Athens March 2018

New Physics at LHC and fluxed GUTs
George Leontaris
University of Ioannina
$\mathcal{I O} \mathcal{A N} \mathcal{N} \mathcal{I N} \mathcal{A}$
$\mathcal{G R E E C E}$

Outline of the talk

1. Experimental Facts
2. Explanations with new particles
3. F-GUTs and Non-Universal $U(1)$'s
4. Conclusions

Experimental Facts

Lepton Flavour Universality (LFU) Violation

Beyond the Standard Model

Evidence (?)

Anomalous B-decays at LHC

\Downarrow
Tension with Lepton Flavour Universality (LFU) in SM

LFU
 (brief reminder)

Standard Model:

EW couplings of leptons to neutral gauge bosons:
Flavour Independent
examples:

- Involving neutral bosons : $e^{+} e^{-} \rightarrow Z \rightarrow \mu^{+} \mu^{-}$

- Involving $W^{ \pm}$(at tree level...)

$$
\Gamma\left(\tau^{-} \rightarrow \mu^{-}+\bar{\nu}_{\mu}+\nu_{\tau}\right)=\Gamma\left(\tau^{-} \rightarrow e^{-}+\bar{\nu}_{e}+\nu_{\tau}\right)
$$

Both cases are in agreement with experimental measurements

Focusing on Z

$\triangle \quad Z$ gauge boson of broken symmetry
\Rightarrow in principle no reason to prevent $F C N C s$
but
... in $\mathcal{S M}$, there are no $F C N C$ s at tree-level!
explanation
Z connects fermions with same charge Q and Colour

$$
Q=T_{3}+Y
$$

All quarks with same Q, have the same T_{3} and Y. All couple with the same strength (Universal)

$$
g^{Z f f}=g \cos \theta_{W} T_{3}-g^{\prime} \sin \theta_{W} Y
$$

B-meson decays

in SM occur due to flavour violating transition

$$
b \rightarrow s+\gamma
$$

$\Delta Z \ell^{+} \ell^{-}$vertex \rightarrow flavour independent $\rightarrow \ell^{+} \ell^{-}$same flavour
$\Delta \mathrm{b} \mathrm{u} \mathrm{W}$ vertex \rightarrow flavour violating (CKM mixing.)
\Rightarrow Suitable candidate reactions to test LFU:

$$
b \rightarrow s \ell^{+} \ell^{-}, \quad \ell=e, \mu, \tau
$$

b-quarks are found in B mesons such as $B^{+}=\bar{b} u$ and $B^{0}=\bar{b} d$;

$$
\begin{aligned}
B^{+} & \rightarrow K^{+} \ell^{+} \ell^{-} \\
B^{0} & \rightarrow K^{* 0} \ell^{+} \ell^{-}
\end{aligned}
$$

remarks

($K^{* 0}$ reconstructed in the final state $K^{+} \pi^{-}$)
In Flavour changing (only) processes, BRs of neutral currents suppressed compared to charged ones...

$$
\operatorname{Br}\left(B^{-} \rightarrow K^{*-} \ell^{+} \ell^{-}\right) \sim 5 \times 10^{-7}, \quad \operatorname{Br}\left(B^{-} \rightarrow D^{0} \ell \bar{\nu}\right) \sim 2.3 \%
$$

- Lepton Flavour Universality at Z vertex \Rightarrow Ratios of branching ratios in SM: expected to be ~ 1 :

$$
R_{X_{i j}}=\frac{\operatorname{BR}\left(B \rightarrow X^{+} \ell_{i}^{+} \ell_{i}^{-}\right)}{\operatorname{BR}\left(B \rightarrow X^{+} \ell_{j}^{+} \ell_{j}^{-}\right)} \approx 1
$$

