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ATLAS

<g:: is average mmﬂ)er of -
7 intecattions per crussm}..

This illustrates the large number of interactions per crossing after an
LHC upgrade to a luminosity of ~10%°cm-2 sec ! (ATLAS collaboration).

Hﬂi The association of the time

measurement to the energy
measurement is crucial for physics
analysis, and requires time
resolution of 20-30ps.
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Existing Instrumentation:
e.g. Multi-Channel Plate (MCP) with
o~ 4ps but very expensive for large
area coverage
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Since the hermetic approach at the LHC experiments requires large area coverage, it is natural
to investigate both MicroPattern Gas and Silicon structures as candidate detector technologies.
However, since the necessary time resolution for pileup mitigation is of the order of 20-30ps,
both technologies require significant modification to reach the desired performance.

Large area detectors, resistant to radiation damage, with ~10ps timing capabilities will find
applications in many other domains, e.g.
* particle identification in Nuclear and Particle Physics experiments
* photon’s energy/speed measurements and correlations for Cosmology
* optical tracking for charge particles
* 4D tracking in the future accelerators (e.g. FCC with a center energy of ~100TeV)
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MicroMegas: Micro Pattern Gaseous Chambers
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The Physics of lonization offers the means for precise spatial measurements (high spatial
resolution) but inhibits precise timing measurements
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which is represented in Fig. 8, for n = 34, as a function of the coordinate across a 10 mm
thick detector. If the time of detection is the time of arrival of the closest electromn
at one end of the gap, as is often the case, the statistics of ion-pair production set an
obvious limit to the time resolution of the detector. A scale of time is also given in the

figure, for a coliection velocity of 5 gm/psec tvpical of M nf

buticn is about 5 nsec. There is no hope of improving this time resolution in a gas counter,
unless some averaging over the time of arrival of all electrons is realized.

n
A {x) n=34ion pairs /om

Fig. 8

Statistics of primary iom
pair production: prab-
ability of finding the
closest pair at a distance
% from one electrode in a
counter, in argon-iscbutane
70-30. The corresponding
electron minimum collee—

-1 40 t (nsec} tion time is shown, for a
10 L typical drift velocity of
G 2 x {mm) electroms of 5 cm/fpsec.
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Let n be the mean number of the e-ion pairs

However... | \ Drift Electrode produced by the charged particle along its track. Then
A A -300VA the probability that k-pairs are produced by a single
E e-'j. _ \' track is given by the Poisonian
g ‘
5 Conversion/Drift Gap :j“ \\o E Field Pnk _ II-;; e
\0 Micromesh L o Anode
S Amplification Gap K-j pairs . j-1 pairs 0
+500V
é Z
The probability that an e-ion pair has been produced at
&= Readout Strips Z=z is the same for any value of Z; p=1/L N
= Resistive Strips Then, in case that k pairs are produced, the probability
that the jth pair has been produced at Z= z is given by
the binomial distribution
Using the drift velocity (V), we express the probability n;‘{xj = F%"FTT (1 - ) K3

Probability Density

o
@
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that the first electrons will reach the anode at time t as:

A" (t)=n(V/L)e ™" where x=z/L describes the probability that a pair is

produced in the region 0-z

h

[[s] 12343
Entries 100

zan 6.002
RMS 5.584

The probability that the jth pair has been produced at

of ps

Setting typical values, i.e. V=50pm/ns
and n=10 we conclude that: i _ -1
Typical Time Resolution ~6ns S '

Z=z for any total number of e-ion pairs is given by

A typical MicroMegas cannot reach The probability that the last pair (i.e. the closest to the
timin

y resolution at the level of tenths edge 0) has been produced at Z=z is given by (j-1=0):

A (x)=ne™

1
40 S0

Time of Firat Arriving e (n:
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Figure 12 Beam test: An example of the signal arrival time distribution for 150 GeV muons,
and the superimposed fit with a two Gaussian function (red line for the combination and

dashed blue and magenta lines for each Gaussian function), for an anode and drift voltage of

