

Search for the exotic decays of the Higgs boson

Jehad Mousa, Panos Razis, Aimilios Ioannou, Eleni Irodotou, Dimitra Tsiakkouri, Ioannis Vasilas

University of Cyprus

HEP 2018 Recent Developments in High Energy Physics and Cosmology Athens, 28th March - 1st April 2018

Contents

- □ Two Higgs Doublet Models (2HDM)
- □ 2HDM+S
- **Channels investigated**
- □ The benchmark points
- Background Processes
- Results

Two Higgs Doublet Models (2HDM)

□ We consider a model with an SU(2)_L □ Two doublets - ϕ_1 and ϕ_2

$$\left(\begin{array}{c} \Phi_1 \\ \Phi_2 \end{array}\right) = \left(\begin{array}{c} \cos\beta & -\sin\beta \\ \sin\beta & \cos\beta \end{array}\right) \left(\begin{array}{c} \Phi \\ \Psi \end{array}\right)$$

$$\tan\beta = u_2/u_1 \quad v_1^2 + v_2^2 = v^2$$

υ_ι vacuum expectation values (vev) of the neutral component.

Two Higgs Doublet Models (2HDM)

 $\hfill\square$ The 2HDM Lagrangian for Φ_i

$$L = \sum_{i}^{I} \left| D_{\mu} \Phi_{i} \right|^{2} - V \left(\Phi_{1}, \Phi_{2} \right) + L_{yuk}$$

Kinetic term for the two Higgs doublets

The 2HDM potential

Yukawa interaction between Φ_i and the SM fermions

$$V(\Phi_1, \Phi_2) = m_1^2 \Phi_1^{\dagger} \Phi_1 + m_2^2 \Phi_2^{\dagger} \Phi_2 - (m_{12}^2 \Phi_1^{\dagger} \Phi_2 + \text{h.c.}) + \frac{1}{2} \lambda_1 (\Phi_1^{\dagger} \Phi_1)^2 + \frac{1}{2} \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + \frac{1}{2} \lambda_5 [(\Phi_1^{\dagger} \Phi_2)^2 + \text{h.c.}] .$$

After EW symmetry breaking, the physical scalar spectrum of five states: Two CP-even Higges h, H with m_h <m_H, can be SM-like
 CP-odd scalar A
 Charge scalar pair H[±]

Three of these are absorbed by and given mass to the W^{\pm} and Z boson

Interpretation with 2HDM

Parameters in the physical basis : $m_h=125$ GeV in our case

4 types of 2HDM : different ways to couple ϕ_1 and ϕ_2 to fermions

	Type I	Type II	Flipped	Lepton Specific
			(Type Y)	(Type X)
Up-type quark	ϕ_2	ϕ_2	ϕ_2	ϕ_2
Down-type quark	ϕ_2	ϕ_1	ϕ_1	ϕ_2
Leptons	ϕ_2	ϕ_1	ϕ_2	ϕ_1

- \blacktriangleright Type I: All quarks and leptons couple to only one scalar doublet ϕ_2 .
- > Type 2: MSSM-like, d_R and e_R couple to ϕ_1 , u_R to ϕ_2
- > Type 3 (lepton specifiec): all quarks couple to ϕ_2 , leptons couple to ϕ_1
- > **Type 04 (flipped)**: with u_R , e_R coupling to ϕ_2 and d_R to ϕ_1

2HDM + S

- \Box Add to the 2HDM one complex scalar singlet S, which has a small mixing with Φ_1 and Φ_2 .
- □ This leads to two additional singlet states (CP-even scalar *s* and CP-odd α) which inherit interactions to the SM fermions from their mixing with the Higgs doublets.
- □ The general 2HDM+S model generates a large variety of Higgs decay phenomenology

 $h \rightarrow \alpha \alpha \rightarrow X \overline{X} Y \overline{Y}, h \rightarrow ss \rightarrow X \overline{X} Y \overline{Y}, and h \rightarrow \alpha Z \rightarrow X \overline{X} Y \overline{Y}$

