Highlights on recent detector and physics developments

I. Giomataris CEA-Saclay

• Micromegas detector

Spherical Proportional counter

• My collaboration with J.D Vergados

Previous developments

A high-energy gamma ray telescope I. Giomataris; G. Charpak, CERN-EP-88-94

A single electron shower G. Charpak, Y. Giomataris,, A. Gougas,NIM.A343:300,1994.

The trigger for Beauty

G. Charpak, I. Giomataris, L.Lederman, NIMA306(1991)439 Developed by Lausanne Uni, Saclay, CERN

A Hadron Blind Detector (HBD) I. Giomataris, G. Charpak, NIM A310(1991)589

Virtue of the small gap Y. Giomataris, NIM A419, p239 (1998)

Optimum gap : 30 - 100 microns

MICROMEGAS

Micromegas fabrication technologies

Bulk micromegas : pre-stretched steel mesh laminated together with a PCB support and a photoresistive layer, later removed apart where pillars are formed, *I. Giomataris et al., NIMA 560 (2006) 405*

Micromegas + micro-pixels

micro-Bulk, 50 μm, 25 and 12.5 μm gaps fabricated

Very good energy resolution 11 70 at 3.7 Ke v

- Flexible structure (cylinder)
- Low material
- Low radioactivity

Piggy Back: read-out separated from the active volume

T2K Micromegas TPC – Bulk technology 3xTPCs, 6 end plates, 72 Micromegas

A high pressure TPC

-1000

-500

500

1000

Construction of large chambers in ATLAS Goal : 1200 m2 total detector surface

Industrialization is going on through ELVIA, ELTOS

Micromegas micro-bulk in CAST

International Axion Observatory (IAXO) A new proposed experiment *JCAP 1106:013,2011*

8 COIL MAGNET L= 20 M 8 BORES: 600 MM DIAMETER EACH 8 X-RAYS OPTIC + 8 DETECTION SYSTEMS ROTATING PLATFORM WITH SERVICES

IAXO technologies – Baseline

IAXO telescopes

Slumped glass technology with multilayers

IAXO detectors

Discrimination from event topology in gas

Micromegas gaseous detectors

Long trajectory in CAST

Radiopure components + shielding

Zaragoza + CEA (+ others) expertise

Also considered: Ingrid, MMCs, CCDs

- Cost-effective to cover large areas
- Based on NuSTAR developments
- Focal length ~5 m
- 60-70% efficiency
 LLNL+UC+DTU+MIT
- expertise

IAXO magnet

- Superconducting "detector" magnet.
- Toriodal geometry (8 coils)
- Based on ATLAS toroid technical solutions.
- CERN+CEA expertise
- 8 bores / 20 m long / 60 cm Ø per bore

Muon tomography using Micromegas detector

D. Attie, S. Bouteille, S. Procureur et al.

'Chateau d'eau' at Saclay

ScanPyramids Mission

Cheops: Discovery of a new cavity Press released: October 15th, 2016

1600

Fast timing Picosecond Micromegas

CEA-Saclay, CERN, Thessaloniki, Athens, Princeton, USTC, San Diego

Test with UV fs laser @ IRAMIS-CEA

UV Photocathodes on MgF window: $CsI, Cr, Al, Diamond (10-50nm thick) \sum_{g=0.2}^{-0.1}$

January 2017, Cr 18nm, single electrons/pulse MM amplification 10⁴, preamplification 10-50

Beam tests with 150 GeV muons @ SPS H4

June 2016

- Sensors: Standard bulk Micromegas
- Photocathodes: 3,5mm MgF₂
 CsI photocathodes : CsI, Cr, Diamond
 + 6 nm Al + 10.5 nm CsI
- Gas mixtures: Ne/C₂H₆/CF₄ (80/10/10) Ne/CH₄ (95/5) CF4 / C₂H₆ (sealed mode)

Soft X-ray polarimetry with 'Piggy back' Micromegas

Recorded events with 8 keV linerarly polarized in helium-isobutane

Second part Spherical detector Light-dark matter search and low-energy neutrino physics

Radial TPC with spherical proportional counter read-out

Saclay-Thessaloniki-Saragoza

A Novel large-volume Spherical Detector with Proportional Amplification read-out, I. Giomataris *et al.*, JINST 3:P09007,2008

- Simple and cheap
- Large volume
- single read-out
- Robustness
- Good energy resolution
- Low energy threshold
- Efficient fiducial cut
- Low background capability

Low background detector d=60 cm p=10 bar

J 6750

University of Thessaloniki detector

Bibliography

Basic R@D detector in Saclay

University of Saragoza detector

Queens University test sphere

University of Tsinghua - HEP detector

I Giomataris et al., JINST 3:P09007,2008., I Giomataris and J.D. Vergados, Nucl.Instrum.Meth.A530:330-358,2004, I. Giomataris and J.D. Vergados, Phys.Lett.B634:23-29,2006. I. Giomataris et al. Nucl.Phys.Proc.Suppl.150:208-213,2006., S. Aune et al., AIP Conf.Proc.785:110-118,2005. J. D. Vergados et al., Phys.Rev.D79:113001,2009., E Bougamont et al. arXiv:1010.4132 [physics.ins-det], 2010

G. Gerbier et al.,arXiv:1401.790v1

Rejection power Rise time cut

Using Cd-109 source – December 2009 Irradiate gas through 200 μ m Al window P = 100 mb, Ar-CH₄ (2%)

If rt ~ 0.0155 ms ==> R = 65 cm 0.014 ms ==> ~70% of signal

Efficiency of the cut in rt $==> \sim 70\%$ signal (Cd peak) Severe background reduction Energy resolution ~ 6 % and 9 % for Cu and Cd