275V and 475V, respectively. Statistical uncertainties are shown.
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» Suppress primary ionization by reducing
the drift gap (200 nm)
v" Limit diffusion
v Pre-amplification possible

» Use a Cerenkov radiator

v' Photoelectrons emitted at the cathode
(fixed distance from the mesh)

Pre-amplification will
= reduce the effect of longitudinal
diffusion

= limit contribution of gas ionization

MICROMEGAS

HV1
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Single-anode prototype

Tests with UV lamp / laser < quartz windows
Sensor:
Microbulk Micromegas ¢ 1cm

» Possibility to deposit CsI on the mesh surface
» Capacity ~ 35 pF

Bulk Micromegas o 1cm

» Capacity ~ 8 pF

» Amplification gap 128 pm
Thin-mesh Bulk Micromegas (~5 pm)
» High optical transparency

» Amplification gap 128 pm

T
2 2N

2 Ensure homogeneous small drift gap & pho'rocafhode
polarization
Photocathodes: MgF2 crystal +
*  Metallic substrate + CsI
*  Metal (Cr, Al)
* Metallic substrate + polycrystalline diamond
*  Boron-doped diamond

= New stainless steel chamber for sealed mode operation

Very thin detector active part (<6 mm) & =
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SPS measurement Setup

Trigger: coincidence of two 5x5 mm2 scintillators and a veto

% . downstream (avoid showers)
L O . . —_ —
Tg " ;r/gignng, d % % » Tracker: three GEMs to measure where the triggered particle
S B raciig A = = passed (reject showers too)
n o Timing c = . : :
0 3 E e » Time reference: two Hamamatsu MCP-PMTs (160 ps rise time)
% £ b E E » Tracking acquisition: APV25 + SRS
o
| a T = o - % » Timing acquisition: CIVIDEC C2 preamp + 2x 2.5 GHz LeCroy
o < X 2 (7] x x ] . i
< g E = = £ < scopes (synchronised with the tracker) and SAMPIC
n E& § E E £ © DAQ
s k9 = n & SAMPIC

HRAED IS PR Ry QAR

GEM

MM MM MM MCP MCP

silicon
I I I Beam
PR L
scintillator scintillator

scintillator
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Signal Formation
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Timing Characteristics: Answers to many “Why” and “How”

 Development of experimental and data analysis strategies

* Employ precise simulation and development of phenomenological models
» Study and understand the interplay between competitive processes

* Optimize the detector’s operational parameters

RD51 Open Lectures and Mini Week

11 Dec 2017,12:00 =+ 15 Dec 2017, 18:30 Europe/Zurich

€ 593-R-010 - Salle 11 (CERN)

& Eraldo Oliveri (CERN), Spyros Tzamarias (Aristotle University of Thessaloniki (GR))

Description Monday 17th December, 14:00 - Wednesday 13th December 12:30
RD51 Open Lectures: Signal generation, modelling and processing

W. Riegler, R. Veenhof, F. Resnati, 5. Tzamarias

Purpose of the lectures is to discuss new developments on the methods and tools used to describe the signal generating processes as well as
techniques of analysing data of gaseous detectors. The lectures are geared towards people who are doing, or intend to do, research and
developments on gas-based detectors but are also open to anyone interested on the subject.

Please, fill the registration to the Open Lectures (right panel) in particular if you are planning to follow them in person at CERN.
Lectures will be broadcasted via Viydio.