$i, j=e, \mu, \tau ; \quad X=K^{+}, K^{0}, \cdots$
pp collision data at $\sim 8 \mathrm{TeV}, 2011-2012$
LHCb experimental evidence in tension with SM:

$$
R_{K}=\frac{\mathrm{BR}\left(B \rightarrow K^{+} \mu^{+} \mu^{-}\right)}{\mathrm{BR}\left(B \rightarrow K^{+} e^{+} e^{-}\right)}=0.745 \pm 0.09(\text { stat }) \pm 0.036(\text { syst })
$$

integrated over $1 \mathrm{GeV}^{2}<q^{2}<6 \mathrm{GeV}^{2}$ (dilpeton invariant mass ${ }^{2}$)

$$
R_{K^{*}}=\frac{\operatorname{BR}\left(B \rightarrow K^{*} \mu^{+} \mu^{-}\right)}{\operatorname{BR}\left(B \rightarrow K^{*} e^{+} e^{-}\right)} \approx \begin{cases}0.660 & \left(2 m_{\mu}\right)^{2}<q^{2}<1.1 \mathrm{GeV}^{2} \\ 0.685 & 1.1 \mathrm{GeV}^{2}<q^{2}<6 \mathrm{GeV}^{2}\end{cases}
$$

Δ Both ratios \rightarrow deficit in same direction!

A Unexplained in SM
experimental data ... against expectations?...
$\triangle \mathrm{LHCb}$ more efficient for $B \rightarrow K^{*} \mu^{+} \mu^{-}$
$\Delta B \rightarrow K^{*} e^{+} e^{-}$: significant reduction due to bremsstrahlung Bremsstrahlung effect recovery (evaluation of p_{T} difference): (LHCb 1705.05802)

B flight direction

Other deviations

1) $\boldsymbol{\Delta}$ based on transition $b \rightarrow c$:

$$
R_{D^{*}}{ }^{\exp }=\frac{\operatorname{BR}\left(B \rightarrow D^{*} \tau \nu_{\tau}\right)}{\operatorname{BR}\left(B \rightarrow D^{*} \ell \nu_{\ell}\right)} \approx 0.321, R_{D^{*}}{ }^{S M}=0.252
$$

2) $\boldsymbol{\Delta}$ Deficit of differential branching fraction $B_{s} \rightarrow \phi \mu^{+} \mu^{-}$:

$$
\frac{d \mathcal{B}\left(B_{s}^{0} \rightarrow \phi \mu^{+} \mu^{-}\right)}{d q^{2}} ;\left(\phi \rightarrow K^{+} K^{-}\right)
$$

$\left(B_{s}=\bar{b} s, \phi=\bar{s} s\right)$

New Physics solution to the puzzle...required!
Generate new contributions to the process :

$$
\boldsymbol{B} \rightarrow \boldsymbol{K} \mu^{-} \mu^{+}
$$

Observation: a new physics interaction discriminating μ, e ratios in B decays, induces new sources of lepton flavour violation

Effective Hamiltonian approach

SM \& BSM contributions parametrised in terms of the

$$
\mathcal{H}_{e f f}=-\frac{4 G_{F}}{\sqrt{2}} V_{t b} V_{t s}^{*} \frac{\alpha}{4 \pi} \sum_{k}\left(C_{k}(\mu) \mathcal{O}_{k}(\mu)+C_{k}^{\prime}(\mu) \mathcal{O}_{k}^{\prime}(\mu)\right)
$$

$C_{k}(\mu)$: Dimensionless parameters in $\mathcal{H}_{\text {eff }} \rightarrow$ Wilson coefficients (... depend on masses, couplings and various constants)
$\mathcal{O}_{n}(\mu)$: semi-leptonic operators related to the fields ℓ, b, s

LHCb data in B-decay anomalies

are in accordance with contributions from the following semi-leptonic operators:

$$
\begin{align*}
\mathcal{O}_{9} & =\bar{s} \gamma_{\lambda} P_{L} b \bar{\ell} \gamma^{\lambda} \ell \\
\mathcal{O}_{9}^{\prime} & =\bar{s} \gamma_{\lambda} P_{R} b \bar{\ell} \gamma^{\lambda} \ell \\
\mathcal{O}_{10} & =\bar{s} \gamma_{\lambda} P_{L} b \bar{\ell} \gamma^{\lambda} \gamma_{5} \ell \tag{1}\\
\mathcal{O}_{10}^{\prime} & =\bar{s} \gamma_{\lambda} P_{R} b \bar{\ell} \gamma^{\lambda} \gamma_{5} \ell
\end{align*}
$$

