Scalar One-point Functions in AdS/dCFT

Georgios Linardopoulos

NCSR "Demokritos" and National & Kapodistrian University of Athens

HEP 2018: Recent Developments in High Energy Physics and Cosmology National Technical University of Athens, March 30th 2018

based on [arXiv:1802.01598] (to appear in PLB) and J.Phys. A: Math.Theor. **50** (2017) 254001 [arXiv:1612.06236] with Charlotte Kristjansen and Marius de Leeuw

Table of Contents

One-point functions in the D3-D5 system One-point functions in the D3-D7 system Summary & outlook

Section 1

Intersecting Branes

< □ > < 部 > < 言 > < 言 > 差 > う < で 3 / 21

The D3-D5 system

Let us recall the original formulation AdS/CFT correspondence:

 $\left\{ \text{Type IIB superstring theory on } AdS_5 \times S^5 \right\} = \left\{ \mathcal{N} = 4, SU(N) \text{ SYM theory in } 3 + 1 \text{ dimensions} \right\}$ (J. Maldacena, 1998)

One-point functions in the D3-D5 system One-point functions in the D3-D7 system Summary & outlook

The D3-D5 system

IIB string theory on $AdS_5 \times S^5$ is encountered very close to a system of N coincident D3-branes:

One-point functions in the D3-D5 system One-point functions in the D3-D7 system Summary & outlook

The D3-D5 system

IIB string theory on $AdS_5 \times S^5$ is encountered very close to a system of N coincident D3-branes:

The D3-branes extend along x_1 , x_2 , x_3 ...

	t	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	<i>x</i> 4	<i>X</i> 5	<i>x</i> ₆	<i>X</i> 7	<i>x</i> 8	<i>X</i> 9
D3	•	•	•	•						

One-point functions in the D3-D5 system One-point functions in the D3-D7 system Summary & outlook

The D3-D5 system

IIB string theory on $AdS_5 \times S^5$ is encountered very close to a system of N coincident D3-branes:

The D3-branes extend along x_1 , x_2 , x_3 . Now insert a single (probe) D5-brane at x_3 , x_7 , x_8 , $x_9 = 0$...

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<i>x</i> ₈ <i>x</i>	<i>X</i> ₇	<i>x</i> ₆	<i>X</i> 5	<i>x</i> ₄	<i>x</i> 3	<i>x</i> ₂	x_1	t	
D3 • • • •						•	•	•	•	D3
D5 • • • • • •			•	•	•		•	•	•	D5

4 / 21

One-point functions in the D3-D5 system One-point functions in the D3-D7 system Summary & outlook

The D3-D5 system: description

- In the bulk, the D3-D5 system describes IIB Superstring theory on $AdS_5 \times S^5$ bisected by D5 branes with worldvolume geometry $AdS_4 \times S^2$.
- The dual field theory is still SU(N), $\mathcal{N} = 4$ SYM in 3 + 1 dimensions, that now interacts with a SCFT that lives on the 2+1 dimensional defect.
- Due to the presence of the defect, the total bosonic symmetry of the system is reduced from $SO(4,2) \times SO(6)$ to $SO(3,2) \times SO(3) \times SO(3)$.
- The corresponding superalgebra psu (2,2|4) becomes osp (4|4).

One-point functions in the D3-D5 system One-point functions in the D3-D7 system Summary & outlook

The $(D3-D5)_k$ system

- Add k units of background U(1) flux on the S² component of the AdS₄×S² D5-brane.
- Then k of the N D3-branes (N ≫ k) will end on the D5-brane.
- On the dual SCFT side, the gauge group $SU(N) \times SU(N)$ breaks to $SU(N-k) \times SU(N)$.
- Equivalently, the fields of $\mathcal{N} = 4$ SYM develop nonzero vevs...

