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Outline 

 
 ATLAS Upgrade NSW: Overview of the gas system design 

 
 Proposed design solutions and development/production of the 

specific gas components (2014-integration: 2018) 
 
 Determination/Prediction of the “Theoretically Feasible Sealing” 

(TFS) of the Micromegas Quadruplets (end of 2016-2017) 
 

 Theoretical approach to the transparency drop-off of a 
Micromergas Moodule due to air diffusion mechanism (2017-in 
progress: 2018) 
 

 The proposed-novel Gas Tightness Test method (FRL), its 
implementation and integration in BB5 at CERN (proposed: 
2015-operational quad: 2018)  

 
 Conclusions 
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ATLAS UPGRADE: New Small Wheel 
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Gas system of the NSW Micromegas 

• 16 gas channels should provide gas mixture (Ar+7% CO2 at around 3 mbar) to each NSW 
• Each channel provide gas either to two LM wedges or to two SM wedges 
•The gas inlet comes from the outer rim and the gas outlet goes to the inner rim. 
 

“Trident” manifolds 

“Wedge” manifold 
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Pressure drop along a gas channel  
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Specific gas components (impedances & manifolds)  
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Results and evaluation method (in trial samples) 
 Zi  IMPEDANCE ID ∆P (mbar) - FORWARD ∆P (mbar) - BACKWARD MEAN ΔP (mbar) ΔD/D (%) ESTIMATED D (μm) 

Z1 ZLM-370-11800-01 3.79 3.87 3.47 -0.2 369 

Z2 ZLM-370-11800-02 3.67 3.79 RMS ΔP (mbar) 0.6 372 

Z3 ZLM-370-11800-03 2.93 2.71 0.46 8.0 400 

Z4 ZLM-370-11800-04 3.51 3.52 REL. RMS (%) 2.4 379 

Z5 ZLM-370-11800-05 3.14 3.24 13.1 5.0 389 

Z6 ZLM-370-11800-06 2.95 2.92 MEAN ASYM. (%) 7.1 396 

Z7 ZLM-370-11800-07 4.22 4.42 -0.5 -4.2 354 

Z8 ZLM-370-11800-08 4.14 4.36 RMS ΔD (μm) -3.6 357 

Variations in the diameter of  2 μm can be detected by using the gas flow model 
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By fitting using the voltage output of the 
Mass Flow Sensors we can determine the 
diameter of the channel as a free parameter 
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“Gas Impedances”: production in Greece 
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Impedance ID 

AVERAGE (F+B)/2 

CNC Machinery: A. & G. Boukis 
Method: Die-Sinking EDM (Electrical Discharge Machining)  
Ordered pieces: 571 (included 8 samples) 
Channel diameters: 0.370, 0.420, 0.900, 1.000 mm 
Required uncertainty in the diameter:  < ±15 μm (achieved 
<5 μm) 
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Leak rate determination of the Micromegas Modules 
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According to the Poiseuille Law for a Newtonian fluid 
and for a rectangular cross section percolation channel 
of height uc and  width and length λc (uc << λc). 

1a ≈and 

where, 

Rubber’s radius 

Gas viscosity 

Surfaces roughness amplitude  

Apparent contact separation 
at  critical magnification 

Squeezing ratio 
Hurst exponent 

Roll-off wave number 
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Pressure difference 

Squeezing pressure 

We have to cope with 1-variable and 8-parameters !  

 Rubber contact length 

Plane elastic modulus 



10                   HEP 2018 Annual Meeting                     March 31  2018                  S. Maltezos                   

Building blocks of the procedure 
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Calculation methodology 
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Solution for self-affine fractal surfaces 
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First step: after some analytical work, we found the formula for 
the critical magnification:  

Second step: calculating the surface separation. In this analysis we use the 
approximation that the surface separation at critical magnification u1(ζc) can be 
used in place of the rms roughness at this magnification.   

,Obtained "Theoretically Feasible Sealing" for the LM2 MM QP: 4 1 mL/hL TFSQ = ±
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m: the mass of the e- 

εk: the characteristic kinetic energy of the e-  (related to the energy 
distribution of the e-) defined by 

E: the electric field 
D: the diffusion coefficient 
w: the drift velocity of e-  
Ν: the molecules concentration of the detector’s gas 
h: the probability of electron attachment  in air 
p: the mole percentage (fraction) of air in the gas 
σ(εk): the Ramsauer cross section for electrons in a gas 

Electron’s attachment by air (due to oxygen) 
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Air fraction in pure Ar for Micromegas parameters 

Simulations with “Garfield” with Argon+7%CO2 give very similar result 
(see Dipl. Thesis of Ch. Kitsaki)   
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I - 1) Initial condition 
 
B-2) Boundary condition (being constant) 

0( ,0)C x C=

B-3) Boundary condition (being constant) 0( , )C t C∞ =

1D continuous diffusion (gas at rest) 

Solution for  ( )00 :   ( , ) + erf  
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Fick’s 2st law for 1-dimensional diffusion  (1st law+continuity equation)  
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Diffusion’s space-time representation (R=0) 

Graphical space-time representation of the solution using C0=0 and Ca 
(atmospheric air mole concentration). The total time shown is equal to 
their nominal “renewal time” 1/R (6 hours) of the Micromegas 
Quadruplets.  

