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A

Experimental Facts
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N Lepton Flavour Universality (LFU) Violation N

⇓

Beyond the Standard Model

⇓

Evidence (?)
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⇓

Anomalous B-decays at LHC

⇓
Tension with Lepton Flavour Universality (LFU) in SM
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LFU

(brief reminder )

N Standard Model:

EW couplings of leptons to neutral gauge bosons:

Flavour Independent

examples:

• Involving neutral bosons : e+e− → Z → µ+µ−

e e
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Flavour diagonal
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• Involving W± (at tree level...)

Γ(τ− → µ− + ν̄µ + ντ ) = Γ(τ− → e− + ν̄e + ντ )
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Both cases are in agreement with experimental measurements
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Focusing on Z

N Z gauge boson of broken symmetry

⇒ in principle no reason to prevent FCNCs

but

... in SM, there are no FCNCs at tree-level!

explanation

Z connects fermions with same charge Q and Colour

Q = T3 + Y

All quarks with same Q, have the same T3 and Y .

All couple with the same strength (Universal )

gZff = g cos θWT3 − g′ sin θWY
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B-meson decays

in SM occur due to flavour violating transition

b → s+ γ

b

l

l

Z, ã

W W

sq  = u, c, t

+

_

U Ujb j js
*

_ _

NZℓ+ℓ− vertex → flavour independent→ ℓ+ℓ− same flavour

N b u W vertex → flavour violating (CKM mixing.)
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⇒ Suitable candidate reactions to test LFU:

b → sℓ+ℓ−, ℓ = e, µ, τ

b-quarks are found in B mesons such as B+ = b̄u and B0 = b̄d;

B+ → K+ℓ+ℓ−

B0 → K∗0ℓ+ℓ−

remarks

(K∗0 reconstructed in the final state K+π−)

In Flavour changing (only) processes, BRs of neutral currents

suppressed compared to charged ones...

Br(B− → K∗−ℓ+ℓ−) ∼ 5× 10−7, Br(B− → D0ℓν̄) ∼ 2.3%
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b

l
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Z, ã

W W
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+

_

U Ujb j js
*

_ _

N LeptonF lavour Universality at Z vertex ⇒
Ratios of branching ratios in SM: expected to be ∼ 1:

RXij
=

BR(B → X+ℓ+i ℓ
−

i )

BR(B → X+ℓ+j ℓ
−

j )
≈ 1

i, j = e, µ, τ ; X = K+, K0, · · · but ! →
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pp collision data at ∼ 8 TeV, 2011-2012

LHCb experimental evidence in tension with SM:

RK =
BR(B → K+µ+µ−)

BR(B → K+e+e−)
= 0.745± 0.09(stat)± 0.036(syst)

integrated over 1GeV2 < q2 < 6 GeV2 (dilpeton invariant mass2)

RK∗ =
BR(B → K∗µ+µ−)

BR(B → K∗e+e−)
≈







0.660 (2mµ)
2 < q2 < 1.1GeV2

0.685 1.1GeV2 < q2 < 6GeV2

N Both ratios → deficit in same direction! N

N Unexplained in SM N
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experimental data ... against expectations?...

N LHCb more efficient for B → K∗µ+µ−

N B → K∗e+e− : significant reduction due to bremsstrahlung

Bremsstrahlung effect recovery (evaluation of pT difference):

(LHCb 1705.05802)
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Other deviations

1) N based on transition b → c:

RD∗

exp =
BR(B → D∗τντ )

BR(B → D∗ℓνℓ)
≈ 0.321, RD∗

SM = 0.252

2) N Deficit of differential branching fraction Bs → φµ+µ− :

dB(B0
s → φµ+µ−)

dq2
; (φ → K+K−)

(Bs = b̄s, φ = s̄s)
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New Physics solution to the puzzle...required!

