Strongly-coupled Anisotropic Gauge Theories And Holography

Dimitrios Giataganas

National Center for Theoretical Sciences (NCTS), Taiwan

Based on works with: U. Gursoy(Utrecht Univ.) and J. Pedraza(Univ. of Amsterdam) and work in progress.

Talk given for: HEP 2018, NTUA, Athens, March 29, 2018

Dimitris Giataganas

NCTS

	The Theory	Stable and Physical Theories	Phase Transitions	Probing the Theory	Conclusions
Outline					

- Stable and Physical Theories
- Phase Transitions
- **5** Probing the Theory

6 Conclusions

臣

Introduction		Stable and Physical Theories	Phase Transitions	Probing the Theory	Conclusions
Briefly	/ on AdS/	′CFT			

- Gauge/Gravity duality: A way to map and answer quantum questions to gravity geometric questions.
- The initial AdS/CFT correspondence: $\mathcal{N} = 4$ sYM on flat space \Leftrightarrow $AdS_5 \times S^5$, is the harmonic oscillator of the gauge/gravity dualities.
- The theory is simple: Conformal, Maximally Supersymmetric, No Temperature...
- Since the discovery of the initial correspondence, there is an extensive research aiming to construct more realistic gauge/gravity dualities.

Gauge/Gravity Dualities with: Less/No Supersymmetry; Broken conformal symmetry, confinement; fundamental matter(probe and backreacting Dq branes); etc.

 $\checkmark\,$ We study Anisotropic theories in Gauge/Gravity correspondence.

÷.

・ロト ・ 個 ト ・ ヨ ト ・ ヨ ト

Why? Attempts for Realizations in Nature

The existence of strongly coupled anisotropic systems.

- The expansion of the plasma along the longitudinal beam axis at the earliest times after the collision results to momentum anisotropic plasmas.
- Strong Magnetic Fields in strongly coupled theories.
- New interesting phenomena in presence on such fiels, i.e. inverse magnetic catalysis.

eg: (Bali, Bruckmann, Endrodi, Fodor, Katz, Krieg et al. 2011)

• Anisotropic low dimensional materials in condensed matter.

(日) (四) (日) (日) (日)

Introduction		Stable and Physical Theories	Phase Transitions	Probing the Theory	Conclusions
Why?	More:				

- Weakly coupled vs strongly coupled anisotropic theories. (Dumitru, Strickland, Romatschke, Baier,... 2008,...)
- Consistent top-down models. Properties of the supergravity solutions, that are dual to the anisotropic theories.
- Black hole solutions that are AdS in UV flowing to Lifhitz-like in IR :
 * Why there is a fixed scaling parameter z for such solutions?

(Azeyanagi, Li, Takayanagi, 2009) * Other systems that have fixed scaling IR solution (e.g. in Heavy quark density). Why?

(Kumar 2012; Faedo, Kundu, Mateos, Tarrio 2014) * New flows to Hyperscaling violation IR backgrounds?

< ロ > < 個 > < 回 > < 回 > :

Introduction		Stable and Physical Theories	Phase Transitions	Probing the Theory	Conclusions
Why?	Even Mc	ore:			

• (Striking Features! Several Universality Relations predicted for the isotropic theories are violated!

* Shear viscosity over entropy density ratio takes parametrically low values $\frac{\eta}{s} < \frac{1}{4\pi}!$

(Rebhan, Steineder 2011; Jain, Samanta, Trivedy 2015; D.G., Gursoy, Pedraza, 2017;...)

 \star Langevin coefficients inequality for heavy quark motion in the anisotropic plasma gets inverted $\kappa_L><\kappa_T$.

(Gursoy, Kiritsis, Mazzanti, Nitti 2010; D.G, Soltanpanahi, 2013a, 2013b) * ...

* Implications to QGP hydrodynamic simulations.

3

The Introduction of the Theory in One Page:

- Strongly coupled anisotropic theory.
- How the theory looks like and how to obtain it?
 - ✓ 4d SU(N) gauge theory in the large N_c -limit.
 - \checkmark Its dynamics are affected by a scalar operator $\mathcal{O} \sim TrF^2$.
 - ✓ Anisotropy is introduced by another operator $\tilde{\mathcal{O}} \sim \theta(x_3) TrF \wedge F$ with a space dependent coupling.
 - ✓ On the gravity dual side we have a "backreacting" scalar field depending on spatial directions, the axion; and a non-trivial dilaton.
- Eventually the gravity dual theory is an Einstein-Axion-Dilaton theory in 5 dimensions with a non-trivial potential.
 - ✓ Solutions are RG flows:

AdS in UV \Rightarrow Anisotropic (Hyperscaling Lifshitz-like) in IR.