Access to the lectures is free. Certificate of Attendance will be provided under request.

see https://indico.cern.ch/event/676702/timetable/
and https://arxiv.org/abs/1712.05256

29/3/2018 HEP 2018 - Recent Developments in High Energy Physics and Cosmology
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Recognize the “start” and “end” of the e-peak, as well as the “end” of the
ion tail

Pulses

0.075

0.03

0,025

0.08
0.06
0.04
0.02

T;I\I|III|\II‘II\|I

T ’ é T d:I'ime (ns) ° ;

Evaluate charge by integrating the relevant part of the waveform

29/3/2018 HEP 2018 - Recent Developments in High Energy Physics and Cosmology
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Definition of the e-peak Arrival Time
Fit the e-peak Leading Edge

Fit the e-peak leading edge in order to neutralize noise effects.
Several Functions have been used in the fits, including quadratic and
cubic polynomials as well as logistic and generalized logistic functions

B P R
1+ exp[—Pz (x—Pl)] : (1+e,xp[—P2 (x_Pl):I)F]

A fit of the whole e-peak was also tried using the difference of two
logistic functions

Po Po

Waveform (Laser Test), Anode: 650, Drift: -450

f(ﬁPDaPl:PQ:PS:P4=P5,P6) — ( _

1+ e—{f—Pl)P?)pB (1 + e—(t—m)m)i"ﬁ

The results of these fit is also used to define the “start” and
”end” points of the e-peak waveform, to estimate charge and it

Is also used for timing

29/3/2018 HEP 2018 - Recent Developments in High Energy Physics and Cosmology



Define the e-peak arrival time at a Constant Fraction of the peak maximum
CFD Timing minimizes “slewing effects”

=) [ CFD Timing of raw pulses suffers from noise
E i FIT the V-"\CO SIGNAL
1000
200 |
500 |
400
200 = prspesssssssssssassssssssansasssssMrennrhurnsssssssnsassasassansasssnssassrrensen:
________ O s, S
.’

Time [(ns;
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Fitting the e-peak waveform helps to estimate the charge in “impossible” cases

Example: small pulses
Define the start and the end of the e-peak
Estimate the charge

0.05

0.04

0.03

.02

0.01

1 1 1 1 1 1 1 1 1 ! 1 1 | 1 1 1 1 1 1 1
& & 10 12 T4 16 15
(R Vet Vs A = \nggrliisqtﬁpvgglg ‘\2 GenerU“ZEd LOgiStics

Why not using filtering algorithms???
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% E m— Average of Spectiume
5 F

——— Averaga of Spectrums of Noisa

Is it possible to filter-out the noise ? Vv\ —— s e

\

5]
=
il

An example of filtering out the noise
(cut at 1.5 GHz) o
w-‘il“lo..’)“lli‘ll 1.{;‘““2"“25
Waveform (Laser Test), Anode: 650, Drift: -450 Waveform (Laser Test), Anode: 650, Drift: -450
Eum— gﬂm—

180 B0 1] [ 93 a4 a5
Time [ne) Time |ne)

In these examples (PICOSEC-MicroMegas), the use of filtering before fitting the leading
edge of the pulse DOES NOT improve the timing resolution, i.e. a conservative frequency
cut does not improve the timing resolution and a strong frequency cut deforms the rising
edge of the pulse worsening the time resolution

(see V. Niaouris Talk)
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Back to basics

*The Cherenkov photons, produced when a relativistic muon (MIP) passes through the MgF,
radiator, extract (per average) 10-11 photoelectrons from the Csl photocathode.

Particle
Cherenkov -
Radiator
Photocathode  18-20 nm I HY1 Cathode
€ E-Flald

Drrift 200 pm . Mesh
A,I'I"I Iiﬁcation 198 um R R LR R -- = w oL {BU”( Mlﬁ[@megas:l

P F E-Fieidik v Anode

————{ Preamplifier + DAQ|

*The PICOSEC response to a MIP is the linear sum of its response to each of the produced
(mutually uncorrelated) photoelectrons

*In order to understand the signal formation dynamics we studied the PICOSEC response to
single photons, using a monochromatic laser beam

Femtosecond Ti:S laser Optical Parametric Oscillator \
=740 nm, 120 fs, 76 MHz [~ =560 nm, 120 fs, 76 MHz

“Compass gas” (Ne+10%CyHg+10%CFy) at 1 bar. 7255

4-% Second Harmonic Pulse-Picker
Generator, = 280 nm [ 11-300 kHz
CF4 +2D%Cg HE at 0.5 bar
Picosec
R LeCroy 9000
Attenuator and bandpass fillers digital oscilloscope
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Does the “Polya” shape describe the e-peak charge and amplitude distributions?

