A cancellation mechanism for dark matter-nucleon interaction: non-Abelian case

Karamitros Dimitrios

University of Ioannina

31/3/2018

In collaboration with:

Christian Gross, Alexandros Karam, Oleg Lebedev, Kyriakos Tamvakis

Introduction

Velocity distribution

Bullet Cluster

Cosmic Microwave Background

Dark Matter relic abundance¹ $\Omega_{DM}h^2 \approx 0.12$.

¹P. A. R. Ade et al. [Planck Collaboration] Astron. Astrophys. 594 (2016) A13, arXiv:1502.01589.

- Stable or very slow decay rate.
- Electrically Neutral.
- Cold/Warm and non-relativistic today.
- Smaller allowed mass² $m_{DM}\gtrsim \mathcal{O}(1-10~{\rm keV}).$
- Non-Baryonic.

²V. Iršič et al. Phys. Rev. D 96 (2017) no.2, 023522, arXiv:1702.01764.

Three stages:

- Equilibrium (production \leftrightarrow annihilation), $T \gtrsim m_{DM}$.
- Production stops, $T \lesssim m_{DM}$.
- Annihilation stops, $T = T_{FO} \approx \frac{m_{DM}}{25}$.

Three stages:

- Equilibrium (production \leftrightarrow annihilation), $T \gtrsim m_{DM}$.
- Production stops, $T \lesssim m_{DM}$.
- Annihilation stops, $T = T_{FO} \approx \frac{m_{DM}}{25}$.

WIMP= Weakly Interacting Massive Particle.

$$m_{DM} \sim 100 \; {
m GeV} \Rightarrow \Omega_{MD} h^2 \sim 0.1 \; {10^{-8} \; {
m GeV^{-2}} \over \langle \sigma v
angle}$$

.

Typical mass scale of weak interactions \leftrightarrow Typical cross section of weak interactions (*WIMP-miracle*).

Indirect detection

LHC

Direct detection

XENON

arXiv:1705.06655.

XENON

arXiv:1705.06655.

Where are all the WIMPs?

Direct detection vanishing mechanism: The Abelian case

The minimal model

Extension of the SM scalar sector by a scalar S:³

- Singlet under the $G_{\rm SM}$.
- Charged under a global, softly broken U(1) symmetry.

Invariant potential:

$$V_0 = -\frac{\mu_H^2}{2}|H|^2 + \frac{\lambda_H^2}{2}|H|^4 - \frac{\mu_S^2}{2}|S|^2 + \frac{\lambda_S}{2}|S|^4 + \lambda_{HS}|H|^2|S|^2 .$$

Softly breaking term:

$$V_{\rm soft} = -\frac{\mu_S'^2}{4}S^2 + {\rm h.c.}$$

Observation:

There is one phase that can be absorbed in $S \rightarrow CP$ -invariance!

³C. Gross, O. Lebedev and T. Toma, Phys. Rev. Lett. **119** (2017) no.19, 191801 doi:10.1103/PhysRevLett.119.191801 arXiv:1708.02253 [hep-ph].

Naturally stable DM

The scalars develop VEVs:

$$S = \frac{1}{\sqrt{2}} (v_S + s + i\chi) ,$$
$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v + h \end{pmatrix} .$$

Observation: CP-invariance $\rightarrow \chi$ is stable!

The cancellation mechanism

Propagator (at $q^2 \approx 0$) is proportional to the inverse of the CP-even mass matrix. So, the direct detection matrix element (A_{DD}) becomes

$$A_{\mathrm{DD}} \sim \left(\lambda_{HS} v, \, \lambda_{S} v_{S}
ight) egin{pmatrix} \lambda_{S} v_{S}^{2} & -\lambda_{HS} v v_{S} \ -\lambda_{HS} v v_{S} & \lambda_{H} v^{2} \end{pmatrix} egin{pmatrix} 1 \ 0 \end{pmatrix} = 0 \; .$$

The cancellation mechanism

Propagator (at $q^2 \approx 0$) is proportional to the inverse of the CP-even mass matrix. So, the direct detection matrix element (A_{DD}) becomes

$$A_{\rm DD} \sim \left(\lambda_{HS} v, \, \lambda_{S} v_{S}\right) \begin{pmatrix} \lambda_{S} v_{S}^{2} & -\lambda_{HS} v v_{S} \\ -\lambda_{HS} v v_{S} & \lambda_{H} v^{2} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 0 \; .$$

Goldstone bosons couple proportionally to the momentum (but some cancellations still have to occur).