Low-energy calibration source Argon-37

Home made Ar-37 source: irradiating Ca-40 powder with fast neutrons 7x10⁶neutrons/s Irradiation time 14 days. Ar-37 emits K(2.6 keV) and L(260 eV) X-rays (35 d decay time)

First measurement with Ar-37 source Total rate 40 hz in 250 mbar gas, 8 mm ball 240 eV peak clearly seen A key result for light dark matter search

NEWS collaboration

Queen's University Kingston, IRFU/Saclay , LSM, Thessaloniki University, LPSC Grenoble, Birmingham, TU Munich, PNNLTRIUM

NEWS-LSM: Exploration of light dark matter search at LSM Detector installed at LSM end 2012: 60 cm, Pressure = up to 10 bar <u>Gas targets:</u> Ne, He, CH4

First results of NEWS-G with LSM SEDINE detector

NEWS-G collaboration, Astropart. Phys. 97, 54 (2018)

NEWS-G-SNO with compact shield : implementation at SNOLAB by fall 2017 Funded mainly by Canadian grant of excellence and ANR-France

140 cm Ø detector, 10 bars, Ne, He, CH_4 Copper 1 mBq/kg Compact lead –ancient- & PE shield solution

NEWS-SNOLAB project sensitivity

From single sensor ball to multi-ball 'ACHINOS' structure Developed in Saclay in collaboration with University of Thessaloniki

Radius (mm)

Additional physics

Competitive double beta decay experiment with Xe-136 at 50bar

CNBG, CPPM, SACLAY

The goal is to reach a record low background level << 10⁻⁴/keV/Kg/y and an energy resolution of .3%

- Xenon is relatively safe and easy to enrich
- Natural abundance of 136 Xe is ~ 8%
- \bullet EXO and NEXT have 200 kg highly enriched in $^{136}\mathrm{Xe}$
- Low cost
- Pressure variation
- High density is desirable to contain event
- But there is an upper limit! $\rho < 0.55 \text{ g/cm}^3$
- Beyond this density, $\delta E/E$ deteriorates rapidly!

Additional rejection could be achieved through Cherenkov light detection: Background free double beta decay experiment,

I. Giomataris, arXiv:1012.4289

Collaboration with J.D Vergados

TPC Paris conference 2004

TPC Paris conference 2010

Some common publications (out of 27)

Room size Neutrino oscillations using a strong tritium source

I. Giomataris, J.D. Vergados, Nucl.Instrum.Meth.A530:330-358,2004,

Neutrinos oscillate inside detector volume L_{23} =13 m

Additional physics: neutrino magnetic moment, weak interaction at low energy

A novel large-volume spherical detector with proportional amplification read-out

I Giomataris (Vergados) et al., JINST 3:P09007,2008.

With mono-energetic neutrino

Y. Giomataris, Y. Novikov, J.D. Vergados, J.Phys.Conf.Ser. 259 (2010) 012100 Some candidates are: A=157 (Tb), $T_{1/2} = 70$ y, $E_v=9.8$ keV, $L_0=4.9$ m A=163 (Ho), $T_{1/2}=4500$, $E_v=0.5-2.6$ keV, $L_0=0.3-1.6$ m A=193 (Pt), $T_{1/2}=56.8$ y, $E_v=43.8$ keV, $L_0=21$ m A=178 (W), $T_{1/2}=21.6$ d, $E_v=24$ keV, $L_0=12$ m A=194 (Hg), $T_{1/2}=440$ y, $E_v=55$ keV, $L_0=27$ m

Sterile Neutrino Oscillations

J.D. Vergados, Y. Giomataris, Y. Novikov, Nucl.Phys. B854 (2012) 54-66 , Phys.Rev. D85 (2012) 033003

Nuclide $T_{1/2}$ E_{ν} L_{14} N_{ν} (s^{-1}) (keV) (d) (m) ³⁷Ar 35811 1.4 1.8×10^{16} ⁵¹Cr 27.7747 4.1×10^{17} 1.2⁶⁵Zn 3.0×10^{16} 1343 2.2244⁵⁹Ni 2.8×10^{7} 10651.8 1.1×10^{14} ^{113}Sn 3.7×10^{16} 116 617 1.0 ^{32}P ≈ 2.5 5.0 $\times 10^{16}$ 14.3continuum

Secluded dark matter

A. Dedes, I. Giomataris, K. Suxho, J.D Verdados, Nucl. Phys. B826(2010)148.

Coherent neutrino at a spallation source

J. D. Vergados, F. Avignone, I. Giomataris Phys. Rev. D 79(2009)113001

A dedicated Supernova detector

Y. Giomataris, J. D. Vergados, Phys.Lett.B634:23-29,2006

A dedicated Supernova detector Simple and cost effective - Life time >> 1 century

Through neutrino-nucleus coherent elastic scattering *Y. Giomataris, J. D. Vergados, Phys.Lett.B634:23-29,2006*

Destruction of massive star initiated by

the Fe core collapse

- 10⁵³ ergs of energy released
- 99% carried by neutrinos
- A few happen every century in our Galaxy, but the last one observed was over 300 years ago

Sensitivity for galactic explosion For p=10 Atm, R=2m, D=10 kpc, U_y=0.5x10⁵³ ergs

Number of events (no quenching, zero threshold) He Ne Ar Kr Xe Xe (with Nuc. F.F) .16 3.95 19.1 76.8 235 179
Number of events (after quenching, E_{th}=0.25 keV) He Ne Ar Kr Xe Xe (with Nuc. F.F) 0.08 1.5 6.7 23.8 68.1 51.8

Idea : A world wide network of several (tenths or hundreds) of such dedicated Supernova detectors robust, low cost, simple (one channel) **To be managed by an international** scientific consortium and operated by students

THANK YOU

I. Giomataris