(Karch-Randall, 2001b)

Section 2

One-point Functions in the D3-D5 System

M. de Leeuw, C. Kristjansen, G. Linardopoulos, *Scalar One-point functions and matrix product states of AdS/dCFT*, [arXiv:1802.01598] (to appear in PLB)

The dCFT interface of D3-D5

- An interface is a wall between two (different/same) QFTs
- It can be described by means of classical solutions that are known as "fuzzy-funnel" solutions (Constable-Myers-Tafjord, 1999 & 2001)
- Here, we need an interface to separate the SU(N) and SU(N-k) regions of the $(D3-D5)_k$ dCFT...
- For no vectors/fermions, we want to solve the equations of motion for the scalar fields of $\mathcal{N} = 4$ SYM:

$$A_{\mu} = \psi_{\mathsf{a}} = 0, \qquad rac{d^2 \Phi_i}{dz^2} = [\Phi_j, [\Phi_j, \Phi_i]], \quad i, j = 1, \dots, 6$$

• A manifestly $SO(3) \simeq SU(2)$ symmetric solution is given by (z > 0):

$$\Phi_{2i-1}(z) = \frac{1}{z} \begin{bmatrix} (t_i)_{k \times k} & 0_{k \times (N-k)} \\ 0_{(N-k) \times k} & 0_{(N-k) \times (N-k)} \end{bmatrix} \& \Phi_{2i} = 0,$$

Nagasaki-Yamaguchi, 2012

where the matrices t_i furnish a k-dimensional representation of $\mathfrak{su}(2)$: $\begin{bmatrix} t_i, t_j \end{bmatrix} = i \epsilon_{ijk} t_k.$

One-point functions

One-point functions are the most important observables in a dCFT. From them and the conformal data (Δ 's, C_{ijk} 's, etc.) one can determine all the correlators of the theory (and the theory itself) by using the OPE.

One-point functions

One-point functions are the most important observables in a dCFT. From them and the conformal data (Δ 's, C_{ijk} 's, etc.) one can determine all the correlators of the theory (and the theory itself) by using the OPE.

• Our dCFT is dual to the $(D3-D5)_k$ probe brane system.

One-point functions

One-point functions are the most important observables in a dCFT. From them and the conformal data (Δ 's, C_{ijk} 's, etc.) one can determine all the correlators of the theory (and the theory itself) by using the OPE.

- Our dCFT is dual to the $(D3-D5)_k$ probe brane system.
- Our goal is to calculate the one-point functions of $\mathfrak{so}(6)$ highest-weight eigenstates:

$$\langle \mathcal{O}(z, \mathbf{x}) \rangle = \frac{C}{z^{\Delta}}, \qquad C = \frac{1}{\sqrt{L}} \left(\frac{8\pi^2}{\lambda} \right)^{L/2} \cdot \frac{\langle \mathsf{MPS} | \Psi \rangle}{\langle \Psi | \Psi \rangle^{\frac{1}{2}}}, \qquad k \ll N \to \infty,$$

where

$$\langle \mathsf{MPS} | \Psi \rangle = z^M \cdot \sum_{1 \le x_k \le L} \psi(x_k) \cdot \mathsf{Tr}\left[t_3^{x_1 - 1} \mathcal{W} t_3^{x_2 - x_1 - 1} \mathcal{Y} t_3^{x_3 - x_2 - 1} \overline{\mathcal{W}} t_3^{x_4 - x_3 - 1} \overline{\mathcal{Y}} \dots \right]$$

and Ψ is an eigenstate of the $\mathfrak{so}(6)$ Hamiltonian, with

$$\langle \Psi | \Psi \rangle^{\frac{1}{2}} = \sqrt{\sum_{1 \leq x_k \leq L} \psi^2(x_k)}$$

9 / 21

イロト イヨト イヨト イヨト ニヨー

The $\mathfrak{su}(2)$ determinant formula

For the vacuum overlap we find:

$$\langle \mathsf{MPS}|0 \rangle = \mathsf{Tr}\left[t_3^L\right] = \zeta\left(-L, \frac{1-k}{2}\right) - \zeta\left(-L, \frac{1+k}{2}\right), \qquad \zeta(s, \mathsf{a}) \equiv \sum_{n=0}^{\infty} \frac{1}{(n+\mathsf{a})^s},$$

where $\zeta(s, a)$ is the Hurwitz zeta function. For M balanced excitations the overlap becomes:

$$C_{k}(\{u_{j}\}) \equiv \frac{\langle \mathsf{MPS}|\{u_{j}\}\rangle_{k}}{\sqrt{\langle \{u_{j}\} | \{u_{j}\}\rangle}} = C_{2}(\{u_{j}\}) \cdot \sum_{j=(1-k)/2}^{(k-1)/2} j^{L} \left[\prod_{l=1}^{M/2} \frac{u_{l}^{2}(u_{l}^{2} + k^{2}/4)}{\left[u_{l}^{2} + (j-1/2)^{2}\right] \left[u_{l}^{2} + (j+1/2)^{2}\right]}\right]$$
here
$$C_{2}(\{u_{j}\}) \equiv \frac{\langle \mathsf{MPS}|\{u_{j}\}\rangle_{k=2}}{\sqrt{\langle \{u_{j}\} | \{u_{j}\}\rangle}} = \left[\prod_{j=1}^{M/2} \frac{u_{j}^{2} + 1/4}{u_{j}^{2}} \frac{\det G^{+}}{\det G^{-}}\right]^{\frac{1}{2}},$$

wł

and the $M/2 \times M/2$ matrices G_{ik}^{\pm} and K_{ik}^{\pm} are defined as:

$$G_{jk}^{\pm} = \left(rac{L}{u_j^2 + 1/4} - \sum_n K_{jn}^+
ight) \delta_{jk} + K_{jk}^{\pm} \qquad \& \qquad K_{jk}^{\pm} = rac{2}{1 + (u_j - u_k)^2} \pm rac{2}{1 + (u_j + u_k)^2}.$$

Buhl-Mortensen, de Leeuw, Kristjansen, Zarembo, 2015

イロト イヨト イヨト イヨト 二日 10 / 21

The $\mathfrak{su}(3)$ determinant formula

Moving to the $\mathfrak{su}(3)$ sector, let us define the following Baxter functions Q and R :

$$Q_1(x) = \prod_{i=1}^{M} (x - u_i), \qquad Q_2(x) = \prod_{i=1}^{N_+} (x - v_i), \qquad R_2(x) = \prod_{i=1}^{2 \lfloor N_+/2 \rfloor} (x - v_i)$$

All the one-point functions in the $\mathfrak{su}(3)$ sector are then given by

$$C_{k}(\{u_{j}; v_{j}\}) = T_{k-1}(0) \cdot \sqrt{\frac{Q_{1}(0) Q_{1}(i/2)}{R_{2}(0) R_{2}(i/2)}} \cdot \frac{\det G^{+}}{\det G^{-}}$$

de Leeuw-Kristjansen-GL, 2018

イロト イヨト イヨト イヨト ニヨー

where $u_i \equiv u_{1,i}$, $v_j \equiv u_{2,j}$ and

$$T_n(x) = \sum_{a=-n/2}^{n/2} (x+ia)^L \frac{Q_1(x+i(n+1)/2)Q_2(x+ia)}{Q_1(x+i(a+1/2))Q_1(x+i(a-1/2))}.$$

The validity of the $\mathfrak{su}(3)$ formula has been checked numerically for a plethora of $\mathfrak{su}(3)$ states.

The $\mathfrak{su}(3)$ determinant formula

For $N_{+} = 0$ the $\mathfrak{su}(3)$ formula reduces to the $\mathfrak{su}(2)$ formula that we saw before:

$$C_k(\{u_j\}) = \left[Q_1(0) Q_1(i/2) \cdot \frac{\det G^+}{\det G^-}\right]^{1/2} \cdot \sum_{a=(1-k)/2}^{(k-1)/2} \frac{a^L Q_1(ik/2)}{Q_1(i(a+1/2)) Q_1(i(a-1/2))} + \frac{a^L Q_1(ik/2)}{Q_1(i(a+1/2)) Q_1(i(a-1/2))}\right]$$

For k = 2 it reduces to a known $\mathfrak{su}(3)$ formula:

$$C_k(\{u_j;v_j\}) = 2^{1-L} \cdot \sqrt{\frac{Q_1(i/2)}{Q_1(0)} \frac{Q_2^2(i/2)}{R_2(0)R_2(i/2)} \cdot \frac{\det G^+}{\det G^-}},$$

