Scalar One-point Functions in AdS/ CFT

Georgios Linardopoulos

NCSR "Demokritos" and National \& Kapodistrian University of Athens

HEP 2018: Recent Developments in High Energy Physics and Cosmology
National Technical University of Athens, March 30th 2018
based on [arXiv:1802.01598] (to appear in PLB) and J.Phys. A: Math.Theor. 50 (2017) 254001 [arXiv:1612.06236] with Charlotte Kristjansen and Marius de Leeuw

Table of Contents

(1) Intersecting Branes
(2) One-point Functions in the D3-D5 System
(3) One-point Functions in the D3-D7 System

4 Summary \& Outlook

Section 1

Intersecting Branes

The D3-D5 system

Let us recall the original formulation AdS/CFT correspondence:
$\left\{\right.$ Type IIB superstring theory on $\left.\mathrm{AdS}_{5} \times \mathrm{S}^{5}\right\}=\{\mathcal{N}=4, S U(N)$ SYM theory in $3+1$ dimensions $\}$
(J. Maldacena, 1998)

The D3-D5 system

IIB string theory on $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$ is encountered very close to a system of N coincident D3-branes:

The D3-D5 system

IIB string theory on $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$ is encountered very close to a system of N coincident D3-branes:

The D3-branes extend along $x_{1}, x_{2}, x_{3} \ldots$

	t	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}	x_{9}
D3	\bullet	\bullet	\bullet	\bullet						

The D3-D5 system

IIB string theory on $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$ is encountered very close to a system of N coincident D3-branes:

The D3-branes extend along x_{1}, x_{2}, x_{3}. Now insert a single (probe) D5-brane at $x_{3}, x_{7}, x_{8}, x_{9}=0 \ldots$

	t	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}	x_{9}
D3	\bullet	\bullet	\bullet	\bullet						
D5	\bullet	\bullet	\bullet		\bullet	\bullet	\bullet			

The D3-D5 system: description

- In the bulk, the D3-D5 system describes IIB Superstring theory on $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$ bisected by D5 branes with worldvolume geometry $\mathrm{AdS}_{4} \times \mathrm{S}^{2}$.
- The dual field theory is still $S U(N), \mathcal{N}=4$ SYM in $3+1$ dimensions, that now interacts with a SCFT that lives on the $2+1$ dimensional defect.
- Due to the presence of the defect, the total bosonic symmetry of the system is reduced from $S O(4,2) \times S O(6)$ to $S O(3,2) \times S O(3) \times$ SO(3).
- The corresponding superalgebra $\mathfrak{p s u}(2,2 \mid 4)$ becomes $\mathfrak{o s p}(4 \mid 4)$.

The (D3-D5) k system

- Add k units of background $U(1)$ flux on the S^{2} component of the $\mathrm{AdS}_{4} \times \mathrm{S}^{2}$ D5-brane.
- Then k of the N D3-branes $(N \gg k)$ will end on the D5-brane.
- On the dual SCFT side, the gauge group $S U(N) \times S U(N)$ breaks to $S U(N-k) \times S U(N)$.
- Equivalently, the fields of $\mathcal{N}=4$ SYM develop nonzero vevs...
(Karch-Randall, 2001b)

Section 2

One-point Functions in the D3-D5 System

M. de Leeuw, C. Kristjansen, G. Linardopoulos, Scalar One-point functions and matrix product states of AdS/dCFT, [arXiv:1802.01598] (to appear in PLB)

The dCFT interface of D3-D5

- An interface is a wall between two (different/same) QFTs
- It can be described by means of classical solutions that are known as "fuzzy-funnel" solutions (Constable-Myers-Tafjord, 1999 \& 2001)
- Here, we need an interface to separate the $S U(N)$ and $S U(N-k)$ regions of the (D3-D5) k dCFT...
- For no vectors/fermions, we want to solve the equations of motion for the scalar fields of $\mathcal{N}=4$ SYM:

$$
A_{\mu}=\psi_{\mathrm{a}}=0, \quad \frac{d^{2} \Phi_{i}}{d z^{2}}=\left[\Phi_{j},\left[\Phi_{j}, \Phi_{i}\right]\right], \quad i, j=1, \ldots, 6
$$

- A manifestly $S O(3) \simeq S U(2)$ symmetric solution is given by $(z>0)$:

$$
\Phi_{2 i-1}(z)=\frac{1}{z}\left[\begin{array}{cc}
\left(t_{i}\right)_{k \times k} & 0_{k \times(N-k)} \\
0_{(N-k) \times k} & 0_{(N-k) \times(N-k)}
\end{array}\right] \quad \& \quad \Phi_{2 i}=0
$$

Nagasaki-Yamaguchi, 2012
where the matrices t_{i} furnish a k-dimensional representation of $\mathfrak{s u}(2)$:

$$
\left[t_{i}, t_{j}\right]=i \epsilon_{i j k} t_{k}
$$

One-point functions

One-point functions are the most important observables in a dCFT. From them and the conformal data (Δ 's, $C_{i j k}$'s, etc.) one can determine all the correlators of the theory (and the theory itself) by using the OPE.

