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Introduction

In 1915, Einstein formulated his General Theory of Relativity (GR) that
allowed him to describe the form of spacetime and the motion of a body
inside that spacetime

The metric tensor gµν defined through the spacetime’s line-element

ds2 = gµν dx
µdxν

is the ‘building block’ of Einstein’s theory and its form is determined by
the gravitational field equations:

Rµν − 1
2 gµνR = 8πG Tµν

Selecting the physical system that interests us and the corresponding
energy-momentum tensor Tµν , that describes the distribution of mass
and energy, we may determine from the evolution of the whole universe
to the form of spacetime around a small black hole
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Introduction

General Relativity is a very good theory of Gravity: mathematically
beautiful and experimentally tested

But it is not a perfect theory (if there is such a thing)....

The Standard Cosmological Model has a number of open problems:
the nature of dark matter and dark energy, the coincidence problem,
the spacetime singularities, the right model for inflation...

On the gravity side, GR predicts the existence of only three families
of black-hole solutions (information loss problem) and no stable
wormhole solutions

Unification with the other forces seems unlikely within the GR
(GR is based on tensors and is not renormalizable)

Perhaps, all these accumulated problems point to the need for changing
the theoretical framework?
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Introduction

The Einstein’s field equations follow from the Einstein-Hilbert action

S =

∫
d4x

√
−g

( R

16πG

)
,

A generalised theory of gravity could have the form

S =

∫
d4x

√
−g

[
f (R,Rµν ,Rµνρσ,Φ) + LX (Φ)

]
as part of the string effective action at low energies

as part of a Lovelock effective theory in four dimensions

as part of a modified scalar-tensor (Horndeski or DHOST) theory

The large number of choices have led to a huge literature in Generalised
Gravitational Theories...
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Introduction

Of particular importance is the quadratic Gauss-Bonnet term

R2
GB = RµνρσR

µνρσ − 4RµνR
µν + R2

since it has a number of attractive points:

It leads to field equations with up to 2nd-order derivatives, and the
theory is free from Ostrogradski instabilities and ghosts

Being quadratic, it will naturally be the next important term when
the curvature becomes strong (near the black-hole horizon, in the
early universe, at the wormhole throat...)

A weak point: The GB term can be shown to be a total derivative term
for all gravitational backgrounds in 4 dimensions, therefore, it survives in
the equations of motion only if it is coupled to a field
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The Einstein-Scalar-Gauss-Bonnet Theory

A generalised theory of gravity with the GB term will have the form:

S =

∫
d4x

√
−g

[
R

16πG
+

1

2
∂µϕ∂µϕ+ f (ϕ)R2

GB

]
,

with f (ϕ) a coupling function between a scalar field ϕ and the GB term

when f (ϕ) ∼ ln
[
2eϕη4(ieϕ)

]
and ϕ a modulus field, the theory leads

to singularity-free solutions (Antoniadis, Rizos & Tamvakis, 1994)

when f (ϕ) ∼ eϕ and ϕ is the dilaton field, the theory evades the
no-hair theorems and leads to the Dilatonic Black Holes (Kanti,
Mavromatos, Rizos, Tamvakis & Winstanley, 1996; 1998)

when f (ϕ) ∼ eϕ and ϕ is the dilaton field, the theory also leads to
stable, wormhole solutions (Kanti, Kleihaus & Kunz, 2011)

Is superstring effective theory the only theory with so interesting
solutions?
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The Einstein-Scalar-Gauss-Bonnet Theory

Clearly no! Because for f (ϕ) ∼ ϕ2 and ϕ a scalar field, singularity-free
cosmological solutions again emerge (Rizos & Tamvakis, 1994; Kanti,
Rizos & Tamvakis, 1998)

Are there, then, many black-hole solutions beyond the limits of GR ...?
Not really:

The old ‘No-Hair Theorem’ (Bekenstein, 1972; Teitelboim, 1972)
managed to restrict such solutions in the context of minimally-
coupled scalar-tensor theories:

“There are no static black-hole solutions with scalar hair”

This was evaded for black-hole solutions with a Yang-Mills (Volkov
& Galtsov, 1989, Bizon, 1990; Greene et al, 1993; Maeda et al,
1994) or Skyrme field (Luckock & Moss, 1986; Droz et al, 1994) or
for a conformally-coupled scalar field (Bekenstein, 1974)
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The Einstein-Scalar-Gauss-Bonnet Theory

The “novel No-Hair Theorem” was then formulated (Bekenstein,
1995) for non-minimally-coupled scalar fields; this was extended to
general scalar-tensor theories (Sotiriou & Faraoni, 2012; Hui &
Nicolis, 2013)

But these were again evaded in the case of dilatonic black holes
(1996), for an exponential coupling function f (ϕ) ∼ eϕ, and the
shift-symmetric theory with f (ϕ) ∼ ϕ (Babichev & Charmousis,
2014; Sotiriou & Zhou, 2014; Benkel et al, 2016)

Therefore, even in the context of generalised gravitational theories only a
small number of black-hole solutions have been found

Can we add more ‘members’ to this ‘elite’ number of theories that evade
the no-hair theorems and lead to novel black holes?
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Novel Einstein-Scalar-GB Black-Hole Solutions

We will consider again the following theory

S =

∫
d4x

√
−g

[
R

16πG
− 1

2
∂µϕ∂µϕ+ f (ϕ)R2

GB

]
,

but we will keep the coupling function f (ϕ) arbitrary. Assuming the
following static, spherically-symmetric line-element

ds2 = −eA(r)dt2 + eB(r)dr2 + r2(dθ2 + sin2 θ dφ2)

the equations of motion read

Rµν − 1

2
gµν R = Tµν , ∇2ϕ+ ḟ (ϕ)R2

GB = 0
where

Tµν = −1

4
gµν(∂ϕ)

2+
1

2
∂µϕ∂νϕ−

1

2
(gρµgλν+gλµgρν)η

κλαβR̃ργ
αβ∇γ∂κf ,
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Novel Einstein-Scalar-GB Black-Hole Solutions

Rearranging the equations, we obtain the coupled system

A′′ =
P

S
, ϕ′′ =

Q

S

where P, Q and S are complicated functions of (r , ϕ′,A′, ḟ , f̈ ) – the
metric function B is shown to be a dependent variable

For the existence of a regular black-hole horizon we demand that

eA(r) → 0, e−B(r) → 0, ϕ(r) → ϕh

Employing the above in the coupled system, and demanding that ϕ′′ is
also finite at the horizon rh, we find a constraint that determines ϕ′

h

ϕ′
h =

rh

4ḟh

−1±

√
1−

96ḟ 2h
r4h

 , ḟ 2h <
r4h
96

The above hold for an otherwise arbitrary coupling function f
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Novel Einstein-Scalar-GB Black-Hole Solutions

Using the constraint on ϕ′
h in the equation for A′′, we find

A′′ = −A′2 + .... ⇒ A′ = (r − rh)
−1 +O(1)

that upon integration leads to the complete solution

eA = a1(r − rh) + ... , e−B = b1(r − rh) + ... ,

ϕ = ϕh + ϕ′
h(r − rh) + ϕ′′

h (r − rh)
2 + ...

The above describes a regular black-hole horizon in the presence of a
scalar field provided that ϕ′ and the coupling function f satisfy the
aforementioned constraints

The above line of thinking was developed in the analysis for the Dilatonic
black holes (Kanti, Mavromatos, Rizos, Tamvakis & Winstanley, 1996)
and here it was generalised for an arbitrary coupling function f
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Novel Einstein-Scalar-GB Black-Hole Solutions

At large distances from the horizon, we assume a power series expression
in 1/r , and by substituting in the equations of motion, we find

eA = 1− 2M

r
+

MD2

12r3
+

24MDḟ +M2D2

6r4
+ ...

eB = 1 +
2M

r
+

16M2 − D2

4r2
+

32M3 − 5MD2

4r3
+O

(
1

r4

)
+ ...