de Leeuw-Kristjansen-Mori, 2016

where, for $A_{\pm}=A_1\pm A_2,~B_{\pm}=B_1\pm B_2,~C_{\pm}=C_1\pm C_2$ and

$$\begin{split} \phi_{1,i} &= -i \log \left[\left(\frac{u_{1,i} - i/2}{u_{1,i} + i/2} \right)^L \prod_{j \neq i}^{N_1} \frac{u_{1,i} - u_{1,j} + i}{u_{1,i} - u_{1,j} - i} \prod_{k=1}^{N_2} \frac{u_{1,i} - u_{2,k} - \frac{i}{2}}{u_{1,i} - u_{2,k} + \frac{i}{2}} \prod_{l=1}^{N_3} \frac{u_{1,i} - u_{3,l} - \frac{i}{2}}{u_{1,i} - u_{3,l} + \frac{i}{2}} \right] \\ \phi_{2,i} &= -i \log \left[\prod_{l \neq i}^{N_2} \frac{u_{2,i} - u_{2,l} + i}{u_{2,i} - u_{2,l} - i} \prod_{k=1}^{N_1} \frac{u_{2,i} - u_{1,k} - \frac{i}{2}}{u_{2,i} - u_{1,k} + \frac{i}{2}} \right], \end{split}$$

12 / 21

3

The $\mathfrak{su}(3)$ determinant formula

For $N_{+} = 0$ the $\mathfrak{su}(3)$ formula reduces to the $\mathfrak{su}(2)$ formula that we saw before:

$$C_k(\{u_j\}) = \left[Q_1(0) Q_1(i/2) \cdot \frac{\det G^+}{\det G^-}\right]^{1/2} \cdot \sum_{a=(1-k)/2}^{(k-1)/2} \frac{a^L Q_1(ik/2)}{Q_1(i(a+1/2)) Q_1(i(a-1/2))},$$

For k = 2 it reduces to a known $\mathfrak{su}(3)$ formula:

$$C_k(\{u_j; v_j\}) = 2^{1-L} \cdot \sqrt{\frac{Q_1(i/2)}{Q_1(0)} \frac{Q_2^2(i/2)}{R_2(0)R_2(i/2)}} \cdot \frac{\det G^+}{\det G^-}.$$

de Leeuw-Kristjansen-Mori, 2016

We have defined:

$$G \equiv \frac{\partial \phi_I}{\partial u_J} = \begin{bmatrix} A_1 & A_2 & B_1 & B_2 & D_1 \\ A_2 & A_1 & B_2 & B_1 & D_1 \\ B_1^t & B_2^t & C_1 & C_2 & D_2 \\ B_2^t & B_1^t & C_2 & C_1 & D_2 \\ D_1^t & D_1^t & D_2^t & D_2^t & D_3 \end{bmatrix}, \quad G^+ = \begin{pmatrix} A_+ & B_+ & D_1 \\ B_+^t & C_+ & D_2 \\ 2D_1^t & 2D_2^t & D_3 \end{pmatrix}, \quad G^- = \begin{pmatrix} A_- & B_- \\ B_-^t & C_- \end{pmatrix}.$$

The $\mathfrak{su}(3)$ determinant formula

For $N_{+} = 0$ the $\mathfrak{su}(3)$ formula reduces to the $\mathfrak{su}(2)$ formula that we saw before:

$$C_k(\{u_j\}) = \left[Q_1(0) Q_1(i/2) \cdot \frac{\det G^+}{\det G^-}\right]^{1/2} \cdot \sum_{a=(1-k)/2}^{(k-1)/2} \frac{a^L Q_1(ik/2)}{Q_1(i(a+1/2)) Q_1(i(a-1/2))},$$

For k = 2 it reduces to a known $\mathfrak{su}(3)$ formula:

$$C_k(\{u_j;v_j\}) = 2^{1-L} \cdot \sqrt{\frac{Q_1(i/2)}{Q_1(0)} \frac{Q_2^2(i/2)}{R_2(0)R_2(i/2)} \cdot \frac{\det G^+}{\det G^-}}.$$

de Leeuw-Kristjansen-Mori, 2016

Here are some more properties of one-point functions in $\mathfrak{su}(3)$:

- One-point functions vanish if M or $L + N_+$ is odd.
- Because $Q_3 \cdot |\text{MPS}\rangle = 0$ all 1-point functions vanish unless all the Bethe roots are fully balanced: $\{u_1, \ldots, u_{M/2}, -u_1, \ldots, -u_{M/2}, 0\}, \{v_1, \ldots, v_{N_+/2}, -v_1, \ldots, -v_{N_+/2}, 0\}.$