One-point functions

One-point functions are the most important observables in a dCFT. From them and the conformal data (Δ 's, $C_{i j k}$'s, etc.) one can determine all the correlators of the theory (and the theory itself) by using the OPE.

- Our dCFT is dual to the (D3-D5) ${ }_{k}$ probe brane system.

One-point functions

One-point functions are the most important observables in a dCFT. From them and the conformal data (Δ 's, $C_{i j k}$'s, etc.) one can determine all the correlators of the theory (and the theory itself) by using the OPE.

- Our dCFT is dual to the (D3-D5) ${ }_{k}$ probe brane system.
- Our goal is to calculate the one-point functions of $\mathfrak{s o}$ (6) highest-weight eigenstates:

$$
\langle\mathcal{O}(z, \mathbf{x})\rangle=\frac{C}{z^{\Delta}}, \quad C=\frac{1}{\sqrt{L}}\left(\frac{8 \pi^{2}}{\lambda}\right)^{L / 2} \cdot \frac{\langle\mathrm{MPS} \mid \Psi\rangle}{\langle\Psi \mid \Psi\rangle^{\frac{1}{2}}}, \quad k \ll N \rightarrow \infty
$$

where

$$
\langle\mathrm{MPS} \mid \Psi\rangle=z^{M} \cdot \sum_{1 \leq x_{k} \leq L} \psi\left(x_{k}\right) \cdot \operatorname{Tr}\left[t_{3}^{x_{1}-1} \mathcal{W} t_{3}^{x_{2}-x_{1}-1} \mathcal{Y} t_{3}^{x_{3}-x_{2}-1} \overline{\mathcal{W}} t_{3}^{x_{4}-x_{3}-1} \overline{\mathcal{Y}} \ldots\right]
$$

and Ψ is an eigenstate of the $\mathfrak{s o}$ (6) Hamiltonian, with

$$
\langle\Psi \mid \Psi\rangle^{\frac{1}{2}}=\sqrt{\sum_{1 \leq x_{k} \leq L} \psi^{2}\left(x_{k}\right)} .
$$

The $\mathfrak{s u}$ (2) determinant formula

For the vacuum overlap we find:

$$
\langle\mathrm{MPS} \mid 0\rangle=\operatorname{Tr}\left[t_{3}^{L}\right]=\zeta\left(-L, \frac{1-k}{2}\right)-\zeta\left(-L, \frac{1+k}{2}\right), \quad \zeta(s, a) \equiv \sum_{n=0}^{\infty} \frac{1}{(n+\mathrm{a})^{s}}
$$

where $\zeta(s, a)$ is the Hurwitz zeta function. For M balanced excitations the overlap becomes:

$$
C_{k}\left(\left\{u_{j}\right\}\right) \equiv \frac{\left\langle\operatorname{MPS} \mid\left\{u_{j}\right\}\right\rangle_{k}}{\sqrt{\left\langle\left\{u_{j}\right\} \mid\left\{u_{j}\right\}\right\rangle}}=C_{2}\left(\left\{u_{j}\right\}\right) \cdot \sum_{j=(1-k) / 2}^{(k-1) / 2} j^{L}\left[\prod_{l=1}^{M / 2} \frac{u_{l}^{2}\left(u_{l}^{2}+k^{2} / 4\right)}{\left[u_{l}^{2}+(j-1 / 2)^{2}\right]\left[u_{l}^{2}+(j+1 / 2)^{2}\right]}\right]
$$

where

$$
C_{2}\left(\left\{u_{j}\right\}\right) \equiv \frac{\left\langle\mathrm{MPS} \mid\left\{u_{j}\right\}\right\rangle_{k=2}}{\sqrt{\left\langle\left\{u_{j}\right\} \mid\left\{u_{j}\right\}\right\rangle}}=\left[\prod_{j=1}^{M / 2} \frac{u_{j}^{2}+1 / 4}{u_{j}^{2}} \frac{\operatorname{det} G^{+}}{\operatorname{det} G^{-}}\right]^{\frac{1}{2}}
$$

and the $M / 2 \times M / 2$ matrices $G_{j k}^{ \pm}$and $K_{j k}^{ \pm}$are defined as:

$$
G_{j k}^{ \pm}=\left(\frac{L}{u_{j}^{2}+1 / 4}-\sum_{n} K_{j n}^{+}\right) \delta_{j k}+K_{j k}^{ \pm} \quad \& \quad K_{j k}^{ \pm}=\frac{2}{1+\left(u_{j}-u_{k}\right)^{2}} \pm \frac{2}{1+\left(u_{j}+u_{k}\right)^{2}}
$$