- Four types of 2HDM+S forbid flavor changing neutral currents (FCNC) at tree level.
 Type 1: all SM particles couple to the first doublet.
 - > **Type 2:** leptons and down-type quarks couple to the second doublet, whereas up-type quarks couple to the first doublet. The next-to-minimal supersymmetric model (NMSSM) is a particular case of 2HDM+S that brings a solution to the μ problem.
 - **Type 3**: leptons couple to the second doublet, and quarks to the first one.
 - Type 04: down-type quarks couple to the second doublet while leptons and uptype quarks couple to the first doublet.

Eleni Irodotou

Channels investigated

Aimilios Ioannou

$$A \rightarrow Zh \rightarrow \ell^{+}\ell^{-}b\overline{b} \begin{cases} eeb\overline{b},\mu\mu b\overline{b} \\ e\mu b\overline{b},\nu\nu b\overline{b} \end{cases}$$

Channels investigated $h \rightarrow \alpha \alpha \rightarrow \tau^{+} \tau^{-} \tau^{+} \tau^{-} \begin{cases} e^{-} e^{+} \mu^{-} \mu^{+}, e^{-} e^{+} \tau_{h} \tau_{h}, \mu^{-} \mu^{+} \tau_{h} \tau_{h} \\ eeee, \mu \mu \mu \mu, \tau_{h} \tau_{h} \tau_{h} \tau_{h} \\ h \rightarrow \alpha \alpha \rightarrow b \overline{b} \mu^{+} \mu^{-} \end{cases}$

Decay Mode	Branching ratio (%)		
$ au^- ightarrow \mu^- \overline{v}_\mu v_ au$	17.41		
$ au^- ightarrow e^- \overline{v}_e v_{ au}$	17.83		
$ au^- ightarrow l^- \overline{v}_e v_{ au}$	35.24		
$ au^- ightarrow \pi^- v_{ au}$	11.53		
$ au^- ightarrow \pi^- \pi^0 v_{ au}$	25.95 47.01		
$ au^- ightarrow \pi^- \pi^0 \pi^0 v_{ au}$	9.53		
$ au^- ightarrow \pi^- \pi^+ \pi^- \pi^0 v_{ au}$	4.80 14.6		
$ au^- ightarrow \pi^- \pi^+ \pi^- v_{ au}$	9.80		
Other modes with hadrons	3.15		
All hadronic modes	64.76		

The benchmark points

 $h \rightarrow \alpha \alpha \rightarrow b b \tau^+ \tau^-$

final state with good sensitivity because of the large branching fractions to T and b quarks in most models.

 $2m_b < m_\alpha < m_{h/2}$

The benchmark points

$$Br(\alpha \to \tau^{+}\tau^{-}) \simeq 100\%$$
$$Br(\alpha \to \mu^{+}\mu^{-}) = 0.35\%$$

 $A \rightarrow Zh \rightarrow \ell^+ \ell^- bb$

0.001

150

200

250

300

M_A (GeV)

350

Zh

450

400

The benchmark points

The ATLAS collaboration reported a small deviation on the search channel $A \rightarrow Zh$: an excess, relative to background expectations, of 0.1-0.3 pb for $\sigma(A \rightarrow Zh)BR(h \rightarrow b\overline{b})$, for a potential pseudoscalar mass of about 440 GeV.