• Formally interesting theories. And a solid ground to study strongly coupled phenomena in presence of anisotropy.

Introduction	The Theory	Stable and Physical Theories	Phase Transitions	Probing the Theory	Conclusions

Parts of the Theory Timeline-Related bibliography:

Non-Confining Anisotropic Theories:

(Azeyanagi, Li, Takayanagi, 2009; Mateos, Trancanelli, 2011; Jain, Kundu, Sen, Sinha, Trivedi, 2015;...) Confining Anisotropic Theories: (D.G., Gursoy, Pedraza, 2017)

Similar ideas in different context. For example: (Gaiotto, Witten 2008; Chu, Ho, 2006; Choi, Fernadez, Sugimoto 2017;...)

Introduction The Theory Stable and Physical Theories Phase Transitions Probing the Theory Conclusions

How is Anisotropy introduced? A Pictorial Representation:

- For the Lifshitz-like IIB Supergravity solutions
 - $ds^{2} = u^{2z}(dx_{0}^{2} + dx_{i}^{2}) + u^{2}dx_{3}^{2} + \frac{du^{2}}{u^{2}} + ds_{S^{5}}^{2}.$

Introduction of additional branes:

(Azeyanagi, Li, Takayanagi, 2009)

	x ₀	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	U	\$ ⁵
D3	X	X	X	X		
D7	X	X	X			Х

• Which equivalently leads to the following AdS/CFT deformation.

N = 4 sYM $AdS_5 \times S^5, \varphi, F_5$ $AdS_5 \times S^5, \varphi, F_5$ $T = \frac{\partial}{4\pi} + \frac{4\pi i}{g_{ym}^2} = \chi + ie^{-\phi}$ $\overline{AdS_5 \times S^5}, \varphi, \chi(x_3), F_5$ $\overline{AdS_5 \times S^5}, \varphi, \chi(x_3), F_5$

• $dC_8 \sim \star d\chi$ with the non-zero component $C_{x_0x_1x_2S^5}$.

• Possible to compactify x_3 to get dual to the pure Chern-Simons gauge theory.

Dimitris Giataganas

NCTS

Introduction The Theory Stable and Physical Theories Phase Transitions Probing the Theory Conclusions

The Anisotropic Theory

The generalized Einstein-Axion-Dilaton action with a potential for the dilaton and an arbitrary coupling between the axion and the dilaton:

$$S = \frac{1}{2\kappa^2} \int d^5 x \sqrt{-g} \left[R - \frac{1}{2} (\partial \phi)^2 + V(\phi) - \frac{1}{2} Z(\phi) (\partial \chi)^2 \right].$$

The eoms read

$$\begin{split} R_{\mu\nu} &- \frac{1}{2} R g_{\mu\nu} = \frac{1}{2} \partial_{\mu} \phi \partial_{\nu} \phi + \frac{1}{2} Z(\phi) \partial_{\mu} \chi \partial_{\nu} \chi - \frac{1}{4} g_{\mu\nu} (\partial \phi)^2 - \frac{1}{4} g_{\mu\nu} Z(\partial \chi)^2 + \frac{1}{2} g_{\mu\nu} V(\phi) , \\ \frac{1}{\sqrt{-g}} \partial_{\mu} (\sqrt{-g} g^{\mu\nu} \partial_{\nu} \phi) &= \frac{1}{2} \partial_{\phi} Z(\phi) (\partial \chi)^2 - V'(\phi) , \\ \frac{1}{\sqrt{-g}} \partial_{\mu} (\sqrt{-g} g^{\mu\nu} \partial_{\nu} \chi) &= 0 . \end{split}$$

Where

$$V(\phi) = 12\cosh(\sigma\phi) + \left(rac{m(\Delta)^2}{2} - 6\sigma^2
ight)\phi^2, \qquad Z(\phi) = e^{2\gamma\phi},$$

(*Gursoy, Kiritsis, Nitti, 2007; (Gubser, Nellore), Pufu, Rocha 2008a,b*) Remark: For $\sigma = 0, \gamma = 1, m(\Delta) = 0$ the action and the solution of eoms, are reduced of IIB supergravity.