Buhl-Mortensen, de Leeuw, Kristjansen, Zarembo, 2015

The $\mathfrak{s u}$ (3) determinant formula

Moving to the $\mathfrak{s u}(3)$ sector, let us define the following Baxter functions Q and R :

$$
Q_{1}(x)=\prod_{i=1}^{M}\left(x-u_{i}\right), \quad Q_{2}(x)=\prod_{i=1}^{N_{+}}\left(x-v_{i}\right), \quad R_{2}(x)=\prod_{i=1}^{2\left\lfloor N_{+} / 2\right\rfloor}\left(x-v_{i}\right)
$$

All the one-point functions in the $\mathfrak{s u}(3)$ sector are then given by

$$
C_{k}\left(\left\{u_{j} ; v_{j}\right\}\right)=T_{k-1}(0) \cdot \sqrt{\frac{Q_{1}(0) Q_{1}(i / 2)}{R_{2}(0) R_{2}(i / 2)} \cdot \frac{\operatorname{det} G^{+}}{\operatorname{det} G^{-}}}
$$

where $u_{i} \equiv u_{1, i}, v_{j} \equiv u_{2, j}$ and

$$
T_{n}(x)=\sum_{a=-n / 2}^{n / 2}(x+i a)^{L} \frac{Q_{1}(x+i(n+1) / 2) Q_{2}(x+i a)}{Q_{1}(x+i(a+1 / 2)) Q_{1}(x+i(a-1 / 2))}
$$

The validity of the $\mathfrak{s u}(3)$ formula has been checked numerically for a plethora of $\mathfrak{s u}(3)$ states.

The $\mathfrak{s u}$ (3) determinant formula

For $N_{+}=0$ the $\mathfrak{s u}(3)$ formula reduces to the $\mathfrak{s u}(2)$ formula that we saw before:

$$
C_{k}\left(\left\{u_{j}\right\}\right)=\left[Q_{1}(0) Q_{1}(i / 2) \cdot \frac{\operatorname{det} G^{+}}{\operatorname{det} G^{-}}\right]^{1 / 2} \cdot \sum_{a=(1-k) / 2}^{(k-1) / 2} \frac{a^{L} Q_{1}(i k / 2)}{Q_{1}(i(a+1 / 2)) Q_{1}(i(a-1 / 2))},
$$

For $k=2$ it reduces to a known $\mathfrak{s u}$ (3) formula:

$$
C_{k}\left(\left\{u_{j} ; v_{j}\right\}\right)=2^{1-L} \cdot \sqrt{\frac{Q_{1}(i / 2)}{Q_{1}(0)} \frac{Q_{2}^{2}(i / 2)}{R_{2}(0) R_{2}(i / 2)} \cdot \frac{\operatorname{det} G^{+}}{\operatorname{det} G^{-}}},
$$

de Leeuw-Kristjansen-Mori, 2016
where, for $A_{ \pm}=A_{1} \pm A_{2}, B_{ \pm}=B_{1} \pm B_{2}, C_{ \pm}=C_{1} \pm C_{2}$ and

$$
\begin{aligned}
& \phi_{1, i}=-i \log \left[\left(\frac{u_{1, i}-i / 2}{u_{1, i}+i / 2}\right)^{L} \prod_{j \neq i}^{N_{1}} \frac{u_{1, i}-u_{1, j}+i}{u_{1, i}-u_{1, j}-i} \prod_{k=1}^{N_{2}} \frac{u_{1, i}-u_{2, k}-\frac{i}{2}}{u_{1, i}-u_{2, k}+\frac{i}{2}} \prod_{l=1}^{N_{3}} \frac{u_{1, i}-u_{3, l}-\frac{i}{2}}{u_{1, i}-u_{3, l}+\frac{i}{2}}\right] \\
& \phi_{2, i}=-i \log \left[\prod_{l \neq i}^{N_{2}} \frac{u_{2, i}-u_{2, I}+i}{u_{2, i}-u_{2, l}-i} \prod_{k=1}^{N_{1}} \frac{u_{2, i}-u_{1, k}-\frac{i}{2}}{u_{2, i}-u_{1, k}+\frac{i}{2}}\right],
\end{aligned}
$$

