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ABSTRACT: Classical string actions in AdS; and d3; can be connected to the sinh-
Gordon and cosh-Gordon equations through Pohlmeyer reduction. We show that the
problem of constructing a classical string solution with a given static or translation-
ally invariant Pohlmeyer counterpart is equivalent to solving four pairs of effective
Schridinger problems, Each pair consists of a flat potential and an n = 1 Lamé po-
tential whose eigenvalues are connected, and, additionally, the four solutions satisfy
a set of constraints. An approach for solving this system is developed by employing
an interesting connection between the specific class of classical string solutions and
the band structure of the Lamé potential. This method is used for the construction
of several families of classical string solutions, one of which turns out to be the spiky
strings in AdS; New solutions include circular rotating strings in AdS, with singular

time evolution of their radius and angular velocity as well as classical string solutions
in dSs.
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Self-similar equilibration of strongly interacting systems from holography
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‘We study the equilibration of a class of far-from-equilibrium strongly interacting systems using
gauge/gravity duality. The systems we analyse are 2+1 dimensional and have a four dimensional
gravitational dual. A prototype example of a system we analyse is the equilibration of a two di-
mensional fluid which is translational invariant in one direction and is attached to two different
heat baths with different temperatures at infinity in the other direction. We realise such setup in
gauge/gravity duality by joining two semi-infinite asymptotically Anti-de Sitter (AdS) black branes
of different temperatures, which subseq ly evolve towards equilibrium by emitting gravitational
radiation towards the boundary of AdS. At sufficiently late times the solution converges to a simi-
larity solution, which is only sensitive to the left and right equilibrium states and not to the details
of the initial conditions. This attractor solution not only incorporates the growing region of equi-
librated plasma but also the outwardly-propagating transition regions, and can be constructed by
solving a single ordinary differential equation.
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Aspects of non-associative structures in physics’|

Toannis Bakas
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Abstract

We summarize the emergence of nop-commutative/por-assockative strictuees in Dirac's
generalization of Maxwell theary, fcusing mostly on the mageetic Beld analogee of the
non-geometthe B-flux string model. The cobomeological eterpretation of the obstructhons
o associativity in terms of Foocycles and the use of the star product as alternative to
ordinary quantization are also discussed tn this context.

*Costribation. to the Warkshop on Nen.commutative Field Theory and Gravity, 2127 September
2015, Corfa, Greeoe; to eppenr in the Proceedimgs of Srenoe.  Also, besed on o decture delivered ne
the Warkshop on Quantized Geometry and Physics, K16 Muy 2014, Bryrischaed], Gormnny nnd at the
Toawt FRi™ Warksbar ne MosaTel' ShiesrSelids and Srince B fSrcasts 1518 Cesehor WD YMoniet
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Abstract

Starting fram a sigma-model for a docbled target-space geometry, we shaw
bz of target-spuce dim s can be redused by balf throegh
a garging procedune. We apply this to s of b el
evart for double feld theory, and Shstsate how choosing different. gisgings
lenids fo string theory configurations Todual to esch other. We farthermone
disruss that given o conformal donhbled theory, the redeosd theocies are con
formnl s well.

As an example we congider the three dimensional $U(2) WEW moded nnd
show thit the only possihle reduced backgronnds are the cigar and trzmpet
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» With the discovery of the BEH scalar boson the Standard
Model is complete

» |t is no more The Standard Model

» But The Standard Theory
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THE STANDARD THEORY

» The Standard Theory has been enormously successful

» It contains 17 + - - - arbitrary parameters (masses and coupling
constants) and they have all been determined experimentally

» This number is irreducible
Any relation of the form X\ = f(g) will not be respected by
renormalisation

» The Standard Theory is the absolute totalitarian system.
Whatever is not forbidden, it is compulsory
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THE STANDARD THEORY

Our confidence in this theory is fully justified by its successes in
predicting new phenomena and its impressive agreement with
experiment:

>

The discovery of weak neutral currents (CERN 1973)

The discovery of charmed particles (SLAC-Brookhaven
1974-1976)

The discovery of QCD and asymptotic freedom (SLAC-- - -
1973---+)

The discovery of the gauge bosons (CERN 1983)
The discovery of b and t flavours (FermiLab, LEP 77)

The discovery of the BEH boson (CERN 2012)



THE STANDARD THEORY

In addition, it shows an impressive agreement with experiment in a
very large number of detailed measurements.