Dimitris Giataganas

NCTS

Solutions of the Generalized Einstein-Axion-Dilaton Action

• The background solution

$$\begin{split} ds^2 &= \frac{1}{u^2} \left(-\mathcal{F}(u)\mathcal{B}(u) \, dt^2 + dx_1^2 + dx_2^2 + \mathcal{H}(u) dx_3^2 + \frac{du^2}{\mathcal{F}(u)} \right), \\ \chi &= \alpha x_3 \,, \qquad \phi = \phi(u) \,, \end{split}$$

• Solutions: e.g. For $\Delta = 4$: AdS in UV flowing to Hyperscaling Lifshitz-like violation geometries in IR :

$$ds^{2} = u^{-\frac{2\theta}{3}} \left(-u^{2z} \left(f(u) dt^{2} + dx_{1,2}^{2} \right) + \tilde{\alpha} u^{2} dx_{3}^{2} + \frac{du^{2}}{f(u)u^{2}} \right) ,$$

Introduction The Theory Stable and Physical Theories Phase Transitions Probing the Theory Conclusion Axion-Dilaton Coupling and Potential, rule the Scaling

• The values of (θ, z) dependence on (γ, σ)

$$z = rac{4\gamma^2 - 3\sigma^2 + 2}{2\gamma(2\gamma - 3\sigma)} \;, \qquad heta = rac{3\sigma}{2\gamma} \;.$$

- Special case: ($\sigma = 0, \gamma = 1$) supergravity truncated action with a single solution ($\theta = 0, z = 3/2$). (Mateos, Trancanelli, 2011)
- The scaling factors z and θ are determined by the constants in the Axion-Dilaton Coupling and the Potential. This is the reason that in the particular setup the supergravity solutions have them fixed.

Coefficients

・ロト ・四ト ・ヨト ・ヨト

	The Theory	Stable and Physical Theories	Phase Transitions	Probing the Theory	Conclusions
Solution	: The F	Full Flow			

Fixing (γ, σ) and α and u_h we get the metric flow from boundary to horizon:

$$ds^{2}=\frac{e^{-\frac{1}{2}\phi(u)}}{u^{2}}\left(-\mathcal{FB} dt^{2}+dx_{1}^{2}+dx_{2}^{2}+\mathcal{H} dx_{3}^{2}+\frac{du^{2}}{\mathcal{F}}\right),$$

臣

An exact solution		The Theory	Stable and Physical Theories	Phase Transitions	Probing the Theory	Conclusions
	An exac	t solutio	n			

The potential and the axion-dilaton coupling

$$V(\phi) = 6e^{\sigma\phi}, \qquad Z(\phi) = e^{2\gamma\phi}.$$

A Lifshitz-like anisotropic hyperscaling violation background which may accommodate a black hole

$$ds_s^2 = \alpha^2 C_R e^{\frac{\phi(u)}{2}} u^{-\frac{2\theta}{3z}} \left(-u^2 (f(u) dt^2 + dx_i^2) + C_Z u^{\frac{2}{z}} dx_3^2 + \frac{du^2}{f(u) \alpha^2 u^2} \right) ,$$

where

$$\begin{split} f(u) &= 1 - \left(\frac{u_h}{u}\right)^{3+(1-\theta)/z} , \qquad e^{\frac{\phi(u)}{2}} = u^{\frac{\sqrt{\theta^2 + 3z(1-\theta) - 3}}{\sqrt{6z}}} , \\ C_R &= \frac{(3z-\theta)(1+3z-\theta)}{6z^2} , \qquad C_Z = \frac{z^2}{2(z-1)1+3z-\theta} , \\ z &= \frac{4\gamma^2 - 3\sigma^2 + 2}{2\gamma(2\gamma - 3\sigma)} , \qquad \theta = \frac{3\sigma}{2\gamma} . \end{split}$$

臣

We have obtained the theories, are they physical and stable?

 \checkmark Energy Conditions Analysis

The Theory

$$T_{\mu
u}N^{\mu}N^{
u} \ge 0 \;, \quad N^{\mu}N_{\mu} = 0 \;,$$

∜

✓ Local Thermodynamical Stability Analysis

æ

・ロト ・聞 と ・ 臣 と ・ 臣 と

The blue region is the acceptable for the theory parameters.

æ

《曰》《聞》《臣》《臣》

Introduction The Theory Stable and Physical Theories Phase Transitions Probing the Theory Conclusions

Confinement/Deconfinement Phase transitions

 The free energy of the theories vs the temperature *T* for different anisotropy (α/j=0,1,3):

- Horizontal Axis: Confining Phase.
- Upper Branch: Black hole A:Deconfining Plasma Phase.
- Lower Branch: Black hole B:Deconfining Plasma Phase.
- $\alpha/j \simeq 2$: A critical value above which a richer structure in the phase diagram exist.

