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Introduction and Motivation
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Intoduction and (phenomenological) motivation

The Standard Model (SM) of particle physics is THE success
story

● Description of a plethora of phenomena

● Its last missing piece, the Higgs boson was observed a few
years ago

● So far no convincing deviations from the SM have been
observed at particle physics experiments

● Moreover, the SM could be a self-consistent effective field
theory up to very high energies (∼MP )
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Intoduction and (phenomenological) motivation

Do we have in our hands the final theory of
Nature!?

Compelling indications that the answer is
negative!
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Intoduction and (phenomenological) motivation
Experimental point of view

The SM (plus gravity) fails to accommodate in its context well
established observational facts 1

● Neutrino physics

● Dark matter

● Baryon asymmetry of the Universe

1Homogeneity and isotropy at large scales can be explained if the Higgs
inflated our Universe.
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Intoduction and (phenomenological) motivation
Theoretical point of view

The SM suffers from

● Landau Pole(s) but @ energies ≫MPlanck, so usually
swept under the “quantum gravity carpet”!

● Strong-CP problem

● Hierarchy problem

● Cosmological Constant problem

The last two are not a threat to its self-consistency, rather they
reflect the (dramatic) failure of dimensional analysis
⇒ Indication that some pieces of the puzzle are not understood.
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Various attempts

Proposals for addressing the hierarchy problem

● (low-energy) Supersymmetry [Fayet ‘75, ‘77 & Witten ‘81 &

Dimopoulos, Georgi ‘81 & Ibanez, Ross ‘81]

● Compositeness [Weinberg ‘76, ‘79 & Susskind ‘79]

● Large extra dimensions [Arkani-Hamed, Dimopoulos, Dvali ‘98 &

Randall, Sundrum ‘99]

Distinct experimental signatures above the electroweak scale
differentiate them from the SM

So far no convincing deviations from the SM have been
observed at particle physics experiments! (Maybe they’re
waiting for us in the corner...)
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Possible relevance of scale or conformal invariance

Naturalness: certain parameters might be very small, provided
that the symmetry of the theory is enhanced when these are set
to zero.

If this line of reasoning is applied to the symmetries of the SM
at the classical level, we notice that the theory is invariant
under scale and conformal transformations when Higgs mass→ 0
(in the absence of gravity).
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Possible relevance of scale or conformal invariance

Conformal invariance (CI) is defined as the group of coordinate
transformations

xµ → x′µ = Fµ(x) ,

which leave the line element invariant up to a conformal factor

dxµdxµ → dx′µdx′µ = Ω(x)dxµdxµ .
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Possible relevance of scale or conformal invariance

When this symmetry is exact it has some “peculiar”
implications:

Forbids the presence of dimensionful parameters

No particle interpretation—the spectrum is continuous

But Nature (SM) has:

dimensionful parameters

particles

It certainly appears that trying to embed the SM in a
conformal field theory might be a dead end...
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Possible relevance of scale or conformal invariance

There is a way out! Require that the symmetry be anomaly
free2 but spontaneously broken

Consequences and predictions:

● Unique source for all scales

● Corrections to the Higgs mass heavily supressed if no
particle thresholds between Fermi and Planck scales
(technically natural)

● Presence of a gapless mode in the IR, the Goldstone boson
associated with the broken symmetry—dilaton

2To preserve the symmetry at the loop level, one has to sacrifice
renormalizability.
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But...

Pretty much all considerations regarding spontaneously broken
CI are for specific models—Pandora’s box opens

One writes down hers/his favorite Lagrangian and studies its
dynamics, so it heavily depends on taste

No attempt to study generic theories without a known explicit
Lagrangian formulation, especially the implications of having
the dilaton 3

Here I will fill this gap by presenting relations on the CFT data
= {operator dimensions, OPE coefficients} in the broken phase,
which are universal and independent of the specifics of a system.

Leaving aside my phenomenological motivation, these should be
fulfilled by all theories with spontaneously broken CI, for
example N = 4 SYM (completely unrealistic theory though...)

3Some works have studied its dynamics on cosmological settings, again
model-dependent however.
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CFT data and spontaneously broken conformal
symmetry
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Operator Product Expansion (OPE) & the spontaneous
breaking of conformal symmetry

The starting point is the OPE of two scalar primary operators

Oi(x) ×Oj(0) ∼∑
k

cijk

∣x∣∆ijk
Ok +⋯ ,

with

cijk = OPE coefficients ,

∣x∣ = √
xµxµ ,

∆ijk ≡ ∆i +∆j −∆k ,

and the ellipses stand for operators with nonzero spin, as well
as descendants.
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Operator Product Expansion (OPE) & the spontaneous
breaking of conformal symmetry

Consider a (unitary) four-dimensional CFT in which the
conformal group is spontaneously broken to its Poincaré
subgroup,4

SO(4,2)→ ISO(3,1) .

This might happen, for instance, when some of the (scalar)
operators of the theory acquire a nonzero vev. To put it
differently, there exists a Poincaré-invariant ground state ∣0⟩,
such that

⟨0∣Oi∣0⟩ ≡ ⟨Oi⟩ = ξi v∆i ≠ 0 ,

where ξi’s are dimensionless parameters (and v carries
dimension of mass).

4I will be discussing exclusively about four-dimensional Minkowski
spacetime. Generalizations to other number of dimensions d is
straightforward (apart from d = 2).
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Operator Product Expansion (OPE) & the spontaneous
breaking of conformal symmetry

Take the OPE

Oi(x) ×Oj(0) ∼∑
k

cijk

∣x∣∆ijk
Ok +⋯ ,

and sandwich it between the symmetry-breaking vacuum ∣0⟩.
This yields the two-point correlator

⟨Oi(x)Oj(0)⟩ ∼∑
k

cijk

∣x∣∆ijk
⟨Ok⟩ =∑

k

cijk

∣x∣∆ijk
ξkv

∆k .

