Recent ATLAS Measurements of Diboson Production in pp Collisions at 13 TeV

ARISTOTLE

UNIVERSITY OF

THESSALONIKI

March 29, 2018

Outline

- In this talk: "diboson events" = events with two of the W and Z vector bosons, produced ~on-shell (not from Higgs decays)
 - There are interesting results on Wγ and Zγ as well, not shown
- Diboson production
- Measurements of WW, WZ and ZZ production at 13 TeV
- Limits on anomalous Triple Gauge Couplings
- Towards Vector Boson Scattering and probing of Quartic Gauge Couplings.
- All results available at: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/StandardModelPublicResults

ATLAS status

- pp @ 13 TeV: 13 TeV 2016 & 2016
 → 86.5/fb on tape with 93-95%
 data-taking efficiency, lumi
 uncertainty ~3.2%
- Instantaneous luminosity has reached more than 2 x 10³⁴ cm⁻² s⁻¹
- Kept around 1.5 x 10³⁴ cm⁻² s⁻¹

1) Diboson production - introduction

EESFYE2018 - 29 Mar. 2018

Standard Model Measurements in ATLAS

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/SM/

EESFYE2018 - 29 Mar. 2018

LO EWK WW/WZ/ZZ production diagrams

At Leading Order with all ElectroWeak vertices:

Also, Triple Gauge Couplings (not there in SM when all three neutral):

EESFYE2018 - 29 Mar. 2018

With extra QCD vertices

EESFYE2018 - 29 Mar. 2018

With extra EWK vertices get 2 jets: again pure EWK and EWK + QCD

Vector Boson Scattering: incoming quarks act as sources of colliding boson beams Signature: VV + 2 forward jets

6 EWK vertices: not only vector bosons in the t-channel, but also the Higgs: important for not letting the cross section explode at high energies (like the ZWW vertex was needed to limit the WW production cross section at e+ e- collisions at LEP)
 5 EWK vertices
 Quartic Gauge Couplings: again, SM does not allow all neutral in the quartic vertex

4 EWK + 2 QCD vertices: same final state → important background

EESFYE2018 - 29 Mar. 2018

WW, WZ, and ZZ at 7, 8 and 13 TeV

EESFYE2018 - 29 Mar. 2018

"Best theory" now has QCD @ NNLO

NNLO calculations in QCD became available in the last couple of years [arXiv:1604.08576]; Important to **improve agreement with data**: shifts by up to 20% compared to NLO

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/SM/

EESFYE2018 - 29 Mar. 2018

Vector Boson Scattering measured in same-sign WW, and WZ at 8 TeV. WW/WZ/ZZ results at 13 TeV to come