April 2016

o 2 v T decays (N3LO)
S(Q ) & DIS jets (NLO)
3 0 Heavy Quarkonia (NLO)
031 \ o e'e jets & shapes (res. NNLO)
® e.w. precision fits (N3LO)
v pp—> jets (NLO)
v pp —> tt (NNLO)
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Standard Model Production Cross Section Measurements
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August 2017 CMS Preliminarv

B 7 TeV CMS measurement L= 5.010 )

B & TeV CMS measurement (L= 19.5 16}

B 13 TeV CMS measurement (L= 36.9 167

— Theory prediction
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Quantity Value Standard Model Pull

My [GeV)] L1876 £ 0.0021 511880 & 0.0020 02
T, [GeV] 24952 + 0.0023 2.4943 = 0.0008 0.4
T(had) [GeV] 17444 £ 0.0020 1.7420 = 0.0008
(i) [MeV] 100015 S0L.66+ 0.05
T(£HE) [MeV] 83,084 + 0,086 3,095 + 0,010
i lub] 41,541 £ 0.087 41484 + (L008 L5
B 20,804 £ 0.050 20,73 + 0010 L4
R, 20,785 4 0.033 20,73 + 0,010 L6
B 20764 + 0,045 20,779 + 0.010 0.
R, 0.21620 4 0.00066  0.21579 = 0.00003 0.8
Re 0.1721 = 0.0030 0.17221 + 0.00008 00
Al 0.0145 = 0.0025 0.01622 = 0.00009 07
Al 0.0169 % 0.0013 05
AL 00188+ 0.0017 L5
Al 0.0092 £ 0.0016 0.1031 4 0.0003 24
Al 0.0707 + 0.0035 0.0736 -+ 0.0002 08
Al 0.0976+ 0.0114 0.1032 = 0.0003 05
& 0.2324 £ 0.0012 0.23152 £ 0.00005 07
0.23185 £ 0.00035 0.
0.23105  0.00087 05
A 0.15138 £ 0.00216 0.1470  0.0004 20
0.1544 £ 0.0060 L2
0.1498 £ 0.0049 0.6
A, 0,142+ 0.015 0.3
A 0.156 £ 0.015 01
0.1430 + 0.0043 ot
Ay 0.023 % 0.020 0.0347 0.6
A 0,670 0.027 06678 = 0.0002 0.1
A 0,695 £ 0.091 0.0356 0.4
December 1, 2017 0936




Quantity Value Standard Model Pull
my [GeV] 173.34 4 0.81 173.76 + 0.76 -0.5
My [GeV] 80.387 % 0.016 80.361 = 0.006 1.6

80.376 % 0.033 0.4
Ty [GeV] 2.046 4 0.049 2.089 & 0.001 -0.9

2.195 4 0.083 1.3
My [GeV] 125.09 0.24 125.11+0.24 0.0
paw —0.03 +0.20 —0.02 +0.02 0.0
prz ~0.27 4 0.31 0.00 + 0.03 ~0.9
g —0.040 =+ 0.015 —0.0397 = 0.0002 0.0
oy —0.507 4 0.014 —0.5064 0.0
Qw (e) —0.0403 £ 0.0053 —0.0473 £ 0.0003 13
Qw (p) 0.064 £ 0.012 0.0708+0.0003  —0.6
Quw (Cs) —72.62 £ 0.43 —73.25 £0.02 L5
Qu (T1) —116.4+ 3.6 —116.91 + 0.02 0.1
5% (eDIS) 0.2299 +0.0043 0.23129+0.00005  —0.3
7 |[fs] 200.88 = 0.35 289.85 = 2.12 0.4
3(gu—2—2) (4511.18+£0.78) x 1079  (4507.89+£0.08) x 107% 4.2
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+ Latest global EW fit

+ Agreement with SM
continues as measurements

improve
+ Tension between A'.g, A(LEP
& SLD), A,(SLD) & A
remains...
Gfitter 1803.01853
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THE STANDARD THEORY

» Most of these successes constitute in fact a triumph of
renormalised perturbation theory

» For the first time we check weak interactions at the level of
radiative corrections

» The Standard Theory has become a
high precision theory
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The ST is a renormalisable
Quantum Field Theory

Weak coupling Gray area Strong coupling
=l -
g<<l1 - ' g=1
Perturbation m Strong coupling
expansions expansions

In a large part of present energies QCD is in the gray area !



Perturbation theory has been remarkably
reliable outside the region of strong
interactions

* Do we understand why?

* Dyson’'s argument:
Ay~ a®(2n - D!

Perturbation theory breaks down when A, ~ Aq41

n+1~o!

For QED n>>1; For QCD ???

For some reason the validity of (improved) perturbation expansion
seems to cover most of the gray area
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Given this impressive success...
What does Beyond mean?