Since the vacuum is Poincaré-invariant, it is clear that only the
scalar operators contribute to the above.
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Operator Product Expansion (OPE) & the spontaneous
breaking of conformal symmetry

At this point, insert a complete set of states in the left-hand
side of the correlator

⟨Oi(x)Oj(0)⟩ = ⨋
N

⟨0∣Oi(x)∣N⟩⟨N ∣Oj(0)∣0⟩ .

In the infrared limit x→∞, we will pick up only the vacuum
state. As a result, the two-point function gives (z ≡ (v∣x∣)−1)

ξiξj = lim
z→0
∑
k

cijk ξk z
∆ijk

Nontrivial connection between the quadratic vevs and a linear
combination of vevs weighted by the OPE coefficients.
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Operator Product Expansion (OPE) & the spontaneous
breaking of conformal symmetry

Important remark: the OPE will also contain operators with

∆k > ∆i +∆j → ∆ijk < 0 .

No a priori reason for the corresponding OPE coefficients to
vanish...
Consequently, there will be terms

1

z#
, # > 0 .

This implies that the infrared limit (z → 0) should be taken
only after the series have been summed.
Unfortunately, it is not known if the series is convergent in the
case of SSB.... Thus, I will assume that the limit exists...
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Implications of the presence of a Goldstone boson

Spontaneous symmetry breaking → Goldstone theorem dictates
that there are gapless modes in the IR

For the conformal group broken down to Poincaré, one scalar
degree of freedom is needed to effectuate this particular
symmetry breaking pattern, the dilaton π.
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Implications of the presence of a Goldstone boson

Presence of gapless mode in the IR implies that

1 ∼
x→∞

∣0⟩⟨0∣ + ∫
d3p⃗

2p0(2π)3
∣π(p)⟩⟨π(p)∣ .

Play the same game as before and insert this into the left-hand
side of the two-point function. Fourier-transforming back to
coordinate space gives

⟨Oi(x)Oj(0)⟩ ∼
x→∞

v∆i+∆j (ξiξj −
fifj

(v∣x∣)2
) ,

with fi dimensionless couplings appearing in the following
matrix elements

⟨0∣Oi∣π⟩ = fi v∆i−1 .
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Implications of the presence of a Goldstone boson

Using this relation we are lead to the second consistency
condition

fifj = lim
z→0

[ 1

z2
(ξiξj −∑

k

cijk ξk z
∆ijk)]

It certainly appears that I’ve complicated my life a lot by
inserting yet another set of parameters fi...

But these can be expressed in terms of ξ’s and ∆’s!
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Implications of the presence of a Goldstone boson

To show that, I will work with the energy-momentum tensor
Tµν .

Lorentz invariance and ∂µT
µν = 0, dictate that the matrix

element of Tµν between the vacuum and the dilaton π, be of the
following form,5

⟨0∣Tµν(0)∣π(p)⟩ =
1

3
fπv pµpν ,

with fπ the dimensionless dilaton decay constant and the factor
of 1/3 was added for later convenience.

5Note that a term proportional to ηµνp
2 is also admissible in this matrix

element. However, this contribution vanishes on shell.
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Implications of the presence of a Goldstone boson

It is straightforward to show that the expectation value of the
commutator between the energy-momentum tensor and an
operator reads

⟨[Tµν ,Oi]⟩ =
i

3
fπfiv

∆i ∂µ∂νG(x) ,

where G(x) is the (massless) Green’s function

G(x) = −i∫
d3p⃗

2p0(2π)3
(e−ipx + eipx) .
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Implications of the presence of a Goldstone boson
The Noether current associated with dilatations is 6

Jµ ≡ xνTµν ,

so the corresponding charge is a particular moment of the
energy-momentum tensor

D = ∫ d3x⃗ J0 = ifπfiv∆i ,

while, by definition,

[D,Oi] = i∆iOi → ⟨[D,Oi]⟩ = iξi∆iv
∆i .

Consequently,

fi =
ξi∆i

fπ
6I could equivalently consider the charge associated with special

conformal transformations, but its form is more complicated. The results
are obviously the same.
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Consistency conditions on the CFT data

If a nontrivial solution for the constraint equations exists, this
can serve as an indication that the CFT data describes a
system that exhibits the symmetry breaking pattern
SO(4,2)→ ISO(3,1).
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Consistency conditions on the CFT data

One can go ahead and find more constraints. Look for example
at the energy-momentum tensor. The relevant terms in the
two-point correlator of Tµν with itself are

⟨Tµν(x)Tλσ(0)⟩ =∑
k

Tµνλσ
ξkv

∆k

∣x∣8−∆k
,

with T○○○○ = T○○○○ (cE−Mijk , xµ, ηµν) the most general Lorentz
covariant structure consistent with the appropriate symmetries.
Due to the interaction with the dilaton, one finds

fπ = fπ (cE−Mijk ,∆i, ξi)

or to put in words, the dilaton decay constant is related to the
E-M tensor OPE coefficients, the ∆’s and the ξ’s.
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Concluding remarks and open questions

● Nontrivial consistency conditions for theories with exact
but spontaneously broken conformal symmetry

● Lagrangian-independent constraints that rely solely on the
symmetry breaking pattern

● Leaving aside our phenomenological motivation, these
relations should be true for all systems with nonlinearly
realized conformal symmetry

● How to prove convergence of the OPE?

● Ideal testing ground → Coulomb branch of N = 4 SYM

● Can unitarity & analyticity yield more useful relations? (in
the spirit of bootstrap...)
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