The $\mathfrak{s u}$ (3) determinant formula

For $N_{+}=0$ the $\mathfrak{s u}(3)$ formula reduces to the $\mathfrak{s u}(2)$ formula that we saw before:

$$
C_{k}\left(\left\{u_{j}\right\}\right)=\left[Q_{1}(0) Q_{1}(i / 2) \cdot \frac{\operatorname{det} G^{+}}{\operatorname{det} G^{-}}\right]^{1 / 2} \cdot \sum_{a=(1-k) / 2}^{(k-1) / 2} \frac{a^{L} Q_{1}(i k / 2)}{Q_{1}(i(a+1 / 2)) Q_{1}(i(a-1 / 2))},
$$

For $k=2$ it reduces to a known $\mathfrak{s u}$ (3) formula:

$$
C_{k}\left(\left\{u_{j} ; v_{j}\right\}\right)=2^{1-L} \cdot \sqrt{\frac{Q_{1}(i / 2)}{Q_{1}(0)} \frac{Q_{2}^{2}(i / 2)}{R_{2}(0) R_{2}(i / 2)} \cdot \frac{\operatorname{det} G^{+}}{\operatorname{det} G^{-}}} .
$$

de Leeuw-Kristjansen-Mori, 2016
We have defined:

$$
G \equiv \frac{\partial \phi_{1}}{\partial u_{j}}=\left[\begin{array}{ccccc}
A_{1} & A_{2} & B_{1} & B_{2} & D_{1} \\
A_{2} & A_{1} & B_{2} & B_{1} & D_{1} \\
B_{1}^{t} & B_{2}^{t} & C_{1} & C_{2} & D_{2} \\
B_{2}^{t} & B_{1}^{t} & C_{2} & C_{1} & D_{2} \\
D_{1}^{t} & D_{1}^{t} & D_{2}^{t} & D_{2}^{t} & D_{3}
\end{array}\right], \quad G^{+}=\left(\begin{array}{ccc}
A_{+} & B_{+} & D_{1} \\
B_{+}^{t} & C_{+} & D_{2} \\
2 D_{1}^{t} & 2 D_{2}^{t} & D_{3}
\end{array}\right), \quad G^{-}=\left(\begin{array}{cc}
A_{-} & B_{-} \\
B_{-}^{t} & C_{-}
\end{array}\right) .
$$

The $\mathfrak{s u}$ (3) determinant formula

For $N_{+}=0$ the $\mathfrak{s u}(3)$ formula reduces to the $\mathfrak{s u}(2)$ formula that we saw before:

$$
C_{k}\left(\left\{u_{j}\right\}\right)=\left[Q_{1}(0) Q_{1}(i / 2) \cdot \frac{\operatorname{det} G^{+}}{\operatorname{det} G^{-}}\right]^{1 / 2} \cdot \sum_{a=(1-k) / 2}^{(k-1) / 2} \frac{a^{L} Q_{1}(i k / 2)}{Q_{1}(i(a+1 / 2)) Q_{1}(i(a-1 / 2))}
$$

For $k=2$ it reduces to a known $\mathfrak{s u}$ (3) formula:

$$
C_{k}\left(\left\{u_{j} ; v_{j}\right\}\right)=2^{1-L} \cdot \sqrt{\frac{Q_{1}(i / 2)}{Q_{1}(0)} \frac{Q_{2}^{2}(i / 2)}{R_{2}(0) R_{2}(i / 2)} \cdot \frac{\operatorname{det} G^{+}}{\operatorname{det} G^{-}}}
$$

de Leeuw-Kristjansen-Mori, 2016
Here are some more properties of one-point functions in $\mathfrak{s u}(3)$:

- One-point functions vanish if M or $L+N_{+}$is odd.
- Because $Q_{3} \cdot|\mathrm{MPS}\rangle=0$ all 1-point functions vanish unless all the Bethe roots are fully balanced:

$$
\left\{u_{1}, \ldots, u_{M / 2},-u_{1}, \ldots,-u_{M / 2}, 0\right\}, \quad\left\{v_{1}, \ldots, v_{N_{+} / 2},-v_{1}, \ldots,-v_{N_{+} / 2}, 0\right\}
$$