$A \rightarrow Zh \rightarrow \ell^+ \ell^- \tau^+ \tau^-$

The benchmark points

The benchmark points

$$h \rightarrow \alpha \alpha \rightarrow b \overline{b} \mu^{+} \mu^{-}$$

In 2HDM+S Type 3 the branching fractions of the $h \rightarrow \alpha \alpha$ channel is 10 % with $tan \beta = 2$.

$$2 \times Br(\alpha \rightarrow b\overline{b})Br(\alpha \rightarrow \mu^{+}\mu^{-}) = 1.7 \times 10^{-3}$$

The benchmark points

 $h \rightarrow \alpha \alpha \rightarrow \tau^+ \tau^- \tau^+ \tau^-$

The branching ratios to lepton pairs are in proportion $\tau^+\tau^-$: $\mu^+\mu^-$: $e^+e^- \simeq 1$: 3.5×10^{-3} : 8×10^{-8}

Background Processes $h \rightarrow aa \rightarrow 4\tau, h \rightarrow aa \rightarrow 2\tau 2\mu$

- □ **ZZjj and WZjj production:** The production of two vector bosons in association with two jets is the main background processes for this channel.
- **tt(bar)** production: Two leptons or hadrons and neutrino that produce missing momentum can originate from the decays of the two *W* bosons. The third lepton/hadron and an additional neutrino can be produced in the decay of a bottom quark (for the case of 4 taus).
- Ztt(bar) and Wtt(bar) production: In these processes an additional vector boson is produced, in association with a top quark pair.
- □ *Zbb(bar)* and *Wbb(bar)* production: One or two leptons can originate from the decays of the vector bosons. One or even two leptons can then be produced in the *b*-quark decays.
- □ QCD:. Potential background is caused by events containing misidentified leptons or leptons from *b* meson decays.

Background Processes $h \rightarrow aa \rightarrow 2\tau 2\mu, h \rightarrow aa \rightarrow 2b 2\mu$

- **Drell–Yan production of** $Z \rightarrow \tau^+ \tau^-$: In the e τ_h channel, $Z \rightarrow \tau^+ \tau^-$ production is also an important source of background because of the 2–3% probability for electrons to be misidentified as electron is misidentified as τ_h .
- \Box W + jets samples: W boson decays leptonically and a jet is misidentified as τ_h
- **U ttbar + Single top:** is one of the main backgrounds in the $e\mu$ channel.
- $\Box WZ^* / \gamma^* (\rightarrow \tau^+ \tau^-) b\overline{b}:$ has the $b\overline{b}$ pairs from a virtual gluon splitting, the $\tau^+ \tau^-$ pair from an intermediate Z^* / γ^* and the charged lepton plus missing energy from W boson.
- Diboson production (WW, ZZ, and WZ):
- Reducible background arises from jets misidentified as *b-quarks*, or as hadronically decaying taus.

Background Processes

$A \rightarrow Zh \rightarrow \ell^+ \ell^- b\overline{b}$

- □ **Z** + jets: The production of single Z/g bosons in association with one or more partons or gluons in the final state is topologically similar to the searched signal.
- □ W + jets: The leptonic decay of a W boson can be an irreducible background in the single-lepton channel, or in the zero-lepton channel in the case the charged lepton escapes undetected or fails the lepton identification requirements.
- \Box *tt:* These events always contain two energetic b-jets and two W bosons which may decay to high p_T , isolated leptons.
- □ single-top:
- Diboson (W W, W Z, Z Z): the production of two vector bosons in the SM is a rare process, with a similar kinematics to that of the signal. Furthermore, the bosst of the bosons could be large.
- multijet (QCD): despite its enormous cross section at LHC, the probability to produce final states with prompt, isolated leptons or large missing transverse momentum is very low.

Background Brocess

$A \rightarrow Zh \rightarrow \ell^+ \ell^- \tau^+ \tau^-$

- □ WZ+jets: Misidentified light leptons arise from semileptonic decays of heavy flavor quarks, decays in flight of hadrons, and photon conversions, while jets originating from quarks or gluons can be misidentified as τ_h .
- □ **Z+jets**: The Z+jets background is characterised by a softer lepton transverse momentum spectrum than the signal one, this background is reduced.
- □ tt +jets: It will be assumed that top quarks decay only SM-like, i.e. via t→Wb. Two leptons or hadrons and neutrino that produce missing momentum can originate from the decays of the two W bosons. The tagging jets can be faked by *b-jets* that are misidentified as light jets, or by jets from additional gluon radiation in the event.
- □ **Diboson production (WW, ZZ, and WZ):** The background is dominated by ZZ^* production with $Z \rightarrow ee/\mu\mu$ decays
- □ tW: There are two W produced in the tW → bWW process. This background is similar to that of the di-boson processes.