Laser beam tests
Use data sets collected without any threshold on the picosec-MM signal to test the “Polya Hypothesis”

Charge 426—440

__ Use out-of-time events
to model the noise

+ — 8 1024 L
. c+1)"(010.) 4ivs

F ;C,e, == ¢ (8+1)Q/0, I ‘1“‘!“‘”
025 05 075 (Q Q() Ql. F(G'I'l) ¢ L “:i‘

e—Peak Integral [l b \

| ‘ Fit the charge spectrum i il H ‘
= produced by a single i ‘Hm |

I 1 H | ‘

; wﬂ m‘ 1 1.5 2

|

ntegral

il
Illllmun,.
g
sak I

photoelectron 1| ‘
G

2.5 3 3.5

e—Peak Integral

Charge 450-350

i 0 1N(9+l) /0 N(8+1)-1 )
G(Q;CI,CZ,---C,(,RMSE,< 0, >):2C—N( +1) (Q Qe) o (04100,

25 T(Me+)

I

k
number of events = Z Cy
N=1

Fit the charge spectrum produced by
several photoelectrons

e—Peak Integral
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The Signal Arrival Time Depends on the size (Charge) of the e-peak

Crift Voltage 300 v

Drift Voltage 350 W
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The Resolution depends on the size (Charge) of the e-peak

Ancd= at 600V

008 —
0.06 —

004 —

0.0z

Drift Yoltage 425 W

Drift Yoltage 450V

Drift Voltage 500 W

++ ++

10
e—peak Integral (pC)

~0.45
w L

COMPAS CAS — Anode ot D26V

Drift Volloge 225V

Drift Vollage 250V

Drift Voltoge 300V

Drift Voltoge 350

The SAT and Resolution dependence on the e-peak size, for constant anode field, follow the
Same functional form independently of the applied anode field !1!!

29/3/2018

HEP 2018 - Recent Developments in High Energy Physics and Cosmology

22




The anode field does not alter significantly the SAT and Resolution dependence on the e-
peak size. The anode field does not affects the timing characteristics !!!

— 0.2
w0 L

~ 0.2
w
= =
5 5
8.175 5016
= [=1
3 &
'EO 15 L 016
Fatin
A
0125 - ps
F 012
01
r 0.1
0.075
r 0.08
0.05 B
0.0
0.025 L
0.04
a b
1 L 1 L | |
0.02 Ly L L L
1 10 1 10
a—peak Charge (pC) e—peak Charge (pC)
o COMPASS GAS COMPASS GAS
w -

1Q
e—peackCharga (pC)

1
a—pedk Amplitude (V)
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Counter-Intuitive: The Resolution dependence on the e-peak size is the same for all the drift
fields (despite the different diffusion coefficients)

Counter-Intuitive: The SAT depends on the e-peak size. The dependence is the same for all the
drift fields (within a constant delay due to the different drift velocities)

H . The CFD timing is slewing-free as long the pulse shape
JH does not change with the pulse amplitude

The PICOSEC pulse shape remains almost constant. The waveform shifts because of
some physical process !!!