<ロト<部ト<Eト 目 のQで 12/21

The $\mathfrak{so}(6)$ determinant formula

The one-point function in the $\mathfrak{so}(6)$ sector is given by

$$C_{k}\left(\{u_{j}; v_{j}; w_{j}\}\right) = \mathbb{T}_{k-1}(0) \cdot \sqrt{\frac{Q_{1}\left(0\right) Q_{1}\left(i/2\right) Q_{1}\left(ik/2\right) Q_{1}\left(ik/2\right)}{R_{2}\left(0\right) R_{2}\left(i/2\right) R_{3}\left(0\right) R_{3}\left(i/2\right)} \cdot \frac{\det G^{+}}{\det G^{-}}}$$

where $u_i \equiv u_{1,i}$, $v_j \equiv u_{2,j}$, $w_k \equiv u_{3,k}$ and

$$\mathbb{T}_{n}(x) = \sum_{a=-n/2}^{n/2} (x+ia)^{L} \frac{Q_{2}(x+ia) Q_{3}(x+ia)}{Q_{1}(x+i(a+1/2)) Q_{1}(x+i(a-1/2))}$$

de Leeuw-Kristjansen-GL, 2018

21

This formula has also been verified numerically. The $M/2 \times M/2$ matrices G_{ik}^{\pm} and K_{ik}^{\pm} are defined as:

$$G_{ab,jk}^{\pm} = \delta_{ab}\delta_{jk} \left[\frac{Lq_a^2}{u_{a,j}^2 + q_a^2/4} - \sum_{c=1}^3 \sum_{l=1}^{\lceil N/2 \rceil} K_{ac,jl}^+ \right] + K_{ab,jk}^{\pm}, \qquad K_{ab,jk}^{\pm} = \mathbb{K}_{ab,jk}^- \pm \mathbb{K}_{ab,jk}^+ \pm \mathbb{K}_{ab,jk}^+, \qquad K_{ab,jk}^{\pm} = \frac{M_{ab}}{(u_{a,j} \pm u_{b,k})^2 + \frac{1}{4}M_{ab}^2}.$$

The $\mathfrak{so}(6)$ determinant formula

The one-point function in the $\mathfrak{so}(6)$ sector is given by

$$C_{k}\left(\{u_{j}; v_{j}; w_{j}\}\right) = \mathbb{T}_{k-1}(0) \cdot \sqrt{\frac{Q_{1}\left(0\right) Q_{1}\left(i/2\right) Q_{1}\left(ik/2\right) Q_{1}\left(ik/2\right)}{R_{2}\left(0\right) R_{2}\left(i/2\right) R_{3}\left(0\right) R_{3}\left(i/2\right)}} \cdot \frac{\det G^{+}}{\det G^{-}}$$

where $u_i \equiv u_{1,i}$, $v_j \equiv u_{2,j}$, $w_k \equiv u_{3,k}$ and

$$\mathbb{T}_{n}(x) = \sum_{a=-n/2}^{n/2} (x+ia)^{L} \frac{Q_{2}(x+ia) Q_{3}(x+ia)}{Q_{1}(x+i(a+1/2)) Q_{1}(x+i(a-1/2))}.$$

de Leeuw-Kristjansen-GL, 2018

More properties of one-point functions in $\mathfrak{so}(6)$:

- One-point functions vanish if M or $L + N_+ + N_-$ is odd.
- Because $Q_3 \cdot |\text{MPS}\rangle = 0$, all 1-point functions vanish unless all the Bethe roots are fully balanced:

$$\{u_1, \ldots, u_{M/2}, -u_1, \ldots, -u_{M/2}, 0\}$$

$$\{v_1, \ldots, v_{N_+/2}, -v_1, \ldots, -v_{N_+/2}, 0\}, \qquad \{w_1, \ldots, w_{N_-/2}, -w_1, \ldots, -w_{N_-/2}, 0\}.$$

Section 3

One-point Functions in the D3-D7 System

M. de Leeuw, C. Kristjansen, G. Linardopoulos, *One-point functions of non-protected operators in the SO*(5) symmetric D3-D7 dCFT. J.Phys. A:Math.Theor., **50** (2017) 254001, [arXiv:1612.06236]

SO(5) vacuum overlap

For the vacuum overlap we have found:

$$\langle \mathsf{MPS} | 0 \rangle = \mathsf{Tr} \left[G_5^L \right] = \sum_{j=1}^{n+1} \left[j \left(n - j + 2 \right) \left(n - 2j + 2 \right)^L \right].$$

