_{1N^c} \ \text{and} \ (c) \ M_{iN^c} \lesssim 7.1 M \ \Leftrightarrow \lambda_{iN^c} \lesssim 3.5.$

(iii) The Achievement Of Baryogenesis via non-Thermal Leptogenesis Dictates at 95% c.l. $Y_B = \left(8.64^{+0.15}_{-0.16}\right) \cdot 10^{-11}$.

⁵ M. Kawasaki, K. Kohri, and T. Moroi (2005); J.R. Ellis, K.A. Olive, and E. Vangioni (2005).

	Embedding In A $B - L$ GUT OO OO	Post-Inflationary Evolution ©	
INFLATON DECAY & NON-THERMAL LEPTOGI	ENESIS		

• The Out-Of-Equilibrium Decay of N_i^c can Generate an L Asymmetry Which Can Be Converted to the B Yield:

$$Y_{B} = -0.35 \ 2 \ \frac{5}{4} \ \frac{T_{\mathrm{rh}}}{\widehat{m}_{\delta\phi}} \frac{\widehat{\Gamma}_{\delta\phi\to N_{i}^{\mathbb{C}}}}{\widehat{\Gamma}_{\delta\phi}} \varepsilon_{i} \quad \text{Where} \quad \varepsilon_{i} = \sum_{j\neq i} \frac{\mathrm{Im}\left[(m_{\mathrm{D}}^{\dagger}m_{\mathrm{D}})_{ij}^{2}\right]}{8\pi \langle H_{u}\rangle^{2}(m_{\mathrm{D}}^{\dagger}m_{\mathrm{D}})_{ii}} \Big(F_{\mathrm{S}}\left(x_{ij}, y_{i}, y_{j}\right) + F_{\mathrm{V}}(x_{ij})\Big).$$

With $x_{ij} := M_{jN^c}/M_{iN^c}$ and $y_i := \Gamma_{iN^c}/M_{iN^c} = (m_D^{\dagger}m_D)_{ii}/8\pi\langle H_u \rangle^2$ and $\widehat{m}_{\delta\phi} < 2M_{iN^c}$ For Some *i* with i = 1, 2, 3. • Here F_V and F_S Represent, Respectively, The Contributions From Vertex And Self-Energy Diagrams

$$F_{\rm V}(x) = -x \ln\left(1 + x^{-2}\right)$$
 and $F_{\rm S}(x, y, z) = -2x(x^2 - 1)/\left(x^2 - 1\right)^2 + \left(x^2 z - y\right)^2$

• The Thermally Produced \widetilde{G} Yield At The Onset of BBN Is Estimated To Be: $Y_{\widetilde{G}} \simeq 1.9 \cdot 10^{-22} T_{\rm rh}/{\rm GeV}$.

POST-INFLATIONARY REQUIREMENTS

(1) Gauge Unification. Although $U(1)_{B-L}$ Gauge Symmetry Does Not Disturb This Gauge Coupling Unification Within MSSM We Determine M Demanding That The Unification Scale $M_{GUT} \simeq 2/2.433 \times 10^{-2}$ is identified with M_{BL} at the Vacuum, I.E.

 $\sqrt{c_{-}(\langle f_R \rangle - 2r_{\pm})}gM/\sqrt{\langle f_R \rangle} = M_{GUT} \Rightarrow M \simeq M_{GUT}/g\sqrt{c_{-}(1 - 2r_{\pm})} \sim 10^{15} \text{ GeV}$ with $g \simeq 0.7$ (GUT Gauge Coupling). (ii) Constraints on $M_{iN}c_{-}$. To Avoid Any Erasure Of The Produced Y_L and Ensure That The ϕ Decay To ε_i is Kinematically Allowed and $M_{iN}c_{-}$ are Theoretically Acceptable, We Have To Impose The Constraints:

 $(a) \ M_{1N^c} \gtrsim 10 T_{\rm rh}, \ (b) \ \widehat{m}_{\delta\phi} \ge 2 M_{1N^c} \ \text{and} \ (c) \ M_{iN^c} \lesssim 7.1 M \ \Leftrightarrow \lambda_{iN^c} \lesssim 3.5.$

(iii) The Achievement Of Baryogenesis via non-Thermal Leptogenesis Dictates at 95% c.l. $Y_B = \left(8.64^{+0.15}_{-0.16}\right) \cdot 10^{-11}$. (iv) \tilde{G} Constraints. Assuming Unstable \tilde{G} , We Impose an Upper Bound⁵ on $Y_{\tilde{G}}$ In Order to Avoid Problems With the SBB Nucleosystems:

$$Y_{\widetilde{G}} \lesssim \begin{cases} 10^{-14} \\ 10^{-13} \end{cases} \Rightarrow T_{\rm th} \lesssim \begin{cases} 5.3 \cdot 10^7 \ {\rm GeV} \\ 5.3 \cdot 10^8 \ {\rm GeV} \end{cases} \text{ for } \widetilde{G} \ {\rm Mass} \ m_{\widetilde{G}} \simeq \begin{cases} 0.69 \ {\rm TeV} \\ 10.6 \ {\rm TeV} \end{cases}$$

・ ロ ト ・ 雪 ト ・ ヨ ト ・

⁵M. Kawasaki, K. Kohri, and T. Moroi (2005); J.R. Ellis, K.A. Olive, and E. Vangioni (2005).