Average Waveforms Average Waveforms
s —— 0.050V - 0.055V | — 0.050V-0085V
L 2 0.16V - 0.20V 0.16V - 0.20V //
C / \ —— 0.30V-0.42V —— 030V-042V //
0.87 / \ 0.87 /
06 \ 06 7
0.47 // 0_47 / /
, . V4
02- / /, 02f- //
'k N T
I AN AFANEVIFIN AAVAFIFS IFENATAIN AUNATATEN I A Cov v b b b Lo Lo 1u g
175 18 185 19 195 20 205 21 215 174 176 178 18 18.2 184 18.6 18.8
Time [ns] Time [ns]
29/3/2018 HEP-2018=Recent DevelopmentsimHighEnergy Physicsand-Cosmotogy 24



*\We should use a detail-simulation (including all the relevant atomic and
molecular phenomena) to simulate the PICOSEC response to single
photoelectrons

*Garfield++

First Difficulty: Garfield++ simulates up to the induced current on the anode
*We should extract the electronics’ response to the PICOSEC signal (couplings,
preamps etc) from the data

We have developed a statistical technigue (proving that is consistent and unbiassed) which
convolves Garfield++ predictions with a parameterization of the electronics’ response and

estimates the relevant parameters by fitting the average pulse shape observed in the data.
(see K. Paraschou talk and Master Thesis)

z=328um
Cathod:
. Stage 1: Simulation of the pre-amplification region.
z=182pm
[Az=200um
Stage 2: Simulation of the amplification region.
Mesh (Pitch = 63um, Woven) o
oo =128 . . . .
1 T Stage 3: Combination of Stage 1. and Stage 2., and convolution with the
potiogm  [szs1280m parametrization of the electronics’ response to generate wave-
oo forms.
,,,,,, z=0pm ( Po Po
S5 pos p1ap2, p3. pas ps, pe) = 8 Pa
Figure 2.1: Diagram of the simulated detector model. The geometry is . (l + '-':_({_m)p") ! (1 + '-"_“_p]]pr') ’
periodic in the plane that is perpendicular to the z-axis (electric field). The § E E"

reference z = 0 is the anode. gw Fos

Teow ol > Torm
(a) (b)

Figure 2.7: (a) The black points in the right plot correspond to the exper-
imental average waveform for events with an electron peak charge above
15.pC. Tk sgion was chc revent the SAT dependence fr
ing the result. The fit result is shown in the red line of the plot. The dashed
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The shapes of the simulated pulses, for different drift voltages (same anode voltages) and
for different e-peak sizes, agree very well with the data

20pC - 25pC, Drift Voltage: 425V
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We have to scale the MC charge (or amplitude) predicted distributions in order to take into

account the electronics' gains.

We expected that by adjusting the scale factor at some drift

operating voltage we should predict all the other distributions of events collected with the same
anode but different drift voltages, WITHOUT any extra fine tuning.

However...
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It is known that the COMPASS gas mixture has a significant penning effect. Until now this effect was
ignored in the simulation. We con5|der dlfferent pennlng transfer rates to examine its behaviour.
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—a— Penningr = 0%
—— Penning r = 30%
Penning r = 50%

e Penning r=70%

Approximately, for a transfer rate r = 50%, the
scale factor is not dependent on the drift voltage
setting.

-
.....

1 | 1 1 | 1
400 420
Drift Voltage (V)

(see K. Paraschou talk)

Fig: Scale factor, G, as a function of drift
voltage, divided by the scale factor at 325 V.
Red lines dashed represent linear fits.
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Fully Simulated Waveforms
Including electronic noise in the simulation
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Electron-peak cﬁa[?'ge (PC)

A simple 2.5mV RMS, uncorrelated noise inclusion makes the simulation’s predictions to agree much
better with the experiment.
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Include electronic noise in the simulation
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The simple 2.5mV RMS noise inclusion makes the simulation’s resolution agree almost perfectly with
the experiment.
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Furthermore, the simulation predicts that large pulses are arriving earlier than smaller
pulses whilst the pulse shape remains almost the same, as it has been observed in the data.