Changing variables $j \leftrightarrow (n+2-j)$, an overall factor $(-1)^L$ comes out, leading the vacuum overlap to zero for L odd. Equivalently, we may write

$$\langle \mathsf{MPS}|0\rangle = 2^{L} \left[\frac{\left(n+2\right)^{2}}{4} \left(\zeta \left(-L, -\frac{n}{2}\right) - \zeta \left(-L, \frac{n}{2}+1\right) \right) - \left(\zeta \left(-L-2, -\frac{n}{2}\right) - \zeta \left(-L-2, \frac{n}{2}+1\right) \right) \right],$$

where the Hurwitz zeta function is defined as:

$$\zeta(s,\mathsf{a})\equiv\sum_{n=0}^{\infty}rac{1}{(n+\mathsf{a})^s}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

SO(5) vacuum overlap

For the vacuum overlap we have found:

$$\langle \mathsf{MPS} | 0 \rangle = \mathsf{Tr} \left[G_5^L \right] = \sum_{j=1}^{n+1} \left[j \left(n - j + 2 \right) \left(n - 2j + 2 \right)^L \right].$$

Changing variables $j \leftrightarrow (n+2-j)$, an overall factor $(-1)^L$ comes out, leading the vacuum overlap to zero for L odd. Equivalently, we may write

$$\langle \mathsf{MPS}|0\rangle = \begin{cases} 0, & L \text{ odd} \\ \\ 2^{L} \cdot \left[\frac{2}{L+3} B_{L+3} \left(-\frac{n}{2}\right) - \frac{(n+2)^2}{2(L+1)} B_{L+1} \left(-\frac{n}{2}\right)\right], & L \text{ even}, \end{cases}$$

by using the relationship between the Hurwitz zeta function and the Bernoulli polynomials $B_m(x)$.

SO(5) vacuum overlap

For the vacuum overlap we have found:

$$\langle \mathsf{MPS} | 0 \rangle = \mathsf{Tr} \left[G_5^L \right] = \sum_{j=1}^{n+1} \left[j \left(n - j + 2 \right) \left(n - 2j + 2 \right)^L \right].$$

Changing variables $j \leftrightarrow (n+2-j)$, an overall factor $(-1)^L$ comes out, leading the vacuum overlap to zero for L odd. Equivalently, we may write

$$\langle \mathsf{MPS}|0\rangle = \begin{cases} 0, & L \text{ odd} \\ \\ 2^{L} \cdot \left[\frac{2}{L+3} B_{L+3} \left(-\frac{n}{2}\right) - \frac{(n+2)^2}{2(L+1)} B_{L+1} \left(-\frac{n}{2}\right)\right], & L \text{ even}, \end{cases}$$

by using the relationship between the Hurwitz zeta function and the Bernoulli polynomials $B_m(x)$. In the large-*n* limit we find:

$$\langle \mathsf{MPS}|0\rangle \sim \frac{n^{L+3}}{2(L+1)(L+3)} + O\left(n^{L+2}\right), \qquad n \to \infty.$$

< □ ▶ < □ ▶ < ≧ ▶ < ≧ ▶ < ≧ ▶ 15 / 21

Overlap properties

• The overlaps $\langle MPS|\Psi \rangle$ of all the highest-weight eigenstates vanish unless:

$$#\mathcal{W} = #\overline{\mathcal{W}}, \qquad #\mathcal{Y} = #\overline{\mathcal{Y}}.$$

Therefore the only $\mathfrak{so}(6)$ eigenstates that have nonzero one-point functions are those with:

$$N_1 = 2N_2 = 2N_3 \equiv M$$
 (even).

Evidently, all one-point functions vanish in the $\mathfrak{su}(2)$ and $\mathfrak{su}(3)$ subsectors.

Overlap properties

• The overlaps $\langle MPS | \Psi \rangle$ of all the highest-weight eigenstates vanish unless:

$$#\mathcal{W} = #\overline{\mathcal{W}}, \qquad #\mathcal{Y} = #\overline{\mathcal{Y}}.$$

Therefore the only $\mathfrak{so}(6)$ eigenstates that have nonzero one-point functions are those with:

$$N_1 = 2N_2 = 2N_3 \equiv M$$
 (even).

Evidently, all one-point functions vanish in the $\mathfrak{su}(2)$ and $\mathfrak{su}(3)$ subsectors.