v bi, v b3, anu	Triboson Cross S	ection Measurement	S Status: March 2018	∫£ dt - [fb ⁻¹]	Reference
Ζγγ→ℓℓγγ	$\sigma = 5.07 + 0.73 - 0.68 + 0.42 - 0.39 \text{ fb (data)} \\ \text{MCFM NLO (theory)}$	ATLAS Preliminary		20.3	PRD 93, 112002 (2016)
$-[n_{jet}=0]$	$\sigma = 3.48 + 0.61 - 0.56 + 0.3 - 0.26 \text{ fb (data)} \\ \text{MCFM NLO (theory)}$			20.3	PRD 93, 112002 (2016)
₩γγ→ℓνγγ	$\sigma = 6.1 + 1.1 - 1 \pm 1.2 \text{ fb (data)} \\ \text{MCFM NLO (theory)}$	Run 1,2 $\sqrt{s} = 7,8,13$ TeV	<u>۸</u>	20.3	PRL 115, 031802 (2015)
$-\left[n_{\mathrm{jet}}=0 ight]$	$\sigma=2.9\pm0.8-0.7\pm1-0.9$ fb (data) MCFM NLO (theory)		<u>۸</u>	20.3	PRL 115, 031802 (2015)
WWγ→eνμνγ	$\sigma = 1.5 \pm 0.9 \pm 0.5 ~\rm{fb}~(data) \\ \rm VBFNLO+CT14~(NLO)~(theory)$	▲		20.2	CERN-EP-2017-096
WWW→ℓvℓvjj	$\sigma=0.24\pm0.39-0.33\pm0.19$ fb (data) Madgraph5 + aMCNLO (theory)	Δ		20.3	EPJC 77, 141 (2017)
WWW→ℓνℓνℓν	$\sigma = 0.31 + 0.35 - 0.33 + 0.32 - 0.35 \text{ fb (data)} \\ \text{Madgraph5 + aMCNLO (theory)}$			20.3	EPJC 77, 141 (2017)
	$\sigma=7.9+1.7-1.6+1.3-0.9~{\rm pb}$ (data) LHC-HXSWG (theory)	Theory	•	36.1	ATLAS-CONF-2017-047
1)) EVVK, (tot.)	$\sigma = 2.43 + 0.5 - 0.49 + 0.33 - 0.26 \ {\rm pb} \ {\rm (data)} \\ {\rm LHC-HXSWG} \ {\rm YR4} \ {\rm (theory)}$	Theory	A	20.3	EPJC 76, 6 (2016)
– H (→WW) jj EWK	$\sigma = 0.51 + 0.17 - 0.15 + 0.13 - 0.08 \ {\rm pb} \ {\rm (data)} \\ {\rm LHC-HXSWG} \ {\rm (theory)}$	LHC pp √s = 7 TeV	A	20.3	PRD 92, 012006 (2015)
Wjj EWK (M(jj) > 1 TeV)	$\sigma = 43.5 \pm 6 \pm 9$ fb (data) Powheg+Pythia8 NLO (theory)	● stat stat ⊕ syst		20.2	arXiv:1703.04362 [hep-ex]
	$\sigma = 159 \pm 10 \pm 26 \text{ fb (data)} \\ \text{Powheg+Pythia8 NLO (theory)}$	LHC pp √s = 8 TeV		20.2	arXiv:1703.04362 [hep-ex]
-M(J) > 500 GeV	$\sigma = 144 \pm 23 \pm 26 \text{ fb (data)} \\ \text{Powheg+Pythia8 NLO (theory)}$	Data stat		4.7	arXiv:1703.04362 [hep-ex]
	$\sigma = 34.2 \pm 5.8 \pm 5.5 \text{ fb (data)} \\ \text{Powheg+Pythia8 NLO (theory)}$	stat ⊕ syst		3.2	PLB 775 (2017) 206
	$\sigma = 10.7 \pm 0.9 \pm 1.9 ~\rm{fb}~(data) \\ \rm PowhegBox~(NLO)~(theory)$	Data		20.3	JHEP 04, 031 (2014)
$\gamma\gamma \rightarrow WW$	$\sigma = 6.9 \pm 2.2 \pm 1.4 \text{ fb (data)} \\ \text{HERWIG++ (theory)}$	stat ⊕ syst	A	20.2	PRD 94 (2016) 032011
Ζ γ jj EWK	$\sigma = 1.1 \pm 0.5 \pm 0.4 \text{ fb (data)} \\ \text{VBFNLO (theory)}$			20.3	arXiv: 1705.01966 [hep-ex]
W[±]W[±]jj EWK	$\sigma = 1.5 \pm 0.5 \pm 0.2 \text{ fb (data)} \\ \text{PowhegBox (theory)}$		<u>۸</u>	20.3	PRD 96, 012007 (201
	$\sigma = 0.29 + 0.14 - 0.12 + 0.09 - 0.1$ fb (data)		۸	20.3	PRD 93, 092004 (201)

EESFYE2018 - 29 Mar. 2018

WW

WZ

VBS

&

2) ZZ, WZ and WW production @ 13 TeV

All 13 TeV measurements so far are with leptonic states:

Increasing cross section

	ZZ	WZ	WW
Signature:	4 leptons	3 leptons + MET(1v)	3 leptons + MET(2v)
Backgrounds:	WZ + 1 fake lepton; WW / tt / Drell-Yan + 2 fake leptons	Drell-Yan + 1 fake lepton; ZZ (missing lepton); WW / tt +1 fake lepton	tt ; Drell-Yan
Signal purity:	~98%	~79%	~70%

Increasing purity

Thessaloniki (with Hellenic Open University in ZZ) in all ZZ and WZ analyses

EESFYE2018 - 29 Mar. 2018

2.1) ZZ production

"ZZ → 4l cross-section measurements and search for anomalous triple gauge couplings in 13 TeV pp collisions with the ATLAS detector" Phys. Rev. D 97 (2018) 032005 https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2016-15/

EESFYE2018 - 29 Mar. 2018

$ZZ \rightarrow 4I$ production

• $ZZ \rightarrow e^+ e^- \mu^+ \mu^- (2e2\mu)$

EESFYE2018 - 29 Mar. 2018

$ZZ \rightarrow 4I$

- 36.1 fb⁻¹ (2015+2016) $\sqrt{s} = 13$ TeV data
- Select events with at least 4 leptons with |η|<2.7, pT>20,>15,>10 GeV; the rest >5 GeV
- Only on-shell: $66 < m_{\parallel} < 116 \text{ GeV}$
- Fully leptonic final state is very clean:

21.2 bkg events (12.3 from fake leptons) out of 958 total event yield predicted

- Main background from fake leptons (e.g. in
- Z + jet events)

- SM processes with >4 leptons treated as background (e.g. ZZZ \rightarrow 6l)

Contribution	4e	$2e2\mu$	4μ	Combined
Data	249	465	303	1017
Total prediction (SHERPA)	$198 {}^{+16}_{-14}$	$469 {}^{+35}_{-31}$	$290 {}^{+22}_{-21}$	958 $^{+70}_{-63}$
Signal $(q\bar{q}\text{-initiated})$ Signal $(gg\text{-initiated})$ Signal $(EW\text{-}ZZjj)$ $ZZ \rightarrow \tau^+\tau^-[\ell^+\ell^-, \tau^+\tau^-]$ Triboson $t\bar{t}Z$ Misid. lepton background	$\begin{array}{ccc} 168 & +14 \\ -13 \\ 21.3 & \pm 3.5 \\ 4.36 \pm 0.42 \\ 0.59 \pm 0.09 \\ 0.68 \pm 0.21 \\ 0.81 \pm 0.25 \\ 2.1 & \pm 2.1 \end{array}$	$\begin{array}{rrr} 400 & +31 \\ -28 \\ 50.2 & \pm 8.2 \\ 10.23 \pm 0.72 \\ 0.55 \pm 0.08 \\ 1.50 \pm 0.46 \\ 1.86 \pm 0.56 \\ 4.9 & \pm 3.9 \end{array}$	$\begin{array}{r} 246 & {}^{+19}_{-18} \\ 29.7 & \pm 4.9 \\ 6.43 \pm 0.55 \\ 0.55 \pm 0.09 \\ 0.96 \pm 0.30 \\ 1.42 \pm 0.43 \\ 5.3 & \pm 5.2 \end{array}$	$\begin{array}{ccc} 814 & {}^{+63} {}_{-57} \\ 101 & \pm 17 \\ 21.0 & \pm 1.2 \\ \hline 1.69 \pm 0.16 \\ 3.14 \pm 0.30 \\ 4.1 & \pm 1.2 \\ 12.3 & \pm 8.3 \end{array}$
Total prediction (MATRIX + corrections) Total prediction (POWHEG + PYTHIA with higher-order corrections, SHERPA)	$ \begin{array}{rrrr} 197 & {}^{+15}_{-14} \\ 193 & \pm 11 \end{array} $	$\begin{array}{rrr} 470 & {}^{+34}_{-31} \\ 456 & \pm 24 \end{array}$	$\begin{array}{rrr} 286 & +22 \\ -21 \\ 286 & \pm 17 \end{array}$	953 $^{+69}_{-64}$ 934 \pm 50

Subleading- $p_T Z$ candidate mass [GeV]

Data events

10²

10¹

10⁰

140

 $ZZ \rightarrow 4I$, kinematics etc

EESFYE2018 - 29 Mar. 2018

16

ZZ fiducial cross section

- "Fiducial cross sections" reported: a fraction A of the total, corresponding to $\sigma^{fid}(pp \rightarrow VV + X, V \rightarrow leptons) =$ the reduced phase-space and the decay channels of the actual measurements (so it includes the Branching Ratios, BR)
 - "NNLO + corrections":
 - NNLO calculation from Matrix
 - gg-initiated contribution (Sherpa) multiplied by a global NLO correction factor of 1.67.
 - global NLO EW correction factor of 0.95, except to the gg-initiated loop-induced contribution, and the contribution of around 2.5% from EW-ZZjj generated with Sherpa is added.

Measurement [fb]

 $13.7^{+1.1}_{-1.0}$

 $20.9^{+1.4}_{-1.3}$

 $11.5_{-0.9}^{+0.9}$

$$\frac{K}{L*C}$$

 $\mathbf{N} - \mathbf{P}$

N-B: Observed events – bkg estimate C: detector efficiency , L: integrated luminosity

EESFYE2018 - 29 Mar. 2018

Channel

Combined

4e

 4μ

 $2e2\mu$

ZZ total cross section & differential fiducial

- Fiducial measurement extrapolated to "total cross sections" by correcting for the BRs and the Acceptance, A.
- Total pp \rightarrow ZZ production: 17.3 ± 0.9 [±0.6 (stat.) ±0.5 (syst.) ±0.6 (lumi.)] pb
- (Fiducial) differential crosssections provided in 20 variables, a lot of them for first time:

[fb]

 $d\sigma/dN$

10²

10¹

10⁰

1.5

0.5

Pred.

nnNLO Sherpa

NLO POWHEG

(Powheg does

not follow at

muliplicities:

muliplicities: ថ្ម parton emission

level necessary

high jet

at Matrix-

Element

VS.