ϕ = ϕ∞ +
D

r
+

MD

r2
+

32M2D − D3

24r3
+

12M3D − 24M2 ḟ −MD3

6r4
+ ...

It is in order O(1/r4) that the explicit form of the coupling function f (ϕ)
first makes its appearance

Thus, a general coupling function f does not interfere with the existence
of an asymptotically-flat limit for the spacetime
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Novel Einstein-Scalar-GB Black-Hole Solutions

Can we smoothly connect these two asymptotic solutions? Bekenstein’s
Novel No-Hair theorem (1995) said no, because:

“at radial infinity: T r
r is positive and decreasing”

Indeed, even in the presence of the GB term: T r
r ≃ ϕ′2/4 ∼ 1/r4 + ...

“near the BH horizon: T r
r is negative and increasing”

If true, the smooth connection of the two demands an extremum - this is
excluded by the positivity of energy in ordinary scalar-tensor theories

However, in the Einstein-scalar-Gauss-Bonnet theories with general f , the
second clause is not true. Instead, we find that

sign(T r
r )h = −sign(ḟhϕ

′
h) = 1∓

√
1− 96ḟ 2/r4h ) > 0

The regularity of the horizon automatically guarantees the positivity of T r
r
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Novel Einstein-Scalar-GB Black-Hole Solutions

But we should also check the sign of (T r
r )

′
h - for this we find that

(T r
r )

′
h < 0 iff ∂r (ḟ ϕ

′)|rh > 0

This merely demands that the negative value of (ḟ ϕ′) near the horizon
should start decreasing with r (in absolute value) in order to smoothly
connect with the constant scalar field at infinity

It turns out that this is automatically satisfied in all the solutions found
without the need of any fine-tuning of the parameters

Thus, selecting the form of f (ϕ) and choosing any value of ϕh that
satisfies the constraint

ḟ 2h <
r4h
96

,

the constraint for a regular horizon uniquely determines the second input
parameter ϕ′

h for the numerical integration, and the black-hole solutions
may be found...
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Novel Einstein-Scalar-GB Black-Hole Solutions

(Antoniou, Bakopoulos & Kanti, 1711.03390, 1711.07431)
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Novel Einstein-Scalar-GB Black-Hole Solutions

Doneva & Yazadjiev, 1711.01187 : f (ϕ) = 1− e−ϕ2

Silva, Sakstein, Gualtieri, Sotiriou & Berti, 1711.02080 : f (ϕ) = aϕ2

• Old No-Hair Theorem: it uses the scalar equation∫
d4x

√
−g f (ϕ)

[
∇2ϕ+ ḟ (ϕ)R2

GB

]
= 0

Integrating by parts, we obtain∫
d4x

√
−g ḟ (ϕ)

[
∂µϕ∂µϕ− f (ϕ)R2

GB

]
= 0

Since, ∂µϕ∂µϕ > 0, the above holds only for f (ϕ)R2
GB > 0. Silva et al,

with a slightly different manipulation, found instead that f̈ R2
GB > 0

Then, can we really trust this integral constraint? The novel no-hair
theorem is instead a local constraint that is easily checked
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Conclusions

• The Generalised Theories of Gravity may be the way forward in
gravitational physics that removes mathematical irregularities and
physical puzzles

• General Einstein-scalar-Gauss-Bonnet theories have been intensively
studied over the last decades

• Although the new black-hole solutions that emerge in the context of
these theories were very few, our work has shown that there is nothing
exceptional in them

• Under mild constraints, related to the regularity of the horizon, an
asymptotically-flat solution with scalar hair always emerges

• We have found a plethora of such solutions with a variety of
characteristics (radial profile of the field, size, scalar charge, entropy) -
for details, please, see the talk by A. Bakopoulos on Friday afternoon
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