The minimal model:

- Natural explanation for the missing DM signal.
- Natural emergence of a WIMP stabilizing symmetry.
- The origin of the softly broken term can be explained (gauged U(1)).
- WIMP at low masses ($\sim 10-10^4~{\rm GeV}).$

The minimal model:

- Natural explanation for the missing DM signal.
- Natural emergence of a WIMP stabilizing symmetry.
- The origin of the softly broken term can be explained (gauged U(1)).
- WIMP at low masses ($\sim 10-10^4~{\rm GeV}).$

Generalization?

A simple Generalization

$U(1) imes S_N$

- N scalars (S_i) .
- Transforming as $S_i \rightarrow e^{-ia}S_i$.
- Symmetry: $U(1) \times S_N$.
- All S_i acquire VEV with all VEVs equal (S_N symmetric choice).

$U(1) imes S_N$

- N scalars (S_i) .
- Transforming as $S_i \rightarrow e^{-ia}S_i$.
- Symmetry: $U(1) \times S_N$.
- All S_i acquire VEV with all VEVs equal (S_N symmetric choice).

This results to a pseudo-Goldstone:

$$\xi = rac{1}{\sqrt{N}} \sum_{i=1}^N \chi_i o S_N$$
-symmetric state.

Due to the S_N symmetry, the direct detection matrix element vanishes!

$U(1) imes S_N$

- N scalars (S_i) .
- Transforming as $S_i \rightarrow e^{-ia}S_i$.
- Symmetry: $U(1) \times S_N$.
- All S_i acquire VEV with all VEVs equal (S_N symmetric choice).

This results to a pseudo-Goldstone:

$$\xi = rac{1}{\sqrt{N}} \sum_{i=1}^N \chi_i o S_N$$
-symmetric state.

Due to the S_N symmetry, the direct detection matrix element vanishes!

Large number of phases \rightarrow no naturally stable particle.

N	#phases
1	1
2	3
≥ 3	$3+\frac{1}{2}N(N-1)$

Non-Abelian Generalization

A more attractive/simple case:

- One scalar, Φ.
- Doublet under a softly broken SU(2).
- The potential is similar to the minimal U(1) case (*i.e.* very simple).

SU(2)

A more attractive/simple case:

- One scalar, Φ.
- Doublet under a softly broken SU(2).
- The potential is similar to the minimal *U*(1) case (*i.e.* very simple).

$$V_{\mathrm{soft}} = \sum_{i=1}^{2} \sum_{j=1}^{2} \left[(m_{\Phi \, ij}^2 \Phi_i \Phi_j + \mathrm{h.c.}) + m_{\Phi \, ij}'^2 \Phi_i^\dagger \Phi_j \right],$$

where SU(2) is restored for $m_{\Phi ij} = m'_{\Phi ij} = 0$ and $m'_{\Phi ii} = \frac{\mu_{\Phi}}{2}$.

The doublet Φ acquires a VEV:

$$\Phi = \frac{1}{\sqrt{2}} \begin{pmatrix} \phi + i s \\ \rho + i \chi + v_{\Phi} \end{pmatrix} ,$$

resulting to mixing between the ρ and h.

The doublet Φ acquires a VEV:

$$\Phi = \frac{1}{\sqrt{2}} \begin{pmatrix} \phi + i s \\ \rho + i \chi + v_{\Phi} \end{pmatrix} ,$$

resulting to mixing between the ρ and h. DM content:

- Three pseudo-Goldstone bosons.
- No CP-invariance (as in the minimal case), but emergence of a Z₂.
- The interaction terms are invariant under orthogonal transformations \rightarrow All pseudo-Goldstone bosons are stable $(Z_2^{(1)} \times Z_2^{(2)} \times Z_2^{(3)}).$
- The $h \rho$ mass matrix is similar to the minimal U(1) case \rightarrow vanishing of the direct detection cross section for all DM particles!

The results of the SU(2) case hold also for the SU(N), at least for Φ in the fundamental representation.

SU(N) generalization:

- There are 2N 1 pseudo-Goldstone bosons.
- The discrete symmetry is $Z_2^{(1)} \times Z_2^{(2)} \times Z_2^{(3)} \times \cdots \times Z_2^{(2N-1)}$ (2N - 1 DM particles).

- There are models that can explain the missing WIMP signal.
- Naturally stable DM particles.
- It seems to be fairly easy to find such models (WIMP paradigm is still alive).
- No fine tuning.

- What happens if Φ is in another representation of SU(2) (*e.g.* SU(2)-triplet)?
- Phenomenological analysis (*e.g.* LHC detectability).
- Loop corrections to the scalar potential (also important for direct detection).
- The origin of the soft breaking terms.
- Any other models with the desirable attributes?

Thank you!