The $\mathfrak{s o}$ (6) determinant formula

The one-point function in the $\mathfrak{s o}$ (6) sector is given by

$$
C_{k}\left(\left\{u_{j} ; v_{j} ; w_{j}\right\}\right)=\mathbb{T}_{k-1}(0) \cdot \sqrt{\frac{Q_{1}(0) Q_{1}(i / 2) Q_{1}(i k / 2) Q_{1}(i k / 2)}{R_{2}(0) R_{2}(i / 2) R_{3}(0) R_{3}(i / 2)} \cdot \frac{\operatorname{det} G^{+}}{\operatorname{det} G^{-}}}
$$

where $u_{i} \equiv u_{1, i}, v_{j} \equiv u_{2, j}, w_{k} \equiv u_{3, k}$ and

$$
\mathbb{T}_{n}(x)=\sum_{a=-n / 2}^{n / 2}(x+i a)^{L} \frac{Q_{2}(x+i a) Q_{3}(x+i a)}{Q_{1}(x+i(a+1 / 2)) Q_{1}(x+i(a-1 / 2))}
$$

de Leeuw-Kristjansen-GL, 2018
This formula has also been verified numerically. The $M / 2 \times M / 2$ matrices $G_{j k}^{ \pm}$and $K_{j k}^{ \pm}$are defined as:

$$
\begin{aligned}
G_{a b, j k}^{ \pm}=\delta_{a b} \delta_{j k}\left[\frac{L q_{a}^{2}}{u_{a, j}^{2}+q_{a}^{2} / 4}-\sum_{c=1}^{3} \sum_{l=1}^{\lceil N / 2\rceil} K_{a c, j l}^{+}\right]+K_{a b, j k}^{ \pm}, & K_{a b, j k}^{ \pm}=\mathbb{K}_{a b, j k}^{-} \pm \mathbb{K}_{a b, j k}^{+} \\
& \mathbb{K}_{a b, j k}^{ \pm} \equiv \frac{M_{a b}}{\left(u_{a, j} \pm u_{b, k}\right)^{2}+\frac{1}{4} M_{a b}^{2}}
\end{aligned}
$$

The $\mathfrak{s o}$ (6) determinant formula

The one-point function in the $\mathfrak{s o}$ (6) sector is given by

$$
C_{k}\left(\left\{u_{j} ; v_{j} ; w_{j}\right\}\right)=\mathbb{T}_{k-1}(0) \cdot \sqrt{\frac{Q_{1}(0) Q_{1}(i / 2) Q_{1}(i k / 2) Q_{1}(i k / 2)}{R_{2}(0) R_{2}(i / 2) R_{3}(0) R_{3}(i / 2)} \cdot \frac{\operatorname{det} G^{+}}{\operatorname{det} G^{-}}}
$$

where $u_{i} \equiv u_{1, i}, v_{j} \equiv u_{2, j}, w_{k} \equiv u_{3, k}$ and

$$
\mathbb{T}_{n}(x)=\sum_{a=-n / 2}^{n / 2}(x+i a)^{L} \frac{Q_{2}(x+i a) Q_{3}(x+i a)}{Q_{1}(x+i(a+1 / 2)) Q_{1}(x+i(a-1 / 2))}
$$

More properties of one-point functions in $\mathfrak{s o}$ (6):

- One-point functions vanish if M or $L+N_{+}+N_{-}$is odd.
- Because $Q_{3} \cdot|\mathrm{MPS}\rangle=0$, all 1-point functions vanish unless all the Bethe roots are fully balanced:

$$
\begin{gathered}
\left\{u_{1}, \ldots, u_{M / 2},-u_{1}, \ldots,-u_{M / 2}, 0\right\} \\
\left\{v_{1}, \ldots, v_{N_{+} / 2},-v_{1}, \ldots,-v_{N_{+} / 2}, 0\right\}, \quad\left\{w_{1}, \ldots, w_{N_{-} / 2},-w_{1}, \ldots,-w_{N_{-} / 2}, 0\right\}
\end{gathered}
$$

Section 3

One-point Functions in the D3-D7 System

M. de Leeuw, C. Kristjansen, G. Linardopoulos, One-point functions of non-protected operators in the SO(5) symmetric D3-D7 dCFT. J.Phys. A:Math.Theor., 50 (2017) 254001, [arXiv:1612.06236]

SO(5) vacuum overlap

For the vacuum overlap we have found:

$$
\langle\mathrm{MPS} \mid 0\rangle=\operatorname{Tr}\left[G_{5}^{L}\right]=\sum_{j=1}^{n+1}\left[j(n-j+2)(n-2 j+2)^{L}\right]
$$