	Stable and Physical Theories	Phase Transitions	Probing the Theory	Conclusions

• The Critical Temperature of the theories vs the anisotropy gives:

• The T_c is reduced in presence of anisotropies of the theory.

2

A D F A A F F A

		Stable and Physical Theories	Phase Transitions	Probing the Theory	Conclusions
The Pro	oposal				

- The *Tc*(α) decrease with α, resembling the phenomenon of inverse magnetic catalysis where the confinement-deconfinement temperature decreases with the magnetic field B (where an anisotropy is introduced as in our plasma).
- No charged fermionic degrees of freedom in our case; our plasma is neutral.
- Our findings suggest that the anisotropy by itself could instead be the cause of lower T_c in presence of anisotropies.

3

		Stable and Physical Theories	Phase Transitions	Probing the Theory	Conclusions
η/s for $lpha$	our theor	ries			

• Shear Viscosity over Entropy Density

$$egin{aligned} \eta_{ij,kl} &= -\lim_{\omega o 0} rac{1}{\omega} \mathrm{Im} \int dt dx e^{i\omega t} \langle T_{ij}(t,x), T_{kl}(0,0)
angle \ s &= rac{2\pi}{\kappa^2} A \;. \end{aligned}$$

The two-point function is obtained by calculating the response to turning on suitable metric perturbations in the bulk.

• The relevant part of the perturbed action is mapped to a Maxwell system with a mass term.

$$S = rac{1}{2\kappa^2} \int d^4x \sqrt{-g} \left(-rac{1}{4g_{eff}^2} F^2 - rac{1}{4} m^2(u) A^2
ight) \, ,$$

where

$$m^2(u) = Z(\phi + \frac{1}{4} \log g_{33}) \alpha^2 , \quad \frac{1}{g_{eff}^2} = g_{33}^{3/2}(u) , \quad A_\mu = \frac{\delta g_{\mu 3}}{g_{33}}$$

3

• The shear viscosity over entropy ratio for arbitrary (z, θ) .

• The ratio depends on the temperature at $\alpha/T \gg 1$ as

$$4\pi \frac{\eta_{\parallel}}{s} = \frac{g_{11}}{g_{33}} \sim \left(\frac{T}{\tilde{\alpha}|1+3z-\theta|}\right)^{2-\frac{2}{z}}$$

• The range of the temperature power is $[0,\infty)$.

《曰》 《圖》 《臣》 《臣》

臣

• The quark distributions for baryons in theories with magnetic fields:

- Baryon on the transverse plane and Baryon on the plane that the field lies.
- System of fundamental strings with a vertex Dp-brane, in an anisotropic gravity theory.
- The baryon dissociates at stages, depending on the proximity angle to the magnetic field direction.

		Stable and Physical Theories	Phase Transitions	Probing the Theory	Conclusions
Conclus	sions				

- ✓ We have obtained and studied a)Confining Anisotropic theories. b) Hyperscaling Lifshitz-like Anisotropic black holes with arbitrary scalings. (1st construction in the literature)
- $\checkmark\,$ The theories are physical and stable for a wide range of parameters of the theory.
- ✓ The Confinement/Deconfinement phase transitions occur at lower critical Temperature as the anisotropy is increased!
- ✓ The anisotropy by itself could instead be the cause of the inverse magnetic catalysis.
- The shear viscosity over entropy density ratio, takes values parametrically lower than $1/4\pi$, and depends on the Temperature as $(T/\alpha)^{2-2/z}$.
- The diffusion (butterfly velocity) of chaos occurs faster than isotropic systems.
- Baryons dissociate at stages in theories with strong fields. (D.G. 2018)

æ –

・ロト ・四ト ・ヨト ・ヨト

The Theory	Stable and Physical Theories	Phase Transitions	Probing the Theory	Conclusions

Thank you!

æ -

		Stable and Physical Theories	Phase Transitions	Probing the Theory	Conclusions
Remino	ding Slid	e:			

• The anisotropic hyperscaling violation metric

$$ds^{2} = r^{-\frac{2\theta}{dz}} \left(-r^{2} \left(dt^{2} + dy_{i}^{2} \right) + \frac{r^{2}}{z} dx_{i}^{2} + \frac{dr^{2}}{r^{2}} \right) \,.$$

which exhibits a critical exponent z and a hyperscaling violation exponent θ .