2.2) WZ production

"Measurement of W[±] Z boson pair-production in pp collisions at √s=13 TeV with the ATLAS Detector and confidence intervals for anomalous triple gauge boson couplings" ATLAS-CONF-2016-043

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2016-043/ [update on first measurement with 3.2 fb⁻¹; Phys. Lett. B 762 (2016) 1 https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2015-19/]

EESFYE2018 - 29 Mar. 2018

$WZ \rightarrow 3I v$

- 13.3 fb⁻¹ (2015+2016) $\sqrt{s} = 13$ TeV data
- Includes 3e, 3μ , μ 2e, and e 2μ final states
- Biggest uncertainty from fake-lepton estimate (3%, from a total of ~7%)

Channel	eee	μee	$e\mu\mu$	$\mu\mu\mu$	All
Data	516	537	612	752	2417
Total Expected	504 ± 7	588 ± 5	552 ± 6	671 ± 4	2315 ± 11
$W^{\pm}Z$	354.0 ± 2.5	442.7 ± 2.9	453.2 ± 2.9	581.1 ± 3.4	1831 ± 6
ZZ Misid. leptons $t\bar{t}+V$ tZ VVV	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	36.0 ± 0.5 87 ± 4 14.49 ± 0.13 6.674 ± 0.033 1.219 ± 0.034	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 46.5 \pm 0.5 \\ 17.9 \pm 2.5 \\ 15.59 {\pm} 0.13 \\ 8.22 {\pm} 0.04 \\ 1.44 {\pm} 0.04 \end{array}$	$143.2 \pm 0.9 \\ 253 \pm 10 \\ 56.41 \pm 0.25 \\ 27.05 \pm 0.07 \\ 4.80 \pm 0.07$

From event count to fiducial cross section:

 $\sigma_{W^{\pm}Z \to \ell' \nu \ell \ell}^{\text{fid.}} = 66.2 \pm 1.8 \text{ (stat.)} \pm 3.6 \text{ (sys.)} \pm 2.1 \text{ (lumi.) fb.}$

20

$WZ \rightarrow 3I v$

- 13.3 fb⁻¹ (2015+2016) $\sqrt{s} = 13$ TeV data
- Includes 3e, 3μ , μ 2e, and e 2μ final states
- Differential fiducial cross section: in p_T^Z , m_T^{WZ} , N_{iets}

EESFYE2018 - 29 Mar. 2018

WZ \rightarrow 3l v : need NNLO for agreement

eee

μee

eμμ

μμμ

combined

σ^{tot.} [pb]

50

30

20

10

1.4 1.2

Ratio to NLO

 1.16 ± 0.21

 1.11 ± 0.14

 1.18 ± 0.18

 1.29 ± 0.10

 1.24 ± 0.09

ATLAS

WZ→IvII

0.6

0.8

ATLAS √s=13 TeV (m_{Z→II} 66-116 GeV), 3.2 fb⁻¹
 ATLAS √s=8 TeV (m_{Z→II} 66-116 GeV), 20.3 fb⁻¹
 ATLAS √s=7 TeV (m_{Z→II} 66-116 GeV), 4.6 fb⁻¹

D0 \sqrt{s} =1.96 TeV (m_{Z→II} 60-120 GeV), 8.6 fb⁻¹ CDF \sqrt{s} =1.96 TeV (corr. to m_{Z→II} 60-120 GeV), 7.1 fb⁻¹

.2

1.4

0.4

Definitely need extra jets in Matrix Element (Powheg+Pythia does not follow data, While Sherpa does, as we also saw in ZZ)

 $\sigma_{W^{\pm}Z}^{\text{tot.}} = 50.6 \pm 2.6 \text{ (stat.)} \pm 2.0 \text{ (sys.)} \pm 0.9 \text{ (th.)} \pm 1.2 \text{ (lumi.) pb}$ NNLO calculation from Matrix: 48.2 ± 1.1 pb

EESFYE2018 - 29 Mar. 2018

K. Kordas - Dibosons at 13 TeV in ATLAS

6

8

14

√s [TeV]