Generate new contributions to the process :

KB

u
u

b

b
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m m
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_

Observation: a new physics interaction discriminating µ, e ratios in

B decays, induces new sources of lepton flavour violation
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Effective Hamiltonian approach

SM & BSM contributions parametrised in terms of the

Heff = −4GF√
2
VtbV

∗

ts

α

4π

∑

k

(Ck(µ)Ok(µ) + C ′

k(µ)O′

k(µ))

Ck(µ): Dimensionless parameters in Heff → Wilson coefficients

(... depend on masses, couplings and various constants)

On(µ): semi-leptonic operators related to the fields ℓ, b, s
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LHCb data in B-decay anomalies

are in accordance with contributions from the following

semi-leptonic operators:

O9 = s̄γλPLbℓ̄γ
λℓ

O′

9 = s̄γλPRb ℓ̄γ
λℓ

O10 = s̄γλPLb ℓ̄γ
λγ5ℓ (1)

O′

10 = s̄γλPRb ℓ̄γ
λγ5ℓ

PL = 1
2 (1− γ5), PR = 1

2 (1 + γ5)

Wilson coefficients:

Ck(µ) = Ck(µ)
SM + Ck(µ)

BSM
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KR

BSM

BSM

BSM

BSM
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9,m

correlations of RK/RK∗ deviations and the corresponding chiral

operators generated by New Physics in the µ sector (based on

1704.05438)
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Possible Solutions

N A : Negative New Physics contributions 25% to C9.

C9
NP ≈ −1.07

N B : Contributions along the SU(2)-invariant direction

C9 = −C10, ( V −A-type)

C9
NP ≈ −0.53, C10

NP ≈ 0.53

BSM Extensions involve:

N 1.) Z ′ neutral gauge boson

(coupled differently to 3rd family and/or vectorlike fields)

N 2.) New Particles (Leptoquarks...) (1709.00692)
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Graphs:

Z ′ boson and Leptoquark contributions to b → sµ+µ−

Z

`

mm

b

s

LQ

m

m

b

s

focus in present talk:

Z ′ contribution to B+ → K+µ+µ− (see e.g. 1511.07447)
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... assuming a toy example of Z ′ current: (1511.07447 )

J
′0
λ = gµ µ̄γλµ+ gt t̄γλPLt+ gq q̄γλPLq

+(gt − gq)V
∗

tsVtb s̄γλPLb+ · · ·

gq couplings taken equal for q = u, d, c, s to suppress FCNC

Then:

CNP9 = − πgµ(gt − gq)

2
√
2GFM2

Z′c2Wα
≈ −πgµ(gt − gq)

c2W

(

MZ′

2TeV

)2

→ promising! since CNP9 ∼ −1 for:

• reasonable values of gt, gq, gµ, and

• new neutral boson mass MZ′ ∼ few TeV.
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thus... minimal requirement:

... Z ′ explains the anomalous B-decays if :

Z ′ couplings to 2nd and 3rd families are different!

or

... in the presence of a heavier vector-like family ...
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B

F-theory model building

...practical and local
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F-theory 6-d compact manifold

elliptically fibered with equation describing a torus:

y2 = x3 + f(z)x+ g(z)

.
.

B

T

T

T

3

2

2

2

Topol. and geom. properties depend on f(z), g(z)
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GUT Models from F-Theory

BASIC INGREDIENTS

⇓
• geometric singularities ⇄ gauge symmetries

(Elliptic fibration admits E8 and its subgroups)

• topology and fluxes ⇄ low energy properties
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A Class of ‘semi-local’ constructions
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NHThe role of the manifold: NH

N candidate GUT embedded in maximal exceptional group:

E8 → GGUT × C

Assuming a Manifold with SU(5) divisor:

E8 → SU(5)× SU(5)⊥

→ SU(5)× U(1)4

Matter descends from the Adjoint:

248 → (24, 1) + (1, 24) + (10, 5) + (5, 10) + (5, 10) + (5, 10)
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SU(5)⊥ →: locally described by Cartan roots:

ti = SU(5)⊥ − roots →
5

∑

i=1

ti = 0

SU(5)⊥ =





















t1 0 0 0 0

0 t2 0 0 0

0 0 t3 0 0

0 0 0 t4 0

0 0 0 0 t5





















effective theory representations transform according to:

(10, 5) → 10ti

(5, 10) → 5ti+tj
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NHThe role of fluxes: NH

Three important implications

NH SU(5) Chirality

NH SU(5) Symmetry Breaking

( fluxes act as the surrogate of the Higgs vev )

NH Splitting of SU(5)-reps

Two types of fluxes:

N i) M10,M5: (associated with U(1)⊥’s )

determine the chirality of complete 10, 5 ∈ SU(5)

N ii) NY : (turned on along U(1)Y ∈ SU(5))

... split SU(5)-representations
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SU(5) chirality from U(1)⊥ Flux

U(1)⊥−Flux on SM reps ∈ 10’s:

#10−#10 =



















n(3,2) 1

6

− n(3̄,2)
−

1

6

n(3̄,1)
−

2

3

− n(3,1) 2

3

n(1,1)1 − n(1,1)−1



















= M10

U(1)⊥− Flux on SM reps ∈ 5’s:

#5−#5 =







n(3,1)
−

1

3

− n(3̄,1) 1

3

n(1,2) 1

2

− n(1,2)
−

1

2







= M5
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SM chirality form Hypercharge Flux

U(1)Y−Flux-splitting of 10’s:

n(3,2) 1

6

− n(3̄,2)
−

1

6

= M10

n(3̄,1)
−

2

3

− n(3,1) 2

3

= M10 −NY10

n(1,1)1 − n(1,1)−1
= M10 +NY10

U(1)Y− Flux-splitting of 5’s:

n(3,1)
−

1

3

− n(3̄,1) 1

3

= M5

n(1,2) 1

2

− n(1,2)
−

1

2

= M5 +NY5
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For the Higgs ‘curve’ in particular:

Hyper-Flux Doublet-Triplet splitting :

U(1)Y− Flux-splitting of 5Hu
:

n(3,1)
−

1

3

− n(3̄,1) 1

3

= M5 = 0

n(1,2) 1

2

− n(1,2)
−

1

2

= M5 +NY5
= 0 + 1 = 1 (Hu)

U(1)Y− Flux-splitting of 5̄Hd
→:

n(3,1)
−

1

3

− n(3̄,1) 1

3

= M5 = 0

n(1,2) 1

2

− n(1,2)
−

1

2

= M5 +NY5
= 0− 1 = −1 (Hd)
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ւց

General Property

by virtue of Hyperflux, members of the same family, may no longer

be components of the same 5-plet
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Fluxes and Anomaly Cancellation

Mj , NYj
subject to geometry/anomaly cancellation restrictions

Anomaly cancellation

ASU(3)2−U(1), ASU(2)2−U(1), AU(1Y )2−U(1)

AU(1Y )−U(1)2

equivalent to geometric constraints ∗ : (qn = n-irrep U(1) ‘charge’ )

∑

Σ10

q10j
N10j

+
∑

Σ5

q5i
N5i

= 0

3
∑

Σ10

q210j
N10j

+
∑

Σ5

q25i
N5i

= 0 (2)

∗ (see works of Dudas-Palti, Marsano, Weigand,...)



–35–

C

Anomalies of B decays

Proposed interpretations within F-GUTs



–36–

Interpretation in F -theory GUTs

N Z ′ must couple differently to 3rd family (or a new vectorlike one).