Or, What is wrong with the Standard Theory??
|. General questions

[I. Specific points



High precision measurements

Anomalous magnetic moment of the muon

g-2: An uncomfortably lonely i >
saarch for a Crack in the SM

Long-standing discrepancy with the SM

:Q. 5
IE\QD
E% BNL ¢ x4 | Fermilab goal FNAL exp’tin
5= commissioning
ul 15
Q‘ e 28a phase
SM Theory __2 1 + i + H i
Evaluations o . .
: 1 - i x2 Thy estimate
5 v
T

1 L I L I 1
2004 2006 200E 2010 2002 2014 2006 2018 2020

YEAR

a, is now measured to 540 ppb; Goal is 140 ppb



High precision measurements

Arduous computation of ever more precise SM predictio;

" ! " ! New lattice computation for HLBL term
L u u = physical pion mass and large lattice
k2 » Statistical precision x2 improvement

« Systematics in progress

[
QED  Weak HVP HLbL

Known Knawn Data Models/Lattice

Blum etal, 1705.01067,

Contribution Value 10" Uncertainty x10' 1610.04603
QED 11 658 471.895 0.008
Electroweak Corrections 154 0.1
HVP (LO) [7] 692.3 1.2
HVP (LO) [8] 694.9 43
HV'P (NLO) -0.84 0.06
VP (NNLO) 1.24 0.01
HLbL 10.5 2.6 aHLbL 5. 35(1 35) x 10— 10
Total SM prediction [7] 11 659 181.5 4.9
Total SM prediction [8] 11 659 184.1 5.0
BNL E821 result 11 659 209.1 6.3
Fermilab E989 target =~ 1.6 ik




Heavy flavour decays

LEPTON FLAVOUR UNIVERSALITY VIOLATION?

R(D*)
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Heavy flavour decays

Flavour changing neutral currents

B} = K*pu* i~ results

B ivevool G

uot

< ns- - 14 ATLAS =8 Te'v.zu.ar'n"_
L ““F Prelimi ATLAS == LHC!
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* Several observables appear it . . .
different than SM « LHChbdata © ATLAS data
: Belledata  © CMS data
¢ In particular P has .
. p_ﬁ i 5 05 [0 SM from DHMY
significant discrepancy ; | B AS7R
+  Global fits show large ok 1
disagreement t |
-0
| ! —.‘H
[} 5 1t 15
q* [GeVie]
F. Dettori Search for new physics in b — s£f decays Moriond EW 2018

11713



Heavy flavour decays

Summary of B anomalies W lverool i
Are we there yet?

1. Low b — spp branching fractions
2. Discrepancies in angular observables of BY — K p p~

3. Signs of lepton non-universality in: B = KTp " u~ and B < K*utp™

*  All seems to be related to a change in the Cq coefficient
(or maybe Cy and Cio, but V-A)

*  (Global fits start to exhibit several standard deviations of discrepancy
* ¢f interference explanation seems not justified
» Additional discrepancies in tree-level B — D*/fu decays

+  Many NP explanations: Z’, leptoguarks, low mass resonances etc



Dark matter

Large mass range for DM candidates

zeV aeV feV peV neV ueV meV eV

/‘Txﬁ

keV MeV GeV TeV

—
Sterile Neutrino ‘WIMPs

PeV  30M

Uhtralight Dark Matter

* bosonic DM produced during
inflation or high temp phase
transition

» DM acts as oscillating classical
field

Hidden Sector DM Black Holes

* WIMPs: act through SM forces

» Hidden Sector: act through new
force, very weakly coupled to SM

* Thermal contact in early universe

Beyond WIMPS: novel, low-cost, search techniques

US Cosmic Visions Report, 1707.04591 =



Neutrino masses and oscillations

Neutrino Physics ﬁ_
] |

Fundamental Questions addressed by Diverse Neutrino Program

* What is the origin of neutrino mass?

* How are the neutrino masses ordered?
= Oscillation experiments

* What is the absolute neutrino mass scale?
* Beta-decay spectrum
« Cosmic surveys

» Do neutrinos and anti-neutrinos oscillate differently?
= Oscillation experiments

* Are there additional neutrino types and interactions?
= Oscillation experiments
= Cosmic surveys

* Are neutrinos their own anti-particles? - _ fy- 7Y
= Neutrinoless double-beta decay r;;: B g‘ 5 g% | g s



Neutrino masses and oscillations

My conclusion

A data-driven subject in which theorists have not played the major
role.

So far no real illumination came from leptons to be combined with
the quark sector for a more complete theory of flavour

The trouble is that | do not see how this could change!
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More general questions

v

Why three families

v

Why so many mass scales

v

Hierarchy and fine tuning

Unification

v

v

Quantum gravity

v

Many others you can add
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Conclusions

» No coherent picture emerges

» The easy answer: We need more data

» The problem: We do not know which kind of data
» My conclusion: | will not learn the answer

» We have a very successful Standard Theory and

we will leave the problem of its completion to the younger
generation