$P_{L}=\frac{1}{2}\left(1-\gamma_{5}\right), P_{R}=\frac{1}{2}\left(1+\gamma_{5}\right)$
Wilson coefficients:

$$
C_{k}(\mu)=C_{k}(\mu)^{S M}+C_{k}(\mu)^{B S M}
$$

correlations of $R_{K} / R_{K^{*}}$ deviations and the corresponding chiral operators generated by New Physics in the μ sector (based on 1704.05438)

Possible Solutions

$\triangle \mathcal{A}:$ Negative New Physics contributions 25% to C_{9}.

$$
C_{9}{ }^{N P} \approx-1.07
$$

$\Delta \mathcal{B}:$ Contributions along the $S U(2)$-invariant direction
$C_{9}=-C_{10}, \quad(V-A$-type $)$

$$
C_{9}{ }^{N P} \approx-0.53, C_{10}{ }^{N P} \approx 0.53
$$

BSM Extensions involve:
A.) Z^{\prime} neutral gauge boson
(coupled differently to $3^{\text {rd }}$ family and/or vectorlike fields)
2.) New Particles (Leptoquarks...) (1709.00692)

Graphs:

Z^{\prime} boson and Leptoquark contributions to $b \rightarrow s \mu^{+} \mu^{-}$

focus in present talk:
Z^{\prime} contribution to $B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}$(see e.g. 1511.07447)
... assuming a toy example of Z^{\prime} current: (1511.07447)

$$
\begin{aligned}
J_{\lambda}^{\prime 0}= & g_{\mu} \bar{\mu} \gamma_{\lambda} \mu+g_{t} \bar{t} \gamma_{\lambda} P_{L} t+g_{q} \bar{q} \gamma_{\lambda} P_{L} q \\
& +\left(g_{t}-g_{q}\right) V_{t s}^{*} V_{t b} \bar{s} \gamma_{\lambda} P_{L} b+\cdots
\end{aligned}
$$

g_{q} couplings taken equal for $q=u, d, c, s$ to suppress $F C N C$

$$
C_{9}^{N P}=-\frac{\pi g_{\mu}\left(g_{t}-g_{q}\right)}{2 \sqrt{2} G_{F} M_{Z^{\prime}}^{2} c_{W}^{2} \alpha} \approx-\frac{\pi g_{\mu}\left(g_{t}-g_{q}\right)}{c_{W}^{2}\left(\frac{M_{Z^{\prime}}}{2 \mathrm{TeV}}\right)^{2}}
$$

\rightarrow promising! since $C_{9}^{N P} \sim-1$ for:

- reasonable values of g_{t}, g_{q}, g_{μ}, and
- new neutral boson mass $M_{Z^{\prime}} \sim$ few TeV .
thus... minimal requirement:
... Z^{\prime} explains the anomalous B-decays if :
Z^{\prime} couplings to $2^{\text {nd }}$ and $3^{\text {rd }}$ families are different!
Or
... in the presence of a heavier vector-like family ..

\mathcal{B}

F-theory model building
 ...practical and local

F-theory 6-d compact manifold

elliptically fibered with equation describing a torus:

$$
y^{2}=x^{3}+f(z) x+g(z)
$$

Topol. and geom. properties depend on $f(z), g(z)$

GUT Models from F-Theory
 BASIC INGREDIENTS

- geometric singularities \rightleftarrows gauge symmetries
(Elliptic fibration admits E_{8} and its subgroups)
- topology and fluxes low energy properties

A Class of 'semi-local' constructions
Δ The role of the manifold:

- candidate GUT embedded in maximal exceptional group:

$$
\mathcal{E}_{8} \rightarrow \mathbf{G}_{\mathrm{GUT}} \times \mathcal{C}
$$

Assuming a Manifold with $S U(5)$ divisor:

$$
\begin{aligned}
\mathcal{E}_{8} & \rightarrow S U(5) \times S U(5)_{\perp} \\
& \rightarrow S U(5) \times U(1)^{4}
\end{aligned}
$$

Matter descends from the Adjoint:

$$
248 \rightarrow(24,1)+(1,24)+(10,5)+(\overline{5}, 10)+(\overline{5}, \overline{10})+(5, \overline{10})
$$