$\begin{array}{c} \mbox{Results} \\ \mbox{Expected Limits on } \sigma_h / \sigma_{SM} \ x \ BR(\ h(125) \rightarrow \alpha \alpha \rightarrow 2 \mu 2 \tau \) \end{array}$

Upper limits on $\sigma_h/\sigma_{SM} \times BR(h \rightarrow \alpha \alpha)$ in the different 2HDM+S models

The most stringent limits are obtained in 2HDM+S type III at large tan β , where the couplings to leptons are enhanced, and where limits as low as about 1% can be set.

$\begin{array}{c} \mbox{Results} \\ \mbox{Expected Limits on } \sigma_h/\sigma_{SM} \ x \ BR(\ h(125) \rightarrow \alpha\alpha \rightarrow 2b2\tau \) \end{array}$

□ Upper limits at 95% CL on $\sigma_h/\sigma_{SM} \times B(h \rightarrow \alpha\alpha)$ are range from 4 to 12% over the pseudoscalar mass range between 15 and 60 GeV.

The combined limit at intermediate mass is about 3.5%

Expected Limits on σ_h/σ_{SM} x BR($h \rightarrow \alpha \alpha$) for all types of 2HDM+S

□ The Higgs boson pair production rate $\sigma_h / \sigma_{SM} x$ BR(h → αα) for all types of 2HDM+S depends on tan β.

□ In the scenario with the highest branching fraction, 2HDM+S type-3 with tan β = 2, the expected limit is as low as 6% for m_α = 35 GeV.

Expected and observed 95% CL limits on $\sigma_h/\sigma_{SM} \times BR h(\rightarrow \alpha\alpha)$ in 2HDM+S type III for tan $\beta = 5$.

Expected Limits on

 $\sigma_A \times BR(A \rightarrow Zh) \times BR(h \rightarrow bb)$

gluon-gluon fusion

b-quark associated

The observed σ_{ggA} · BR_{bb} exclusion limits are 0.012–0.8 pb

The observed σ_{bqA} · BR_{bb} exclusion limits are 0.012–0.7 pb

- The exclusion region in the $cos(\theta \alpha)$ versus $tan\theta$ for $m_A = 300$ GeV for two 2HDM models.
- The newly discovered Higgs boson (m_A= 125GeV), is actually the lighter one of the CP-even Higgs bosons predicted by 2HDMs.
- Another assumption made: $m_A = m_H = m_{H^+}$
 - The potential parameter which softly breaks Z_2 symmetry is chosen as: $m_{12}^2 = m_A^2 \frac{\tan \beta}{1 + \tan^2 \beta}$

Summary

- □ No significant excess of data is observed above the expected SM background, upper limits at 95% CL are set on on $\sigma_h/\sigma_{SM} \times BR(h(125) \rightarrow \alpha\alpha \rightarrow 2\mu 2\tau$ for the pseudoscalar masses between 15 and 62.5 GeV.
- □ No excess of events is found on top of the expected SM background. Upper limits are set on B(h $\rightarrow \alpha \alpha \rightarrow 2b2\tau$). They range from 4 to 12% over the pseudoscalar mass range between 15 and 60 GeV. This corresponds to upper limits on B(h \rightarrow aa) between 6 and 26% in the most favorable 2HDM+S scenario (namely 2HDM+S type-3 with tan b = 2).
- □ No signal is observed in the search for a pseudoscalar Higgs boson. Upper limits are set at the 95% CL for $\sigma_A \times BR(A \rightarrow Zh) \times BR(h \rightarrow b\overline{b})$ of 0.012 0.80 pb in the range of $m_A = 220 1000$ GeV.

Thank you