	Embedding In A $B - L$ GUT OO OO	Post-Inflationary Evolution	
Inflaton Decay & non-Thermal Leptogi	ENESIS		

LEPTON-NUMBER ASYMMETRY AND LIGHT NEUTRINO DATA

• m_{iD} are the Dirac Masses In a Basis (Called N_i^c -Basis) Where N_i^c Are Mass Eigenstates. In the Weak (primed) Basis

 $U^{\dagger}m_{\rm D}U^{c\dagger} = d_{\rm D} = {\rm diag}(m_{1{\rm D}}, m_{2{\rm D}}, m_{3{\rm D}})$ Where L' = LU and $N^{c'} = U^c N^c$ (: I).

э

・ロト ・ 同ト ・ ヨト ・ ヨト

	Embedding In A $B - L$ GUT OO OO		Post-Inflationary Evolution OOO O	
Inflaton Decay & non-Thermal Leptogenesis				

LEPTON-NUMBER ASYMMETRY AND LIGHT NEUTRINO DATA

• m_{iD} are the Dirac Masses In a Basis (Called N^c;-Basis) Where N^c_i Are Mass Eigenstates. In the Weak (primed) Basis

$$U^{\dagger}m_{\rm D}U^{c\dagger} = d_{\rm D} = {\rm diag}(m_{1{\rm D}}, m_{2{\rm D}}, m_{3{\rm D}})$$
 Where $L' = LU$ and $N^{c'} = U^c N^c$ (: I).

• Working in the N^c_i-Basis, the Type I Seesaw Formula Reads

 $m_{v} = -m_{\rm D} \; d_{N^{\rm C}}^{-1} \; m_{\rm D}^{\mathsf{T}}, \; \; {\sf W}{\sf Here} \; \; d_{N^{\rm C}} = {\sf diag} \left(M_{1N^{\rm C}}, M_{2N^{\rm C}}, M_{3N^{\rm C}} \right) \; \; {\sf with} \; M_{1N^{\rm C}} \leq M_{2N^{\rm C}} \leq M_{3N^{\rm C}} \; {\sf Real and Positive}.$

• Replacing $m_{
m D}$ from Eq. (1) in the Above Equation and We Extract The Mass Matrix of Light Neutrinos In The Weak Basis

$$\bar{m}_{\nu} = U^{\dagger} m_{\nu} U^* = -d_{\rm D} U^c d_{N^c}^{-1} U^c^{\mathsf{T}} d_{\rm D},$$

Which Can Be Diagonalized by the Unitary PMNS Matrix U_{γ} Parameterized As Follows:

$$U_{\nu} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -c_{23}s_{12} - s_{23}c_{12}s_{13}e^{i\delta} & c_{23}c_{12} - s_{23}s_{12}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{23}s_{12} - c_{23}c_{12}s_{13}e^{i\delta} & -s_{23}c_{12} - c_{23}s_{12}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix} \cdot \begin{pmatrix} e^{-i\varphi_{2}/2} & e^{-i\varphi_{2}/2} \\ e^{-i\varphi_{2}/2} & e^{-i\varphi_{2}/2} \\ e^{-i\varphi_{2}/2} & e^{-i\varphi_{2}/2} \end{pmatrix}$$

with $c_{ij} := \cos \theta_{ij}$, $s_{ij} := \sin \theta_{ij}$, δ the CP-Violating Dirac Phase and φ_1 and φ_2 the two CP-Violating Majorana Phases.

C. PALLIS

・ロト ・ 同ト ・ ヨト ・ ヨト

	Embedding In A $B - L$ GUT OO OO	Post-Inflationary Evolution	
Inflaton Decay & non-Thermal Leptogi	INESIS		

LEPTON-NUMBER ASYMMETRY AND LIGHT NEUTRINO DATA

• *m*_{iD} are the Dirac Masses In a Basis (Called N^c_i-Basis) Where N^c_i Are Mass Eigenstates. In the Weak (primed) Basis

$$U^{\dagger}m_{\rm D}U^{c\dagger} = d_{\rm D} = {\rm diag}(m_{1{\rm D}}, m_{2{\rm D}}, m_{3{\rm D}})$$
 Where $L' = LU$ and $N^{c'} = U^{c}N^{c}$ (: I).