$S U(5)_{\perp} \rightarrow$: locally described by Cartan roots:

$$
\begin{aligned}
& t_{i}=S U(5)_{\perp}-\text { roots } \rightarrow \sum_{i=1}^{5} t_{i}=0 \\
& S U(5)_{\perp}=\left(\begin{array}{ccccc}
t_{1} & 0 & 0 & 0 & 0 \\
0 & t_{2} & 0 & 0 & 0 \\
0 & 0 & t_{3} & 0 & 0 \\
0 & 0 & 0 & t_{4} & 0 \\
0 & 0 & 0 & 0 & t_{5}
\end{array}\right)
\end{aligned}
$$

effective theory representations transform according to:

$$
\begin{aligned}
& (10,5) \rightarrow 10_{t_{i}} \\
& (\overline{5}, 10) \rightarrow \overline{5}_{t_{i}+t_{j}}
\end{aligned}
$$

Δ The role of fluxes:
Three important implications
$\checkmark S U(5)$ Chirality
$\nabla S U(5)$ Symmetry Breaking
(fluxes act as the surrogate of the Higgs vev)
\triangle Splitting of $S U(5)$-reps
Two types of fluxes:
Δ i) M_{10}, M_{5} : (associated with $U(1)_{\perp}$'s) determine the chirality of complete $10,5 \in S U(5)$
Δ ii) N_{Y} : (turned on along $U(1)_{Y} \in S U(5)$)
... split $S U(5)$-representations

$S U(5)$ chirality from $U(1)_{\perp}$ Flux

$U(1)_{\perp}$-Flux on SM reps \in 10's:

$$
\# 10-\# \overline{10}=\left\{\begin{array}{l}
n_{(3,2)_{\frac{1}{6}}}-n_{(\overline{3}, 2)_{-\frac{1}{6}}} \\
n_{(\overline{3}, 1)_{-\frac{2}{3}}}-n_{(3,1)_{\frac{2}{3}}} \\
n_{(1,1)_{1}}-n_{(1,1)_{-1}}
\end{array}\right\}=M_{10}
$$

$U(1) \perp$ - Flux on SM reps \in 5's:

$$
\# 5-\# \overline{5}=\left\{\begin{array}{l}
n_{(3,1)_{-\frac{1}{3}}}-n_{(\overline{3}, 1)_{\frac{1}{3}}} \\
n_{(1,2)_{\frac{1}{2}}}-n_{(1,2)_{-\frac{1}{2}}}
\end{array}\right\}=M_{5}
$$

SM chirality form Hypercharge Flux

$U(1)_{Y}$-Flux-splitting of $\mathbf{1 0}$'s:

$$
\begin{aligned}
n_{(3,2)_{\frac{1}{6}}}-n_{(\overline{3}, 2)_{-\frac{1}{6}}} & =M_{10} \\
n_{(\overline{3}, 1)_{-\frac{2}{3}}}-n_{(3,1)_{\frac{2}{3}}} & =M_{10}-N_{Y_{10}} \\
n_{(1,1)_{1}}-n_{(1,1)_{-1}} & =M_{10}+N_{Y_{10}}
\end{aligned}
$$

$U(1)_{Y}-$ Flux-splitting of 5 's:

$$
\begin{aligned}
& n_{(3,1)_{-\frac{1}{3}}}-n_{(\overline{3}, 1)_{\frac{1}{3}}}=M_{5} \\
& n_{(1,2)_{\frac{1}{2}}}-n_{(1,2)_{-\frac{1}{2}}}=M_{5}+N_{Y_{5}}
\end{aligned}
$$

For the Higgs 'curve' in particular:
Hyper-Flux Doublet-Triplet splitting :
$U(1)_{Y}-$ Flux-splitting of $\mathbf{5}_{\mathbf{H}_{\mathbf{u}}}$:

$$
\begin{aligned}
& n_{(3,1)_{-\frac{1}{3}}}-n_{(\overline{3}, 1)_{\frac{1}{3}}}=M_{5}=0 \\
& n_{(1,2)_{\frac{1}{2}}}-n_{(1,2)_{-\frac{1}{2}}}=M_{5}+N_{Y_{5}}=0+1=1\left(H_{u}\right)
\end{aligned}
$$