ATLAS Preliminary

W[±]7

Data

CT10

1.6

 $\sigma_{w^{\pm 7}}^{\text{fid.}}$

s = 13 TeV, 13.3 fb⁻¹

Powheg+Pythia

Fiducial

 $\sigma^{\text{theory}}_{w^{\pm_7}}$

Total

12

MATRIX NNLO, pp \rightarrow WZ (m $_{z \rightarrow \parallel}$ 66-116 GeV)

NNPDF3.0, $\mu_{R}=\mu_{F}=(m_{W}+m_{Z})^{\overline{/2}}$ MCFM NLO, pp \rightarrow WZ (m_{Z \rightarrow II} 66-116 GeV)

10

– - MCFM NLO, pp → WZ (m_{z→1} 60-120 GeV)

CT14nlo, $\mu_{p}=\mu_{r}=m_{WZ}/2$

CT14nlo, μ_=μ_=m_{wz}/2

2.3) WW production

"Measurement of the W⁺W⁻ production cross section in pp collisions at a centreof-mass energy of $\sqrt{s} = 13$ TeV with the ATLAS experiment" Phys. Lett. B 773 (2017) 354 https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2015-20/

EESFYE2018 - 29 Mar. 2018

WW $\rightarrow 21 2v$

- 3.16 fb⁻¹ (2015) $\sqrt{s} = 13$ TeV data
- Only $\mathbf{e} \ \mathbf{\mu}$ channel, to suppress Drell-Yan
- Apply a jet veto to suppress top background. Require MET > 20 GeV to further suppress Drell-Yan
- Jet calibration is dominant uncertainty
- Top and Drell-Yan background shapes from MC, normalization from simultaneous fit in control regions

Process	Signal region	Top-quark	Drell-Yan
		control region	control region
WW signal	997 ± 69	49 ± 12	75.3 ± 5.4
Drell–Yan	62 ± 23	49 ± 29	1568 ± 45
$t\bar{t}$ +single top	177 ± 33	2057 ± 81	3.5 ± 1.6
W+jets/multi-jet	78 ± 41	70 ± 55	0 ± 17
Other dibosons	38 ± 12	6.3 ± 3.5	19.2 ± 6.1
Total	1351 ± 37	2232 ± 47	1666 ± 41
Data	1351	2232	1666

EESFYE2018 - 29 Mar. 2018

WW \rightarrow 2I 2v

- 3.16 fb⁻¹ (2015) $\sqrt{s} = 13$ TeV data
- Only $\mathbf{e} \ \mathbf{\mu}$ channel, to suppress Drell-Yan
- From event count to fiducial cross section: $\sigma_{WW \rightarrow eu}^{\text{fid}} = 529 \pm 20 \text{ (stat.)} \pm 50 \text{ (syst.)} \pm 11 \text{ (lumi.) fb}$

And from fiducial to total (fiducial is $\sim 60\%$ of total, times BR) :

EESFYE2018 - 29 Mar. 2018

25

2.4) WV = W + W/Z \rightarrow Iv + jets production

"Measurement of WW/WZ production with the hadronically decaying boson reconstructed as one or two jets in pp collisions at 8 TeV with ATLAS, and constraints on anomalous gauge couplings" Eur. Phys. J. C 77 (2017) 563 https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2015-23/

EESFYE2018 - 29 Mar. 2018

 $WV:W(\rightarrow Iv) + V(\rightarrow jj) @ 8 TeV$

• 20.2 fb⁻¹ of 8 TeV data

Branching Ratio ~ 6x fully leptonic;
→ Great sensitivity to anomalous TGC

EESFYE2018 - 29 Mar. 2018

A lesson from comparing the measurements to theory perdictions

- Overall good agreement with the Standard Model
 - NNLO QCD improves agreement substantially
 - NNLO reduces uncertainty to 10~20% from NLO at 60% (arXiv: 1604.08576)
- Almost all recent measurements are limited by systematic uncertainties (only ZZ is almost equal to statistics)
- These and many more results in:

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/SM/

3. Anomalous Triple Gauge Couplings (aTGCs)

In all analyses reported before

EESFYE2018 - 29 Mar. 2018

anomalous Triple Gauge Couplings (aTGCs), 1

- "Traditional", effective Lagrangian, approach: add terms to the SM Lagrangian to describe the Triple Gauge vertices; the deviation of the triple vector boson couplings from the SM predicted values are introduced as dimensionless anomalous couplings:
 - For the WW+Z/ γ vertices, 5 parameters: Δg_1^{Z} , $\Delta \kappa_z$, λ_z , $\Delta \kappa_v$, λ_v