• The metric is not scale invariant

$$t \to \lambda^z t, \qquad y \to \lambda^z y, \qquad x \to \lambda x, \qquad r \to \frac{r}{\lambda^z}, \qquad ds \to \lambda^{\frac{\theta}{d}} ds.$$

臣

Special case: IIB Supergravity

Remark:

The ten dimensional action gives our generalized model, when the internal space is an S^5 supported by fluxes and $\sigma = 0, \gamma = 1, \Delta = 4$:

$$S = \frac{1}{2\kappa_{10^2}} \int d^{10}x \sqrt{-g} \left[R + 4\partial_M \phi \partial^M \phi - e^{2\phi} \left(\frac{1}{2}F_1^2 + \frac{1}{4 \cdot 5!}F_5^2 \right) \right], \ F_1 := d\chi \,.$$

where M = 0, ..., 9 and F_1 is the axion field-strength. The equations of motion for the background are:

$$\begin{split} R + 4g^{MN} \left(\nabla_M \nabla_N \phi - \partial_M \phi \partial_N \phi \right) &= 0 \,, \\ R_{MN} + 2\nabla_M \nabla_N \phi + \frac{1}{4} g_{MN} e^{2\phi} \partial_P \chi \partial^P \chi - \frac{1}{2} e^{2\phi} \left(F_M F_N + \frac{1}{48} F_{MABCD} F_N^{ABCD} \right) &= 0 \,\,. \end{split}$$

plus the Bianchi identities and self duality constraints. The axion field equation is satisfied trivially for linear axion.

		Stable and Physical Theories	Phase Transitions	Probing the Theory	Conclusions
Null Ener	gy Cond	dition			

• The averaged radial acceleration between two null geodesics is

 $A_r = -4\pi T_{\mu\nu} N^{\mu} N^{\nu} ,$

if it is negative the null geodesics observe a non-repulsive gravity on nearby particles along them.

• This imposes the Null Energy Condition

 $T_{\mu
u}N^{\mu}N^{
u}\geq 0 \;, \quad N^{\mu}N_{\mu}=0 \;,$

leading to the following constrains:

- For the Lifshitz-like space $z \ge 1$.
- For the Hyperscaling violation anisotropic metric in 3+1-dim spacetime and anisotropic in 1-dim reads

 $(z-1)(1- heta+3z)\geq 0\;,\ heta^2-3+3z(1- heta)\geq 0\;.$

Additional conditions from thermodynamics?

Introduction The Theory Stable and Physical Theories Phase Transitions Probing the Theory Conclusions

Local Thermodynamic Stability

• The necessary and sufficient conditions for local thermodynamical stability in the canonical ensemble are

$$c_{\alpha} = T\left(\frac{\partial S}{\partial T}\right)_{\alpha} \ge 0 , \qquad \Phi' = \left(\frac{\partial \Phi}{\partial \alpha}\right)_{T} \ge 0$$

 c_{α} is the specific heat: increase of the temperature leads to increase of the entropy.

 Φ' is derivative of the potential: the system is stable under infinitesimal charge fluctuations.

- In the GCE these conditions should be equivalent of having no positive eigenvalues of the Hessian matrix of the entropy with respect to the thermodynamic variables. (*Gubser, Mitra 2001*)
- In the IR the positivity of the specific heat imposes

 $c_{\alpha} = 1 - \theta + 2z \ge 0$

3

《曰》 《圖》 《臣》 《臣》

• In the linear response theory the response function $\chi(\omega)$ of the quark to the an external force, is proportional to the two point correlator of a string fluctuations divided by the applied force.

• The string fluctuations along x_1 close to the boundary are found by the monodromy patching method

$$\delta x_{1\omega}(r) = c_1 \left(1 + i\omega c_0 g_{11}(r_h) + \frac{i\omega g_{11}(r_h)}{2\kappa\nu} r^{-2\kappa\nu} \right).$$

• The diffusion coefficient $D = T \lim_{\omega \to 0} (-i \ \omega \chi(\omega))$

$$D \sim T^{2(1-
u_i)}$$

where ν_i is determined by the asymptotics of the metric element along the fluctuation direction.

 Fluctuation-Dissipation theorem holds along each direction; The noise is white; Self energy an thermal mass of the particle depend on the properties and direction of the system DG lee Yeh 2018NCTS

Dimitris Giataganas

Strongly-coupled Anisotropic Theories