$U(1)_{Y}-$ Flux-splitting of $\overline{\mathbf{5}}_{\mathbf{H}_{\mathbf{d}}} \rightarrow$:

$$
\begin{aligned}
& n_{(3,1)_{-\frac{1}{3}}}-n_{(\overline{3}, 1)_{\frac{1}{3}}}=M_{5}=0 \\
& n_{(1,2)_{\frac{1}{2}}}-n_{(1,2)_{-\frac{1}{2}}}=M_{5}+N_{Y_{5}}=0-1=-1\left(H_{d}\right)
\end{aligned}
$$

General Property

by virtue of Hyperflux, members of the same family, may no longer be components of the same 5 -plet

Fluxes and Anomaly Cancellation

$M_{j}, N_{Y_{j}}$ subject to geometry/anomaly cancellation restrictions Anomaly cancellation

$$
\begin{gathered}
\mathcal{A}_{S U(3)^{2}-U(1)}, \mathcal{A}_{S U(2)^{2}-U(1)}, \mathcal{A}_{U\left(1_{Y}\right)^{2}-U(1)} \\
\mathcal{A}_{U\left(1_{Y}\right)-U(1)^{2}}
\end{gathered}
$$

equivalent to geometric constraints * : $\left(q_{n}=n\right.$-irrep $U(1)$ 'charge' $)$

$$
\begin{align*}
\sum_{\Sigma_{10}} q_{10_{j}} N_{10_{j}}+\sum_{\Sigma_{5}} q_{5_{i}} N_{5_{i}} & =0 \\
3 \sum_{\Sigma_{10}} q_{10_{j}}^{2} N_{10_{j}}+\sum_{\Sigma_{5}} q_{5_{i}}^{2} N_{5_{i}} & =0 \tag{2}
\end{align*}
$$

* (see works of Dudas-Palti, Marsano, Weigand,...)

Anomalies of B decays
Proposed interpretations within F-GUTs

Interpretation in F-theory GUTs
ΔZ^{\prime} must couple differently to $3^{r d}$ family (or a new vectorlike one).
$\Delta \rightarrow \ldots$ scenario naturally realised in an F-theory framework

$$
E_{8} \supset S U(5) \times S U(5)_{\perp} \rightarrow S U(5) \times U(1)_{\perp}^{4}
$$

Cartan generators $\Leftrightarrow U(1)_{\perp}$

$$
\begin{aligned}
H_{1} & =\frac{1}{2} \operatorname{diag}(1,-1,0,0,0) \\
H_{2} & =\frac{1}{2 \sqrt{3}} \operatorname{diag}(1,1,-2,0,0) \\
H_{3} & =\frac{1}{2 \sqrt{6}} \operatorname{diag}(1,1,1,-3,0) \\
H_{4} & =\frac{1}{2 \sqrt{10}} \operatorname{diag}(1,1,1,1,-4)
\end{aligned}
$$

MONODROMIES

Physics and Geometry
$\ldots t_{i}$ obey a $5^{\text {th }}$-degree polynomial

$$
\sum_{k=0}^{5} b_{k} s^{5-k}=0
$$

with b_{k} 'transmitting' topological properties to effective model
minimum condition (Monodromy)

$$
Z_{2}: t_{1} \leftrightarrow t_{2} \Rightarrow U(1)_{\perp}^{4} \rightarrow U(1)_{\perp}^{3}
$$

...breaks one $U(1)_{\perp}$ generator...

$$
H_{1}=\frac{1}{2} \operatorname{diag}(1,-1,0,0,0)
$$

A Z^{\prime} with Non-Universal Gauge-Lepton couplings M. Crispim-Romão, S.F. King, G.K.L.