* Just 3 in LEP scenario: $\lambda_{\gamma} = \lambda_Z$ $\Delta g_1^Z = \Delta \kappa_Z + \tan^2 \theta_W \Delta \kappa_{\gamma}$

- For the ZZ+Z/ γ vertices: f_4^{γ} , f_4^{Z} , f_5^{γ} , f_5^{Z}
- The contribution of anomalous couplings to the diboson production cross section grows with the partonic centre-of-mass energy s-hat, and quadratically with the TGC value.
- Anomalous TGCs will lead to excesses in high-end tails of sensitive observables, related to the s-hat of the partonic system

With one aTGC active: $d\sigma_{SM+\,TGC}=F_0+fF_1+f^2F_2$

 Z/γ

anomalous Triple Gauge Couplings (aTGCs), 2

• Effective Field Theory (EFT) approach: Standard Model is the low energy limit of a more fundamental theory at scale $\Lambda \gg \sqrt{s}$

At low energies (E $<< \Lambda$) interactions between SM fields only look like Fermi's contact interaction (which was indeed valid when much below W mass scale)

Add to the SM Lagrangian a linear combination of operators of mass dimension higher than four. Independent operators can lead to anomalous triple vector boson couplings.

$$L_{EFT} = L_{SM} + \sum_{d \ge 5} L_{EFT}^d \text{ with } L_{EFT}^d = \sum_i \frac{C_i^a}{\Lambda^{d-4}} O_i^d$$

The dimensionless coefficients C_i represent the strength of the new couplings.

Charged TGC: first contributing operators have dimension 6 \Rightarrow coupling parameters c/ Λ^2

Neutral TGC: first contributing operators have dimension 8 \Rightarrow coupling parameters c/ Λ^4

There is a one-to-one mapping between EFT coupling parameters and traditional aTGCs e.g:

Traditional \Leftrightarrow EFT

$$g_1^Z = 1 + c_W \frac{m_Z^2}{2\Lambda^2}$$

$$\kappa_\gamma = 1 + (c_W + c_B) \frac{m_W^2}{2\Lambda^2}$$

$$\kappa_Z = 1 + (c_W - c_B \tan^2 \theta_W) \frac{m_W^2}{2\Lambda^2}$$

$$\lambda_\gamma = \lambda_Z = c_{WWW} \frac{3g^2 m_W^2}{2\Lambda^2}$$

aTGCs from ZZ, WZ and WW

 Anomalous TGCs will lead to enhanced event yields in high-end tails of sensitive observables, related to the s-hat of the partonic system system.

EESFYE2018 - 29 Mar. 2018

EESFYE2018 - 29 Mar. 2018

Charged aTGCs status

Limits comparable between ATLAS and CMS, for similar datasetsThese aTGC limits are better than LEP results by now

Compilation of ATLAS and CMS results on Triple and Quartic Gauge Couplings at:

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMPaTGC

EESFYE2018 - 29 Mar. 2018

Neutral aTGCs status

Limits comparable between ATLAS and CMS, for similar datasetsThese aTGC limits constrain a variety of BSM models at higher energies