• Working in the N^c_i-Basis, the Type I Seesaw Formula Reads

$$m_{\nu} = -m_{\rm D} d_{N^c}^{-1} m_{\rm D}^{\mathsf{T}}$$
, Where $d_{N^c} = \text{diag}(M_{1N^c}, M_{2N^c}, M_{3N^c})$ with $M_{1N^c} \le M_{2N^c} \le M_{3N^c}$ Real and Positive.

• REPLACING mD FROM EQ. (I) IN THE ABOVE EQUATION AND WE EXTRACT THE MASS MATRIX OF LIGHT NEUTRINOS IN THE WEAK BASIS

$$\bar{m}_{\nu} = U^{\dagger} m_{\nu} U^* = -d_{\rm D} U^c d_{N^c}^{-1} U^c^{\mathsf{T}} d_{\rm D},$$

Which Can Be Diagonalized by the Unitary PMNS Matrix U_{γ} Parameterized As Follows:

$$U_{\nu} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -c_{23}s_{12} - s_{23}c_{12}s_{13}e^{i\delta} & c_{23}c_{12} - s_{23}s_{12}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{23}s_{12} - c_{23}c_{12}s_{13}e^{i\delta} & -s_{23}c_{12} - c_{23}s_{12}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix} \cdot \begin{pmatrix} e^{-i\varphi_{2}/2} & e^{-i\varphi_{2}/2} \\ & e^{-i\varphi_{2}/2} & e^{-i\varphi_{2}/2} \\ & & 1 \end{pmatrix},$$

with $c_{ij} := \cos \theta_{ij}, s_{ij} := \sin \theta_{ij}, \delta$ the CP-Violating Dirac Phase and φ_1 and φ_2 the two CP-violating Majorana Phases.

Parameter	BEST FIT VALUE		
	NORMAL INVERTED		
	HIERARCHY		
$\Delta m_{21}^2 / 10^{-3} \text{eV}^2$	7.56		
$\Delta m_{31}^2 / 10^{-3} \text{eV}^2$	2.55	2.49	
$\sin^2 \theta_{12} / 0.1$	3.21		
$\sin^2 \theta_{13} / 0.01$	2.155	2.14	
$\sin^2 \theta_{23}/0.1$	4.3	5.96	
δ/π	1.40	1.44	

• The Masses, $m_{i\nu}$, of v_i Are Calculated as Follows:

$$\begin{split} m_{2\nu} &= \sqrt{m_{1\nu}^2 + \Delta m_{21}^2} \quad \text{AND} \\ \begin{cases} m_{3\nu} &= \sqrt{m_{1\nu}^2 + \Delta m_{31}^2}, & \text{ for NO } m_\nu\text{'s} \\ & \\ 0\text{R} \\ m_{1\nu} &= \sqrt{m_{3\nu}^2 + \left|\Delta m_{31}^2\right|}, & \text{ for IO } m_\nu\text{'s} \end{cases} \\ \bullet \quad \sum_i m_{i\nu} &\leq 0.23 \text{ eV ar 95\% c.l. FROM Planck Data.} \\ \leftarrow \square \implies \leftarrow \textcircled{P} \implies \leftarrow \rule{P} \implies \vdash \rule{P} \implies \rule{P} \implies \vdash \rule{P} \implies \vdash \rule{P} \implies \rule{P$$

	Embedding In A $B - L$ GUT OO OO	Post-Inflationary Evolution	
Results			

COMBINING INFLATIONARY AND POST-INFLATIONARY REQUIREMENTS

• To Verify The Compatibility of the Post-Inflationary Constraints, We Can Further Constrain r_{\pm} In Conjunction With The Low Energy Neutrino Physics Parameter

• All the Requirements can be Met Along the lines Presented in the $r_{\pm} - m_{2D}$ Plane for $\lambda_{\mu} = 10^{-6}$.

• We take $m_{rv} = m_{1v}$ for NO v_i 's and $m_{rv} = m_{3v}$ for IO v_i 's.

• The Inflaton Decays into the Lightest and Next-to-Lightest of RHN Since $2M_{iN^c} > \widehat{m}_{\delta\phi}$ for i = 3.

• Y_B Is Equal to its Central Value and the \widetilde{G} Constraint is Under Control Even for $m_{3/2} \sim 1$ TeV Since We Obtain

$$0.7 \leq Y_{\widetilde{G}}/10^{-15} \leq 3 \text{ and } 0.4 \leq T_{\rm th}/10^7 {\rm GeV} \leq 1.8.$$

Embedding In A $B - L$ GUT OO OO	Post-Inflationary Evolution 000 0	Conclusions

• WE PROPOSED A VARIANT OF NON-MINIMAL HIGGS INFLATION (NAMED KINETICALLY MODIFIED) WHICH CAN BE ELEGANTLY IMPLEMENTED WITHIN A *B* – *L* Extension of MSSM, Adopting A Superpotential Determined by an R-Symmetry and Several SemiLogarithmic Kähler Potentials Which Respect a Softly Broken Shift Symmetry.