N → ... scenario naturally realised in an F-theory framework

E8 ⊃ SU(5)× SU(5)⊥ → SU(5)× U(1)4⊥

Cartan generators ⇔ U(1)⊥

H1 =
1

2
diag(1,−1, 0, 0, 0),

H2 =
1

2
√
3
diag(1, 1,−2, 0, 0),

H3 =
1

2
√
6
diag(1, 1, 1,−3, 0),

H4 =
1

2
√
10

diag(1, 1, 1, 1,−4),
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MONODROMIES

Physics and Geometry

... ti obey a 5th-degree polynomial

5
∑

k=0

bks
5−k = 0

with bk ‘transmitting’ topological properties to effective model

... ... ...

minimum condition (Monodromy)

Z2 : t1 ↔ t2 ⇛ U(1)4⊥ → U(1)3⊥

...breaks one U(1)⊥ generator...

H1 =
1

2
diag(1,−1, 0, 0, 0),
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A Z ′ with Non-Universal Gauge-Lepton couplings

M. Crispim-Romão, S.F. King, G.K.L.
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Assumed Model: SU(5) with t1 ↔ t2 monodromy

choosing convenient basis for U(1)i’s ⊥ to SU(5)GUT :

E8 → E6 × U(1)2⊥ (3)

→ SO(10)× U(1)ψ × U(1)2⊥ (4)

→ SU(5)× U(1)χ × U(1)ψ × U(1)2⊥. (5)

Unbroken generators after imposing a Z2 monodromy :

Qχ ∝ diag[−1,−1,−1,−1, 4] ∈ E6

Qψ ∝ diag[1, 1, 1,−3, 0] ∈ E6

Q⊥ ∝ diag[1, 1,−2, 0, 0] ∈ E8, /∈ E6
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N U(1)′ must be combination of unbroken generators:

Q = c1Qχ + c2Qχ + c3Q⊥

N must respect anomaly cancellation conditions.

Additional Conditions on ci coeffs and M10j
,M5i

:

c21 + c22 + c23 = 1,
∑

j

M10j
= −

∑

i

M5i
= 3

N 3rd family Q′
3 differently charged under U(1)′

N preferably Q′
1 = Q′

2 in quark sector (to suppress FCNCs)

Results: Plenty of solutions:

N cases with an additional 5 + 5̄ a pair

N cases with an additional 10 + 10

N models with complete vector-like family (10 + 10) + (5 + 5̄)
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Example:

Curve Name
√
10Q3 SM content

5Hu

3
2 Hu

51 −1 L

52
3
2 Hd

53
1
4 L

54 −1 dc

55 − 9
4 dc + L

56
1
4 dc

10t − 3
4 Q+ 2uc

102
7
4 −

103 - 34 Q+ 2ec

104
1
2 Q+ uc + ec
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... MSSM + Vector Family

Curve Name Weights Q′ SM Content

5Hu −2t1 −

1

2
Hu

51 t1 + t3 −

1

4
L

52 t1 + t4
1

2
Hd

53 −t1 − t5 0 dc

54 t3 + t4 −

1

4
3dc + 2L

55 t3 + t5 −

3

4
dc + L

56 −t4 − t5 0 L

10t t1
1

4
2Q+ 3uc + ec

102 t3 −

1

2
Q+ uc + ec

103 t4
1

4
Q+ 2ec

104 −t5
1

4
Q+ uc + ec
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D
ց ... ւ

SUMMING UP ...

ր ... տ
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Anomalous B decays (if true) :

⇓⇓⇓

will shake the foundations of SM

⇓

...in Greece, bewildered sailors having problems in navigation used

to say...
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either the coastline is wrongly aligned...(SM)

SM



–46–

... or we are sailing the wrong direction(LHCb)

LHCb

LH
Cb

SM

L
H

C
b

⇓

but...
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String Theory GUTs are rich enough to accommodate:

Viable models for New Physics

...Z ′’s with non-universal couplings to fermions

...vectorlike families

... and more...

so, the question is
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LHCb

LH
Cb

SM

L
H

C
b

String Theory>

?

⇓

to sail, or not to sail?...
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T HANK YOU