September 2017					
	ATLAS+CMS	Channel	Limits	∫ <i>L</i> dt	√s
-Y		ZZ (41,212v)	[-1.5e-02, 1.5e-02]	4.6 fb ⁻¹	7 TeV
4	H	ZZ (41,212v)	[-3.8e-03, 3.8e-03]	20.3 fb ⁻¹	8 TeV
	H	ZZ (4I)	[-1.8e-03, 1.8e-03]	36.1 fb ⁻¹	13 TeV
	H	ZZ (4I)	[-5.0e-03, 5.0e-03]	19.6 fb ⁻¹	8 TeV
	H	ZZ (2l2v)	[-3.6e-03, 3.2e-03]	24.7 fb ⁻¹	7,8 TeV
	⊢−−−− 1	ZZ (41,212v)	[-3.0e-03, 2.6e-03]	24.7 fb ⁻¹	7,8 TeV
	H	ZZ (4I)	[-1.2e-03, 1.3e-03]	35.9 fb ⁻¹	13 TeV
	L	ZZ (41,212v)	[-1.0e-02, 1.0e-02]	9.6 fb ⁻¹	7 TeV
7 1		ZZ (4I,2I2v)	[-1.3e-02, 1.3e-02]	4.6 fb ⁻¹	7 TeV
4	H	ZZ (41,212v)	[-3.3e-03, 3.2e-03]	20.3 fb ⁻¹	8 TeV
2	H	ZZ (4I)	[-1.5e-03, 1.5e-03]	36.1 fb ⁻¹	13 TeV
	⊢	ZZ (4I)	[-4.0e-03, 4.0e-03]	19.6 fb ⁻¹	8 TeV
	⊢−−−−	ZZ (2l2v)	[-2.7e-03, 3.2e-03]	24.7 fb ⁻¹	7,8 TeV
	F	ZZ (41,212v)	[-2.1e-03, 2.6e-03]	24.7 fb ⁻¹	7,8 TeV
	H	ZZ (4I)	[-1.2e-03, 1.0e-03]	35.9 fb ⁻¹	13 TeV
	l	ZZ (41,212v)	[-8.7e-03, 9.1e-03]	9.6 fb ⁻¹	7 TeV
γ 🛏		ZZ (41,212v)	[-1.6e-02, 1.5e-02]	4.6 fb ⁻¹	7 TeV
5	H	ZZ (41,212v)	[-3.8e-03, 3.8e-03]	20.3 fb ⁻¹	8 TeV
	H	ZZ (4I)	[-1.8e-03, 1.8e-03]	36.1 fb ⁻¹	13 TeV
	F	ZZ (4I)	[-5.0e-03, 5.0e-03]	19.6 fb ⁻¹	8 TeV
	F	ZZ(2l2v)	[-3.3e-03, 3.6e-03]	24.7 fb ⁻¹	7,8 TeV
	F	ZZ(41,212v)	[-2.6e-03, 2.7e-03]	24.7 fb ⁻¹	7,8 TeV
	H	ZZ (4I)	[-1.2e-03, 1.3e-03]	35.9 fb ⁻¹	13 TeV
		ZZ (41,212v)	[-1.1e-02, 1.1e-02]	9.6 fb ⁻¹	7 TeV
z ł		ZZ (41,212v)	[-1.3e-02, 1.3e-02]	4.6 fb ⁻¹	7 TeV
5	F	ZZ (41,212v)	[-3.3e-03, 3.3e-03]	20.3 fb ⁻¹	8 TeV
	H	ZZ (4I)	[-1.5e-03, 1.5e-03]	36.1 fb ⁻¹	13 TeV
	F	ZZ (4I)	[-4.0e-03, 4.0e-03]	19.6 fb ⁻¹	8 TeV
	⊢ −−−1	ZZ (2l2v)	[-2.9e-03, 3.0e-03]	24.7 fb ⁻¹	7,8 TeV
	⊢ −−4	ZZ (41,212v)	[-2.2e-03, 2.3e-03]	24.7 fb ⁻¹	7,8 TeV
	H	ZZ (4I)	[-1.0e-03, 1.3e-03]	35.9 fb ⁻¹	13 TeV
		ZZ (41,2l2v)	[-9.1e-03, 8.9e-0β]	9.6 fb ⁻¹	7 TeV
-0.02	0	0.02	0.04		0.06
			aTGC Li	mits @9	5% C.L.

Compilation of ATLAS and CMS results on Triple and Quartic Gauge Couplings at: https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMPaTGC

EESFYE2018 - 29 Mar. 2018

VBS and anomalous Quartic Couplings

Vector Boson Scattering: incoming quarks act as sources of colliding boson beams Signature: VV + 2 forward jets

EESFYE2018 - 29 Mar. 2018

VBS and anomalous Quartic Couplings

•Searches of anomalous QGC always assume aTGC=0 •The first operators leading to aQGC but no aTGC have dimension 8 \Rightarrow coupling parameters c/ Λ^4

No time here to show results; You'll see dedicated discussion on VBS physics by Iro Koletsou on Saturday.

Very Brief summary:

* ATLAS has ~seen EWK production of **same sign WW** @ 8TeV and put limits on aQGCs

PRD96 012007 (2017), https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2014-05/ * ATLAS put upper limit on **WZ** EWK production and put limits on aQGCs PRD93 092004 (2016), https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2014-02/

 \ast CMS has established same sign WW production with 5.7 observation @13 TeV and set limits on aQGCs

* CMS has ~seen EWK production of ZZ \rightarrow 4l (~2.7 σ , expected 1.6 σ) and set limits on aQGC parameters

* ATLAS working on all channels (ZZ, WZ, and WW) for VBS For work in progress in ZZ see related VBS talk on Friday (Alexandros Marantis)