Changing variables $j \leftrightarrow(n+2-j)$, an overall factor $(-1)^{L}$ comes out, leading the vacuum overlap to zero for L odd. Equivalently, we may write

$$
\langle\operatorname{MPS} \mid 0\rangle=2^{L}\left[\frac{(n+2)^{2}}{4}\left(\zeta\left(-L,-\frac{n}{2}\right)-\zeta\left(-L, \frac{n}{2}+1\right)\right)-\left(\zeta\left(-L-2,-\frac{n}{2}\right)-\zeta\left(-L-2, \frac{n}{2}+1\right)\right)\right],
$$

where the Hurwitz zeta function is defined as:

$$
\zeta(s, a) \equiv \sum_{n=0}^{\infty} \frac{1}{(n+a)^{s}}
$$

SO(5) vacuum overlap

For the vacuum overlap we have found:

$$
\langle\mathrm{MPS} \mid 0\rangle=\operatorname{Tr}\left[G_{5}^{L}\right]=\sum_{j=1}^{n+1}\left[j(n-j+2)(n-2 j+2)^{L}\right] .
$$

Changing variables $j \leftrightarrow(n+2-j)$, an overall factor $(-1)^{L}$ comes out, leading the vacuum overlap to zero for L odd. Equivalently, we may write

$$
\langle\mathrm{MPS} \mid 0\rangle=\left\{\begin{array}{l}
0, \quad L \text { odd } \\
2^{L} \cdot\left[\frac{2}{L+3} B_{L+3}\left(-\frac{n}{2}\right)-\frac{(n+2)^{2}}{2(L+1)} B_{L+1}\left(-\frac{n}{2}\right)\right], \quad L \text { even }
\end{array}\right.
$$

by using the relationship between the Hurwitz zeta function and the Bernoulli polynomials $B_{m}(x)$.

SO(5) vacuum overlap

For the vacuum overlap we have found:

$$
\langle\mathrm{MPS} \mid 0\rangle=\operatorname{Tr}\left[G_{5}^{L}\right]=\sum_{j=1}^{n+1}\left[j(n-j+2)(n-2 j+2)^{L}\right]
$$

Changing variables $j \leftrightarrow(n+2-j)$, an overall factor $(-1)^{L}$ comes out, leading the vacuum overlap to zero for L odd. Equivalently, we may write

$$
\langle\mathrm{MPS} \mid 0\rangle=\left\{\begin{array}{l}
0, \quad L \text { odd } \\
2^{L} \cdot\left[\frac{2}{L+3} B_{L+3}\left(-\frac{n}{2}\right)-\frac{(n+2)^{2}}{2(L+1)} B_{L+1}\left(-\frac{n}{2}\right)\right], \quad L \text { even }
\end{array}\right.
$$

by using the relationship between the Hurwitz zeta function and the Bernoulli polynomials $B_{m}(x)$.
In the large- n limit we find:

$$
\langle\mathrm{MPS} \mid 0\rangle \sim \frac{n^{L+3}}{2(L+1)(L+3)}+O\left(n^{L+2}\right), \quad n \rightarrow \infty
$$

Overlap properties

- The overlaps $\langle\mathrm{MPS} \mid \Psi\rangle$ of all the highest-weight eigenstates vanish unless:

$$
\# \mathcal{W}=\# \overline{\mathcal{W}}, \quad \# \mathcal{Y}=\# \overline{\mathcal{Y}}
$$

Therefore the only $\mathfrak{s o}$ (6) eigenstates that have nonzero one-point functions are those with:

$$
N_{1}=2 N_{2}=2 N_{3} \equiv M \text { (even) } .
$$

Evidently, all one-point functions vanish in the $\mathfrak{s u}$ (2) and $\mathfrak{s u}$ (3) subsectors.

Overlap properties

- The overlaps $\langle\mathrm{MPS} \mid \Psi\rangle$ of all the highest-weight eigenstates vanish unless:

$$
\# \mathcal{W}=\# \overline{\mathcal{W}}, \quad \# \mathcal{Y}=\# \overline{\mathcal{Y}}
$$

Therefore the only $\mathfrak{s o}$ (6) eigenstates that have nonzero one-point functions are those with:

$$
N_{1}=2 N_{2}=2 N_{3} \equiv M(\text { even })
$$

Evidently, all one-point functions vanish in the $\mathfrak{s u}(2)$ and $\mathfrak{s u}$ (3) subsectors.