・ロト ・ 御 ト ・ 臣 ト ・ 臣 ト

⁶E.g., Core+, LiteBird, Bicep3/Keck Array and PRISM

Embedding In A $B - L$ GUT OO OO	Post-Inflationary Evolution 000 0	Conclusions

• WE PROPOSED A VARIANT OF NON-MINIMAL HIGGS INFLATION (NAMED KINETICALLY MODIFIED) WHICH CAN BE ELEGANTLY IMPLEMENTED WITHIN A *B* – *L* Extension of MSSM, Adopting A Superpotential Determined by an R-Symmetry and Several SemiLogarithmic Kähler Potentials Which Respect a Softly Broken Shift Symmetry.

• THE MODEL EXHIBITS THE FOLLOWING FEATURES:

• IT INFLATES AWAY COSMOLOGICAL DEFECTS;

・ロト ・ 御 ト ・ 臣 ト ・ 臣 ト

⁶E.g., Core+, LiteBird, Bicep3/Keck Array and PRISM

Embedding In A $B - L$ GUT OO OO	Post-Inflationary Evolution 000 0	Conclusions

• We Proposed A Variant of non-Minimal Higgs Inflation (named Kinetically Modified) Which can be Elegantiy Implemented Within a B - L Extension of MSSM, Adopting A Superpotential Determined by an R-Symmetry and Several SemiLogarithmic Kähler Potentials Which Respect a Softly Broken Shift Symmetry.

• THE MODEL EXHIBITS THE FOLLOWING FEATURES:

- IT INFLATES AWAY COSMOLOGICAL DEFECTS;
- IT SAFELY ACCOMMODATES OBSERVABLE GRAVITATIONAL WAVES⁶ WITH SUBPLANCKIAN INFLATON VALUES AND WITHOUT CAUSING ANY PROBLEM WITH THE VALIDITY OF THE EFFECTIVE THEORY;

⁶E.g., Core+, LiteBird, Bicep3/Keck Array and PRISM

Embedding In A $B - L$ GUT OO OO	Post-Inflationary Evolution 000 0	Conclusions

• We Proposed A Variant of non-Minimal Higgs Inflation (named Kinetically Modified) Which can be Elegantiy Implemented Within a B - L Extension of MSSM, Adopting A Superpotential Determined by an R-Symmetry and Several SemiLogarithmic Kähler Potentials Which Respect a Softly Broken Shift Symmetry.

• THE MODEL EXHIBITS THE FOLLOWING FEATURES:

- IT INFLATES AWAY COSMOLOGICAL DEFECTS;
- IT SAFELY ACCOMMODATES OBSERVABLE GRAVITATIONAL WAVES⁶ WITH SUBPLANCKIAN INFLATON VALUES AND WITHOUT CAUSING ANY PROBLEM WITH THE VALIDITY OF THE EFFECTIVE THEORY;
- IT OFFERS A NICE SOLUTION TO THE μ Problem of MSSM, Provided that λ_{μ} is Somehow Small;

⁶E.g., Core+, LiteBird, Bicep3/Keck Array and PRISM

Embedding In A $B - L$ GUT OO OO	Post-Inflationary Evolution 000 0	Conclusions

• We Proposed A Variant of non-Minimal Higgs Inflation (named Kinetically Modified) Which can be Elegantiy Implemented Within a B - L Extension of MSSM, Adopting A Superpotential Determined by an R-Symmetry and Several SemiLogarithmic Kähler Potentials Which Respect a Softly Broken Shift Symmetry.

• THE MODEL EXHIBITS THE FOLLOWING FEATURES:

- IT INFLATES AWAY COSMOLOGICAL DEFECTS;
- It Safely Accommodates Observable Gravitational Waves⁶ With Subplanckian Inflaton Values and Without Causing Any Problem With The Validity Of the Effective Theory;
- It Offers a Nice Solution to the μ Problem of MSSM, Provided that λ_{μ} is Somehow Small;
- IT ALLOWS FOR **BARYOGENESIS** VIA NON-TL COMPATIBLE WITH \tilde{G} CONSTRAINTS AND NEUTRINO DATA. IN PARTICULAR WE MAY HAVE $m_{3/2} \sim 1 \text{ TeV}$, WITH THE INFLATON DECAYING MAINLY TO N_1^c and N_2^c WE OBTAIN M_{iN^c} in the Range $(10^9 10^{15})$ GeV.

THANK YOU!

⁶E.g., Core+, LiteBird, Bicep3/Keck Array and PRISM