• Because the third conserved charge Q_3 annihilates the matrix product state:

$$Q_3 \cdot |\mathsf{MPS}\rangle = 0,$$

all the one-point functions will vanish, unless all the Bethe roots are fully balanced:

$$\left\{ u_{1}, \ldots, u_{M/2}, -u_{1}, \ldots, -u_{M/2}, 0 \right\}$$

$$\left\{ v_{1}, \ldots, v_{N_{+}/2}, -v_{1}, \ldots, -v_{N_{+}/2}, 0 \right\}, \qquad \left\{ w_{1}, \ldots, w_{N_{-}/2}, -w_{1}, \ldots, -w_{N_{-}/2}, 0 \right\}.$$

The L211 states

• We can consider eigenstates with $N_1 = 2$, $N_2 = N_3 = 1$ and arbitrary L:

$$|\mathbf{p}\rangle = \sum_{x_1 < x_2} \left(e^{ip(x_1 - x_2)} + e^{ip(x_2 - x_1 + 1)} \right) \cdot | \dots \underset{x_1}{\mathcal{X}} \dots \underset{x_2}{\mathcal{X}} \dots \rangle - 2 \sum_{x_3} \left(1 + e^{ip} \right) \cdot | \dots \underset{x_3}{\overline{\mathcal{Z}}} \dots \rangle,$$

where the dots stand for \mathcal{Z} , and \mathcal{X} is any of the complex scalars \mathcal{W} , $\overline{\mathcal{W}}$, \mathcal{Y} , $\overline{\mathcal{Y}}$.

• The momentum *p* is found by solving the corresponding Bethe equations:

$$e^{ip(L+1)}=1 \Rightarrow p=rac{4m\pi}{L+1}, \qquad m=1,\ldots,L+1$$

• Here's the one-loop energy of the L211 eigenstates:

$$E = L + \frac{\lambda}{\pi^2} \sin^2 \left[\frac{2m\pi}{L+1} \right] + \dots, \qquad m = 1, \dots, L+1$$

< □ ▶ < □ ▶ < ≧ ▶ < ≧ ▶ < ≧ ▶ 17 / 21

The L211 determinant formula

• The corresponding one-point function for all n is given in terms of the n = 1 one:

$$\langle \mathcal{O}_{L211} \rangle = \left[\frac{u^2}{u^2 - 1/2} \sum_{n \bmod 2}^n j^L \cdot \frac{(n+2)^2 - j^2}{8} \cdot \frac{[u^2 + \frac{(n+2)j+1}{4}][u^2 - \frac{(n+2)j-1}{4}]}{[u^2 + (\frac{j+1}{2})^2][u^2 + (\frac{j-1}{2})^2]} \right] \cdot \langle \mathcal{O}_{L211}^{n=1} \rangle$$
where

$$\langle \mathcal{O}_{L211}^{n=1} \rangle = 8 \sqrt{\frac{L}{L+1}} \frac{u^2 - \frac{1}{2}}{u^2 + \frac{1}{4}} \sqrt{\frac{u^2 + \frac{1}{4}}{u^2}}, \qquad u \equiv \frac{1}{2} \cot \frac{p}{2}.$$

• The results fully reproduce the numerical values (given in units of $(\pi^2/\lambda)^{L/2}/\sqrt{L}$):

L	N _{1/2/3}	eigenvalue γ	n=1	n=2	n=3	n=4			
2	211	6	$20\sqrt{\frac{2}{3}}$	40√6	140√6	$1120\sqrt{\frac{2}{3}}$			
4	211	$5+\sqrt{5}$	$20 + \frac{44}{\sqrt{5}}$	$\frac{96}{5}\left(15+\sqrt{5}\right)$	$84\left(21-\sqrt{5}\right)$	$\frac{3584}{5}\left(10-\sqrt{5}\right)$			
4	211	$5-\sqrt{5}$	$20 - \frac{44}{\sqrt{5}}$	$288 - \frac{96}{\sqrt{5}}$	$84\left(21+\sqrt{5}\right)$	$\frac{3584}{5}$ (10 + $\sqrt{5}$)			
6	211	1.50604	3.57792	324.178	11338.3	98726			
6	211	4.89008	9.90466	1724.55	19513.8	120347			
6	211	7.60388	61.6252	1044.86	8830.95	49114.4			
	1	1	1		1	<pre>4 +</pre>	▶ 《 臣 ▶	- E	うく

18 / 21

Section 4

Summary & Outlook

Summary & Outlook

We have studied the tree-level 1-point functions of Bethe eigenstates in the SU(2) symmetric (D3-D5)_k dCFT and the SO(5) symmetric (D3-D7)_{d_G} dCFT...