- Because the third conserved charge Q_{3} annihilates the matrix product state:

$$
Q_{3} \cdot|\mathrm{MPS}\rangle=0
$$

all the one-point functions will vanish, unless all the Bethe roots are fully balanced:

$$
\begin{gathered}
\left\{u_{1}, \ldots, u_{M / 2},-u_{1}, \ldots,-u_{M / 2}, 0\right\} \\
\left\{v_{1}, \ldots, v_{N_{+} / 2},-v_{1}, \ldots,-v_{N_{+} / 2}, 0\right\}, \quad\left\{w_{1}, \ldots, w_{N_{-} / 2},-w_{1}, \ldots,-w_{N_{-} / 2}, 0\right\}
\end{gathered}
$$

The $L 211$ states

- We can consider eigenstates with $N_{1}=2, N_{2}=N_{3}=1$ and arbitrary L :

$$
|p\rangle=\sum_{x_{1}<x_{2}}\left(e^{i p\left(x_{1}-x_{2}\right)}+e^{i p\left(x_{2}-x_{1}+1\right)}\right) \cdot\left|\ldots{\underset{x}{1}}_{\mathcal{X}}^{\ldots} \bar{X}_{x_{2}} \ldots\right\rangle-2 \sum_{x_{3}}\left(1+e^{i p}\right) \cdot|\ldots \overline{\overline{\mathcal{Z}}} \ldots\rangle,
$$

where the dots stand for \mathcal{Z}, and \mathcal{X} is any of the complex scalars $\mathcal{W}, \overline{\mathcal{W}}, \mathcal{Y}, \overline{\mathcal{Y}}$.

- The momentum p is found by solving the corresponding Bethe equations:

$$
e^{i p(L+1)}=1 \Rightarrow p=\frac{4 m \pi}{L+1}, \quad m=1, \ldots, L+1
$$

- Here's the one-loop energy of the $L 211$ eigenstates:

$$
E=L+\frac{\lambda}{\pi^{2}} \sin ^{2}\left[\frac{2 m \pi}{L+1}\right]+\ldots, \quad m=1, \ldots, L+1
$$

The $L 211$ determinant formula

- The corresponding one-point function for all n is given in terms of the $n=1$ one:

$$
\left\langle\mathcal{O}_{L 211}\right\rangle=\left[\frac{u^{2}}{u^{2}-1 / 2} \sum_{n \bmod 2}^{n} j^{L} \cdot \frac{(n+2)^{2}-j^{2}}{8} \cdot \frac{\left[u^{2}+\frac{(n+2) j+1}{4}\right]\left[u^{2}-\frac{(n+2) j-1}{4}\right]}{\left[u^{2}+\left(\frac{j+1}{2}\right)^{2}\right]\left[u^{2}+\left(\frac{j-1}{2}\right)^{2}\right]}\right] \cdot\left\langle\mathcal{O}_{L 211}^{n=1}\right\rangle
$$

where

$$
\left\langle\mathcal{O}_{L 211}^{n=1}\right\rangle=8 \sqrt{\frac{L}{L+1}} \frac{u^{2}-\frac{1}{2}}{u^{2}+\frac{1}{4}} \sqrt{\frac{u^{2}+\frac{1}{4}}{u^{2}}}, \quad u \equiv \frac{1}{2} \cot \frac{p}{2} .
$$

- The results fully reproduce the numerical values (given in units of $\left(\pi^{2} / \lambda\right)^{L / 2} / \sqrt{L}$):

L	$N_{1 / 2 / 3}$	eigenvalue γ	$\mathrm{n}=1$	$\mathrm{n}=2$	$\mathrm{n}=3$	$\mathrm{n}=4$
2	211	6	$20 \sqrt{\frac{2}{3}}$	$40 \sqrt{6}$	$140 \sqrt{6}$	$1120 \sqrt{\frac{2}{3}}$
4	211	$5+\sqrt{5}$	$20+\frac{44}{\sqrt{5}}$	$\frac{96}{5}(15+\sqrt{5})$	$84(21-\sqrt{5})$	$\frac{3584}{5}(10-\sqrt{5})$
4	211	$5-\sqrt{5}$	$20-\frac{44}{\sqrt{5}}$	$288-\frac{96}{\sqrt{5}}$	$84(21+\sqrt{5})$	$\frac{3584}{5}(10+\sqrt{5})$
6	211	1.50604	3.57792	324.178	11338.3	98726
6	211	4.89008	9.90466	1724.55	19513.8	120347
6	211	7.60388	61.6252	1044.86	8830.95	49114.4

Section 4

Summary \& Outlook

Summary \& Outlook

We have studied the tree-level 1-point functions of Bethe eigenstates in the $S U(2)$ symmetric (D3-D5) ${ }_{k}$ dCFT and the $S O(5)$ symmetric (D3-D7) d_{G} dCFT...