Cair 

x 
t 

t= 6 h 

0 
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1D dispersion with removal term (R>0)  
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Where C(x,t) denotes the mole concentration of the air free to diffuse at a 
distance x at time t while R is the removal rate of the air (due to gas flow 
in our case) which is constant.  The solution is 
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For the steady state solution  t → ∞ and x>> and finite we obtain  

lim ( , ) ( ) expat
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D→∞

 
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 
The steady state solution can be defined for dC/dt = 0  

The general partial differential equation containing a removal rate term is the 
following (semi-infinite medium with constant surface concentration):   
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Graphical space-time representation of the solution considering a 
permanent atmospheric air mole concentration Ca . The total time shown 
is equal to 4 “renewal times”.  

Space-time representation  
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Air mole fraction determination   

Integrating over the area A of the leakage hole and the half solid angle, 2π, 
from r=0  to a radius rmax we have  

This is an approximation neglecting the detector’s walls reflection, 
which corresponds to a more safe side. Simulations using COMSOL are 
also in progress) 
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Family curves f(QL,R,xi)=0 for the LM2 MM QP 

These scales of mole fraction of air is very hard to be measured experimentally   
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The air fraction xair as a function of the radial distance from the leakage source in 
the chamber for a LM2 Quadruplet and for a LM2 Layer alone.  

Air mole fraction closer to the “leakage source”   

• The above results concern an overall (effective) T drop-off in the volume 
• A renewal rate R=4 per day was considered.   
• For leak rate equal to 2 L/h we obtain ΔT/To≈0.07 % and 0.3 % respectively 
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The introduced-novel gas tightness method: FRL 
Included only in the upgrade stage 1 

FRL: Flow Rate Loss, based on the mass conservation principle of the gas 
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Upgraded FRL setup 
 
 The achieved improvement on S/N ratio depends on the signal level. Typically, we achieve a S/N 
about 30 at the lowest expected levels of leakages. The analog dual phase LIA 5210 we used is a 
classical analogue model available in NTUA. 
 

Gas Tightness Station – stage -1  

To be added to the baseline setup. 

Dual phase LIA                               e-choppers 
LIA 

Signal Generator 



24                   HEP 2018 Annual Meeting                     March 31  2018                  S. Maltezos                   

 
• Two Mass Flow Sensors 
• Digital differential manometer 
• Field Point NI (16-bit ADC) with 4 channels in use 
• WinCC-OA  monitoring and control 

First test of the Gas Tightness Station (GTS) at BB5 

SM1-M0 

AIR BOTTLE 

Ar+7%CO2  gas line 

Baseline instrumentation 
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,Theoretically Feasible: 4 1 mL/hL FQ = ±
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The source of the signal fluctuations in region (B) 

In this LM2-M0 the 
interconnection pins were not 
still in their final-exact 
positions. 
Let us assume a “Volume 
Expansion Strain”, c, equal to 5:  
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The source of the signal fluctuations in region (B) 

The Gas Tightness Station configuration (fully 
operational and stable) and can measure 4 Micromegas 
Quadruplets at the same time. 
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The Gas Tightness Station Control Software (WinCC) 

Written by using WinnCC-OA  and covers: 

• FRL/PDR method for Air/Argon/Ar:CO2 
• Monitoring the MF sensors  providing the flow rates 

and the leak rate 
• Alarm handling for the leak rate and pressure of the 

MM QPs 
• Access of data history of MM QPs (type or batch id) 
• NSW Oracle DB (Freiburg GUI) 
• Settings (calibration factors, offsets, gas type etc.) 
• Automatic advanced analysis using ROOT    

(see Dipl. Thesis of P. Tzanis for more details)   
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Study of the fluctuations (bypass mode) 

 
• Flow rate distributions in by-pass mode (zero leakage) 
• The fluctuations represent the MFS’s repeatability. 
• The RMS is 2.8 mL/h, including the systematic variations, but the output follows the input 

systematically. 
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• Differential flow rate (representing purely the fluctuations of the difference Qin-Qout)  in bypass 

mode1. 
• The RMS is 1.3 mL/h leading to a FWHM=3 mL/h, which is essentially the “detection limit” of the 

FRL setup. 

Obtained resolution 

Differential Flow Rate 
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Advanced analysis of 32G needle leakage (D=105 μm) 

Leak rate Q L=13.7 ± 1.7 (stat.) ± 0.7 (syst.) mL/h  

Theoretical Feasible Sealing (TFS) of a LM QP Q L,lim=4 ± 1 mL/h  

This leakage is about 1/3 the acceptance limit of a LM QP 
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Advanced analysis using double Gaussian fitting 

Leak rate Q L=13.5 ± 0.2 (stat.) ± 0.7 (syst.) mL/h  

In case of  measuring QL close the feasible leak rate limit of the MM QPs ) the two 
Gaussians are expected to begin overlapping at about 1-sigma.   
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Conclusions 

 The gas system of the NSW Micromegas Quadruplets has been designed 
according to the specifications  
 
 We introduced end-to-end solutions for the specific gas components with 

optimal dimensions and low cost.  
 
 A theoretical feasible sealing result has been calculated while we intoduced 

a novel gas tightness test method (FRL) which is going to be used not only 
in the BB5 (CERN) but at the costruction sides too.  
 
 A setup for the gas leak test of 4 MM QP at the same time (M4-FRL), has 

been designed and now is fully operational and stable.    
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