Summary & Outlook

We have studied the tree-level 1-point functions of Bethe eigenstates in the SU(2) symmetric (D3-D5)_k dCFT and the SO(5) symmetric (D3-D7)_{d_G} dCFT...

D3-D5 dCFT

• Because $Q_3 \cdot |\text{MPS}\rangle = 0$, all 1-point functions vanish unless the Bethe roots are fully balanced:

$$\{u_{1,i}\} = \{-u_{1,i}\}, \qquad \{u_{2,i}\} = \{-u_{2,i}\}, \qquad \{u_{3,i}\} = \{-u_{3,i}\}.$$

- In $\mathfrak{su}(2)$, all 1-point functions (vacuum included) vanish if M or L is odd.
- In $\mathfrak{su}(3)$, all 1-point functions vanish if (1) M is odd or (2) $L + N_+$ is odd.
- In $\mathfrak{so}(6)$, all 1-point functions vanish if (1) M is odd or (2) $L + N_+ + N_-$ is odd.
- We have found a determinant formula for the eigenstates, valid for all values of the flux k:

$$C_{k}\left(\{u_{j}; v_{j}; w_{j}\}\right) = \mathbb{T}_{k-1}(0) \cdot \sqrt{\frac{Q_{1}\left(0\right) Q_{1}\left(i/2\right) Q_{1}\left(ik/2\right) Q_{1}\left(ik/2\right)}{R_{2}\left(0\right) R_{2}\left(i/2\right) R_{3}\left(0\right) R_{3}\left(i/2\right)}} \cdot \frac{\det G^{+}}{\det G^{-}}$$

イロト イロト イヨト イヨト ヨー わへの

Summary & Outlook

We have studied the tree-level 1-point functions of Bethe eigenstates in the SU(2) symmetric (D3-D5)_k dCFT and the SO(5) symmetric (D3-D7)_{d_G} dCFT...

D3-D7 dCFT

• Because $Q_3 \cdot |\text{MPS}\rangle = 0$, all 1-point functions vanish unless the Bethe roots are fully balanced:

$$\{u_{1,i}\} = \{-u_{1,i}\}, \qquad \{u_{2,i}\} = \{-u_{2,i}\}, \qquad \{u_{3,i}\} = \{-u_{3,i}\}.$$

- Besides the vacuum, all 1-pt functions vanish in the su(2) and su(3) subsectors.
- In $\mathfrak{so}(6)$ all 1-point functions vanish unless $N_1 = 2N_2 = 2N_3 \equiv M$ (even).
- The vacuum also vanishes when L = odd.
- We have found a determinant formula for L211 eigenstates, valid for all values of the instanton number *n*:

$$\langle \mathcal{O}_{L211} \rangle = \left[\frac{u^2}{u^2 - 1/2} \sum_{n \bmod 2}^n j^L \cdot \frac{(n+2)^2 - j^2}{8} \cdot \frac{[u^2 + \frac{(n+2)j+1}{4}][u^2 - \frac{(n+2)j-1}{4}]}{[u^2 + (\frac{j+1}{2})^2][u^2 + (\frac{j-1}{2})^2]} \right] \cdot \langle \mathcal{O}_{L211}^{n=1} \rangle$$

Summary & Outlook

We have studied the tree-level 1-point functions of Bethe eigenstates in the SU(2) symmetric (D3-D5)_k dCFT and the SO(5) symmetric (D3-D7)_{d_G} dCFT...

<u>Outlook</u>

- D3-D5 integrability in terms of the boundary state and its reflection matrix.
- Identification of transfer matrix. D3-D5 integrability at higher loops & strong coupling.
- D3-D7 determinant formula for all so (6) Bethe eigenstates? Integrability? (work in progress)
- Higher loop orders, Wilson loops, 2-point functions in D3-D7 à la D3-D5?
- Thermodynamic limit $(M, L \rightarrow \infty, M/L = \text{const})$, string theory/strong coupling side $(\lambda \rightarrow \infty)$...
- Move on to the $SU(2) \times SU(2)$ solution of D3-D7 and its β -deformation...

Ευχαριστώ!