Average Waveforms Average Waveiorms
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Figure 2.12: Both figures show the average simulated waveforms in different
bins of electron peak charge, denoted by the color code. In (a), the whole
electron peak is shown, whilst in (b) the focus is on the leading edge.
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*Garfield++ includes all the relevant atomic and molecular processes. However, the fact that
Garfield++ predictions (convolved with the electronics response) describe the PICOSEC
timing characteristics does not enlighten us for their origin (e.g. why SAT depends on the e-
peak size?)

At this point Garfield++ is like a “black box”

In the following...

* Identify the main microscopic parameters that correspond to the macroscopic
(experimental) observables: SAT and Resolution

* Identify the processes which are responsible for varying the main microscopic parameters
« Build a phenomenological model to describe the mechanisms of variation and compare

with the Garfield++ predictions
(for details see K. Paraschou MSc Thesis and talk)

A single avalanche

Many avalanches with the same length D

Pre-1onization track 120

100

- Pre-amplification avalanche 80
T is the mean value of all

e A A D the electrons’ arrival times 40
at the mesh
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Select simulated waveforms with e-peak charge in a certain (narrow) region of Charge
Evaluate the experimental arrival Time of each waveform

Evaluate the corresponding T, i.e. the mean arrival time on the mesh of all the pre-
amplification avalanche’s electrons

Study the correlation
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Total time (from the photocathode to the mesh)
Avalanche time (from the first interaction point to the mesh)
Photoelectron Time (from the photocathode to the interaction point)
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i Pre-amplification avalanche

A

How is it possible the photoelectron and the avalanche to have different drift velocities?
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Let us be inspired by the phenomenon of “Quenching”

From Rob Veenhof

Electrons in Ar/CO2 at E=1 kV/cm

o owco,l i

Starting point Starting point
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From Rob Veenhof
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Starting point
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From Rob Veenhof
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*When the “ionization channel opens” the electrons in the avalanche loose energy

*As in the case of “quenching”, the energy loss results in higher drift velocity !!!

*Our model employs an effective parameter p that describes the “time gain due to the energy
loss in each ionization (production of a new electron)

*The other parameters of the model are: the drift velocity of the photoelectron, the first
Townsed coefficient and the attachment probability.

*The model treats the number of electrons in an avalanche as continues variable

llllllllllllllllllllll[]IIII[]III[

Garfield++ Simulation
Model

—

We could predict the
effective drift velocity of the
avalanche
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We could describe and explain the SAT dependence on the number of avalanche’s
electrons (i.e. on the e-peak size)

Garfield++
1.35 Model prediction

Signal Arrival Time [ns]
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Points: Garfield++
Curves: Model Prediction
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» Timing Resolution due to the avalanche fluctuations
Timing Resolution due to the photoelectron flggtuatic
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*We have developed the tools to describe the PICOSEC response and we have identify
the major mechanisms which are responsible for the timing characteristics

*We can achieve less than 20 ps (15?) timing resolution with optimized working
parameters (during the next test-beam period)

*We will run in intense laser beams, i.e. in similar conditions as in a electromagnetic
calorimeter, to finalize the design of a calorimeter with ~1ps time resolution
(Astroparticle Physics, Cosmology, Astrophysics...)

*We have operated a muli-pad PICOSEC detector. Very encouraging first results, data
analysis is not finished. A new test-beam run in July

*\We have started a detailed simulation study to evaluate the spatial resolution of several
Micromegas tracker configuration with PICOSEC timing information. Many ideas... to
be used as a demonstrator in the running LHC experiments

« PICOSEC applications for fire detection and early warnings
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Resume

The RD51 PICOSEC collaboration has developed a MicroMegas detector with
photocathode and Cherenkov radiator

First published results prove the potentiality of such a detector to perform precise
timing of MIPs and single photons.

| have presented studies to understand the underlying mechanism which are
responsible for the timing characteristics.

Further developments of the PICOSEC detector are currently investigated and will
be tested in particle and laser beam

Thank you for your attention!!!