Assumed Model: $S U(5)$ with $t_{1} \leftrightarrow t_{2}$ monodromy
choosing convenient basis for $U(1)_{i}$'s \perp to $S U(5)_{G U T}$:

$$
\begin{align*}
E_{8} & \rightarrow E_{6} \times U(1)_{\perp}^{2} \tag{3}\\
& \rightarrow S O(10) \times U(1)_{\psi} \times U(1)_{\perp}^{2} \tag{4}\\
& \rightarrow S U(5) \times U(1)_{\chi} \times U(1)_{\psi} \times U(1)_{\perp}^{2} \tag{5}
\end{align*}
$$

Unbroken generators after imposing a Z_{2} monodromy:

$$
\begin{aligned}
Q_{\chi} & \propto \operatorname{diag}[-1,-1,-1,-1,4] \in E_{6} \\
Q_{\psi} & \propto \operatorname{diag}[1,1,1,-3,0] \in E_{6} \\
Q_{\perp} & \propto \operatorname{diag}[1,1,-2,0,0] \in E_{8}, \notin E_{6}
\end{aligned}
$$

$U(1)^{\prime}$ must be combination of unbroken generators:

$$
Q=c_{1} Q_{\chi}+c_{2} Q_{\chi}+c_{3} Q_{\perp}
$$

Δ must respect anomaly cancellation conditions.
Additional Conditions on c_{i} coeffs and $M_{10_{j}}, M_{5_{i}}$:

$$
c_{1}^{2}+c_{2}^{2}+c_{3}^{2}=1, \sum_{j} M_{10_{j}}=-\sum_{i} M_{5_{i}}=3
$$

$\triangle 3$ rd family Q_{3}^{\prime} differently charged under $U(1)^{\prime}$
Δ preferably $Q_{1}^{\prime}=Q_{2}^{\prime}$ in quark sector (to suppress FCNCs)
Results: Plenty of solutions:
Δ cases with an additional $5+\overline{5}$ a pair
Δ cases with an additional $10+\overline{10}$
Δ models with complete vector-like family $(10+\overline{10})+(5+\overline{5})$

Example:

Curve Name	$\sqrt{10} Q_{3}$	SM content
$5_{H_{u}}$	$\frac{3}{2}$	H_{u}
5_{1}	-1	L
5_{2}	$\frac{3}{2}$	H_{d}
5_{3}	$\frac{1}{4}$	L
5_{4}	-1	d^{c}
5_{5}	$-\frac{9}{4}$	$d^{c}+L$
5_{6}	$\frac{1}{4}$	d^{c}
10_{t}	$-\frac{3}{4}$	$Q+2 u^{c}$
10_{2}	$\frac{7}{4}$	-
10_{3}	$-\frac{3}{4}$	$Q+2 e^{c}$
10_{4}	$\frac{1}{2}$	$Q+u^{c}+e^{c}$

... MSSM + Vector Family

Curve Name	Weights	Q^{\prime}	SM Content
$5_{H_{u}}$	$-2 t_{1}$	$-\frac{1}{2}$	H_{u}
5_{1}	$t_{1}+t_{3}$	$-\frac{1}{4}$	L
5_{2}	$t_{1}+t_{4}$	$\frac{1}{2}$	H_{d}
5_{3}	$-t_{1}-t_{5}$	0	$\overline{d^{c}}$
5_{4}	$t_{3}+t_{4}$	$-\frac{1}{4}$	$3 d^{c}+2 L$
5_{5}	$t_{3}+t_{5}$	$-\frac{3}{4}$	$d^{c}+L$
5_{6}	$-t_{4}-t_{5}$	0	\bar{L}
10_{t}	t_{1}	$\frac{1}{4}$	$2 Q+3 u^{c}+e^{c}$
10_{2}	t_{3}	$-\frac{1}{2}$	$Q+u^{c}+e^{c}$
10_{3}	t_{4}	$\frac{1}{4}$	$Q+2 e^{c}$
10_{4}	$-t_{5}$	$\frac{1}{4}$	$\bar{Q}+\overline{u^{c}}+\overline{e^{c}}$

$\mathcal{S U M M I N G} \mathcal{U P} \ldots$

Anomalous B decays (if true) :

\square
will shake the foundations of SM
\Downarrow
...in Greece, bewildered sailors having problems in navigation used to say...
either the coastline is wrongly aligned...($S M$)

... or we are sailing the wrong direction $(L H C b)$

but...

String Theory GUTs are rich enough to accommodate:
Viable models for New Physics
... $Z^{\prime \prime}$'s with non-universal couplings to fermions
...vectorlike families
... and more...
so, the question is

$\mathcal{T H} A \mathcal{N K}$ YOU