Summary \& Outlook

We have studied the tree-level 1-point functions of Bethe eigenstates in the $S U(2)$ symmetric (D3-D5) ${ }_{k}$ dCFT and the $S O(5)$ symmetric (D3-D7) d_{G} dCFT...

D3-D5 dCFT

- Because $Q_{3} \cdot|\mathrm{MPS}\rangle=0$, all 1-point functions vanish unless the Bethe roots are fully balanced:

$$
\left\{u_{1, i}\right\}=\left\{-u_{1, i}\right\}, \quad\left\{u_{2, i}\right\}=\left\{-u_{2, i}\right\}, \quad\left\{u_{3, i}\right\}=\left\{-u_{3, i}\right\}
$$

- In $\mathfrak{s u}(2)$, all 1-point functions (vacuum included) vanish if M or L is odd.
- In $\mathfrak{s u}$ (3), all 1-point functions vanish if (1) M is odd or (2) $L+N_{+}$is odd.
- In $\mathfrak{s o}$ (6), all 1-point functions vanish if (1) M is odd or (2) $L+N_{+}+N_{-}$is odd.
- We have found a determinant formula for the eigenstates, valid for all values of the flux k :

$$
C_{k}\left(\left\{u_{j} ; v_{j} ; w_{j}\right\}\right)=\mathbb{T}_{k-1}(0) \cdot \sqrt{\frac{Q_{1}(0) Q_{1}(i / 2) Q_{1}(i k / 2) Q_{1}(i k / 2)}{R_{2}(0) R_{2}(i / 2) R_{3}(0) R_{3}(i / 2)} \cdot \frac{\operatorname{det} G^{+}}{\operatorname{det} G^{-}}}
$$

Summary \& Outlook

We have studied the tree-level 1-point functions of Bethe eigenstates in the $S U(2)$ symmetric (D3-D5) ${ }_{k}$ dCFT and the $S O(5)$ symmetric (D3-D7) d_{G} dCFT...

D3-D7 dCFT

- Because $Q_{3} \cdot|\mathrm{MPS}\rangle=0$, all 1-point functions vanish unless the Bethe roots are fully balanced:

$$
\left\{u_{1, i}\right\}=\left\{-u_{1, i}\right\}, \quad\left\{u_{2, i}\right\}=\left\{-u_{2, i}\right\}, \quad\left\{u_{3, i}\right\}=\left\{-u_{3, i}\right\}
$$

- Besides the vacuum, all 1-pt functions vanish in the $\mathfrak{s u}(2)$ and $\mathfrak{s u}$ (3) subsectors.
- In $\mathfrak{s o}$ (6) all 1-point functions vanish unless $N_{1}=2 N_{2}=2 N_{3} \equiv M$ (even).
- The vacuum also vanishes when $L=$ odd.
- We have found a determinant formula for $L 211$ eigenstates, valid for all values of the instanton number n :

$$
\left\langle\mathcal{O}_{L 211}\right\rangle=\left[\frac{u^{2}}{u^{2}-1 / 2} \sum_{n \bmod 2}^{n} j^{L} \cdot \frac{(n+2)^{2}-j^{2}}{8} \cdot \frac{\left[u^{2}+\frac{(n+2) j+1}{4}\right]\left[u^{2}-\frac{(n+2) j-1}{4}\right]}{\left[u^{2}+\left(\frac{j+1}{2}\right)^{2}\right]\left[u^{2}+\left(\frac{j-1}{2}\right)^{2}\right]}\right] \cdot\left\langle\mathcal{O}_{L 211}^{n=1}\right\rangle
$$

Summary \& Outlook

We have studied the tree-level 1-point functions of Bethe eigenstates in the $S U(2)$ symmetric (D3-D5) ${ }_{k}$ dCFT and the $S O(5)$ symmetric (D3-D7) d_{G} dCFT...

Outlook

- D3-D5 integrability in terms of the boundary state and its reflection matrix.
- Identification of transfer matrix. D3-D5 integrability at higher loops \& strong coupling.
- D3-D7 determinant formula for all $\mathfrak{s o}$ (6) Bethe eigenstates? Integrability? (work in progress)
- Higher loop orders, Wilson loops, 2-point functions in D3-D7 à la D3-D5?
- Thermodynamic limit $(M, L \rightarrow \infty, M / L=$ const $)$, string theory/strong coupling side $(\lambda \rightarrow \infty) \ldots$
- Move on to the $S U(2) \times S U(2)$ solution of D3-D7 and its β-deformation...

Eux $\alpha \rho \iota \tau \omega!$