EESFYE2018 - 29 Mar. 2018

Summary & Conclusions

- Full programme of diboson measurements in ATLAS
 - SM diboson production is often a background to BSM physics searches
- Shown here: electroweak diboson production (WW,WZ,ZZ)
 - Fully-leptonic final states are the first measurements we do of these processes
- These measurements have challenged theorists to compute predictions to NNLO and beyond
 - So far, theorists (and the Standard Model) have risen to that challenge
- No evidence yet of enhancement of these processes from BSM physics
 - Targeting high s-hat regions we have continued to set limits on anomalous Triple Gauge boson Coupling

Thank you

EESFYE2018 - 29 Mar. 2018

WW, WZ, and ZZ increase with sqrt(s), OK with theory

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/SM/

EESFYE2018 - 29 Mar. 2018

ZZ production cross section

$$N_{sigal}(pp \rightarrow ZZ \rightarrow 4l) = L \cdot \sigma^{tot}(pp \rightarrow ZZ) \cdot BR(ZZ \rightarrow 4l) \cdot AC$$

Total cross section

Measured in a reduced phase-space (geometrical & kinematic requirements on the decay products) $4I = \{4e \text{ or } 4\mu \text{ or } 2e2\mu\}$

 We measure a "fiducial cross section", which corresponds to the reduced phase-space of the actual measurement, * This is a fraction of the total:

2. We then extrapolate to the "total cross section" for ZZ production by extrapolating the leptons to the full phase-space, and correcting for the BR(ZZ \rightarrow 4l) ~ 4

for ZZ production

 $A = \frac{Fiducial \, events}{Total \, events}$ Acceptance correction for the geometrical & kinematic criteria

 $C = \frac{Reconstructed events}{Generated fiducial events}$

Efficiency correction for detector ability to reconstruct these objects

$$\sigma^{fiducial}(pp \rightarrow ZZ \rightarrow 4l) = \frac{N_{obs} - N_{bkg}}{L \cdot C}$$

 $\sigma^{fiducial}(pp \rightarrow ZZ \rightarrow 4l) = \sigma^{tot}(pp \rightarrow ZZ) \cdot BR(ZZ \rightarrow 4l) \cdot A$

$$\sigma^{tot}(pp \rightarrow ZZ \rightarrow 4l) = \frac{N_{obs} - N_{bkg}}{LBR(ZZ \rightarrow 4l) \cdot A \cdot C}$$

and correcting for the BR(ZZ \rightarrow 4I) ~ 4 * (3.4% * 3.4%) for 4e, 4µ and 2e2µ together

EESFYE2018 - 29 Mar. 2018

Contribution of neutral aTGCs to the cross section

 Traditionally, effective Lagrangian used to include effect of aTGCs: e.g., G.L.Gounaris et al: PRD61 073013; Bauer, Reiwater: PRD 62, 113011

Effective Lagrangian

SM values: $f_{4}^{\gamma} = f_{4}^{Z} = f_{5}^{\gamma} = f_{5}^{Z} = 0$

 ZZ cross section enhanced by aTGCs with ~quadratic dependence on them
 With one aTGC active:

$$d\sigma_{SM+TGC} = \overbrace{F_{00}}^{\text{SM contribution}} + f_4^{\gamma} F_{01} + f_4^{Z} F_{02} + f_5^{\gamma} F_{03} + f_5^{Z} F_{04} \\ + (f_4^{\gamma})^2 F_{11} + f_4^{\gamma} f_4^{Z} F_{12} + f_4^{\gamma} f_5^{\gamma} F_{13} + f_4^{\gamma} f_5^{Z} F_{14} \\ + (f_4^{Z})^2 F_{22} + f_4^{Z} f_5^{\gamma} F_{23} + f_4^{Z} f_5^{Z} F_{24} \\ + (f_5^{\gamma})^2 F_{33} + f_5^{\gamma} f_5^{Z} F_{34} \\ + (f_5^{Z})^2 F_{44}$$

EESFYE2018 - 29 Mar. 2018

 $= F_0 + fF_1 + f^2F_2$

A note on dibosons from heavy resonances

- Di-boson resonance searches in ATLAS
 - High mass state motivated by multiple BSM models
 - Direct way to explore the TeV scale
 - Experimentally challenging: Boosted object tagging with large-R jet
- Searches:
 - WW/WZ \rightarrow Iv qq https://arxiv.org/abs/1710.07235
 - ZZ/ZW \rightarrow IIqq , vv qq https://arxiv.org/abs/1708.09638
 - VV → qqqq https://arxiv.org/abs/1708.04445
 - WW \rightarrow evµv https://arxiv.org/abs/1710.01123
 - $ZZ \rightarrow 4I$, 2I2v https://cds.cern.ch/record/2273874
- No statistically significant excess observed in ATLAS
 - Much more data coming in Run2 : Stay tuned