

Azimuthal Correlations for Inclusive 2-jet, 3-jet and 4-jet events in pp collisions at $\sqrt{s} = 13$ TeV with CMS

Paris Gianneios

University of Ioannina

29th March 2018, HEP Athens

1

2

3

4

Outline

CMS Detector

- Jet Physics with CMS
- Motivation for this Measurement
 - The Measurement

Summary

lons.

CMS Detector

Jet Physics with CMS

- □ pp DIS ⇒ 2 or more outgoing partons ⇒ radiation
 ⇒ parton shower ⇒ hadronization ⇒ "stream" of hadrons in the direction of initial parton : *Jet*
- Jet algorithm: a mathematical prescription which decides whether a measured object belongs to a jet or not.
 Anti-kt algorithm : standard jet algorithm at the LHC
- Anti-kt algorithm requires as input a list of particles in order to cluster them into final jets: *PF Algorithm*

- Azimuthal angle $\Delta \phi_{1,2}$ between the 2 leading jets is sensitive to radiation effects of quarks & gluons => can be used for testing pQCD and for MC tuning:
 - At LO the two leading jets are back-to-back: $\Delta \varphi_{dijet} \approx \pi$, while higher order corrections cause azimuthal decorrelation of jets: $\Delta \varphi_{1,2} < \pi$, $\Delta \varphi_{1,2} << \pi$

- **Compare the 13TeV results to a similar measurement at 8TeV:**
 - Extend the 8 TeV measurement (only 2-jet topologies) to 3-jet and 4-jet topologies.
- □ Measure a new observable $\Delta \varphi_{2j}^{min}$ for 3-jet and 4-jet topologies which also probes the emission of extra partons.

□ Measurement of two observables for several regions of p_T^{max} :

(A) (B)
(a)
$$1 \frac{d\sigma_{1,2}}{\sigma_{1,2}} \frac{1}{\sigma_{2j}} \frac{d\sigma_{2j}}{\sigma_{2j}}$$

(b) $\sigma_{1,2} \frac{d\Delta \varphi_{1,2}}{\sigma_{2j}} \frac{1}{\sigma_{2j}} \frac{d\sigma_{2j}}{\sigma_{2j}}$

Measurement of observable (A) for inclusive 2,3 and 4 jet topologies and observable (B) for inclusive 3 and 4 jet topologies.

 \Box Data collected with CMS experiment: full 2016 statistics $\mathcal{L}_{int}=35.9 \ fb^{-1}$ at $\sqrt{s}=13 \ TeV$ with single-jet high level triggers: HLT p_T threshold (GeV) 140 200 320 400 450 $p_{\rm T}^{\rm max}$ region (GeV) 200-300 300-400 400-500 500-600 >600Trigger choice for each region of p_T^{max} \mathcal{L} (fb⁻¹) 0.024 0.11 1.77 5.2 36

Event selection :

- Events with at least one good primary vertex, apply tight JetID on each jet.
- Consider jets up to |y| < 5 and with $p_T > 100 \text{ GeV}$
 - Inclusive 2-jet events : $|y_1|$, $|y_2| < 2.5$
 - Inclusive 3-jet events : $|y_1|, |y_2|, |y_3| < 2.5$
 - Inclusive 4-jet events : $|y_1|$, $|y_2|$, $|y_3|$, $|y_4| < 2.5$

$\Delta \phi$ resolution studies

$\Box \Delta \varphi$ resolution studies:

- are taken into account in the binning definition
- are used to perform the unfolding of the measurement
- are performed using Monte Carlo event generators using the difference between generated and reconstructed $\Delta \phi$.

p_T^{max} (GeV)	$Gen_\Delta\phi_{12}-PF_\Delta\phi_{12}$ (rad)	Gen_ $\Delta \phi_{2i}^{min}$ -PF_ $\Delta \phi_{2i}^{min}$ (rad)
	PYTHIA8 CUETM1	PYTHIA8 CUETM1
200-300	0.014	0.017
300-400	0.012	0.016
400-500	0.010	0.014
500-600	0.009	0.013
600-700	0.008	0.013
700-800	0.008	0.012
800-1000	0.007	0.011
1000-1200	0.007	-
>1000	0.007	0.011
>1200	0.007	
	p_T^{max} (GeV) 200-300 300-400 400-500 500-600 600-700 700-800 800-1000 1000-1200 >1000 >1200	p_T^{max} (GeV)Gen_ $\Delta \phi_{12}$ -PF_ $\Delta \phi_{12}$ (rad) PYTHIA8 CUETM1200-3000.014200-3000.014300-4000.012400-5000.010500-6000.009600-7000.008700-8000.008800-10000.0071000-12000.007>10000.007>12000.007

□ Resolution ranges from 0.017 rads (1°) to 0.007 rads (0.4°). The bin width used in the measurements of $\Delta \varphi_{1,2}$ and $\Delta \varphi_{2j}^{min}$ is 0.087 rads (5°) ≈ 5 to 12 times larger than the resolution.

Data Unfolding

Detector level

- Measurement at reconstructed (detector) level needs to be corrected for detector smearing effects => direct comparison :
 - Data vs Monte Carlo at particle level
 - Data vs Data from other exp. e.g ATLAS
- Unfolding based on the matrix inversion algorithm with RooUnfold package:

Particle level

1. Build a response matrix (RM) that maps the true distribution onto the measured one using a Toy MC for larger statistics :

- Events generated in flat $\Delta \phi$ spectrum
- Weight these events by the cross sections at gen level from Pythia CUETM1 => True distributions
- Smear the true distributions with $\Delta \phi$ resolution => measured distributions.

2. Use the matrix inversion method and obtain the unfolded distributions.

The unfolded distributions differ from the distributions at the detector level by 1 to 4%.

Systematics

Three main sources of systematic uncertainties:

- □ Systematic uncertainty due to unfolding:
 - Model dependence \Rightarrow build new response matrices using the generator level from Herwig++ or Madgraph and repeat the unfolding $\sim 0.2\%$.
 - $\Delta \phi$ resolution uncertainty \Rightarrow change $\Delta \phi$ resolution by $\pm 10\%$, construct new response matrices and redo the unfolding < 0.2%.
- □ Systematic uncertainty due to Jet Energy Scale (JES) calibration:
 - The sensitivity of the measurement to JES uncertainty estimated by changing all jets p_T as $p_T = p_T(1 \pm 1\sigma)$ and compare the new cross sections with those with nominal JES value $\Delta \varphi_{1,2}$: ranges from 3% at $\pi/2$ to 0.1% at π . $\Delta \varphi_{2i}^{min}$: ranges from 0.1 to 1% for 3-jet topologies & from 0.1 to 2% for 4-jet topologies
- □ Systematic uncertainty due to Jet Energy Resolution (JER):
 - Use of Pythia8 for p_T resolution and varying its parameters within their uncertainties $\Delta \varphi_{1,2}$: ranges from 1% at $\pi/2$ to 0.1% at π . $\Delta \varphi_{2i}^{min} : < 0.5\%$.

Monte Carlo event generators

10

Generator	Simulated diagrams	Showering	Hadronization	Tune	PDF set	
Pythia8	LO $2 \rightarrow 2$	Order in pT	Lund string model	CUETP8M1	NNPDF2.3LO	
Herwig++	LO $2 \rightarrow 2$	Angular order	Cluster fragmentation	CUETHppS1	CTEQ6L1	
MadGraph	$LO 2 \rightarrow 2$ $LO 2 \rightarrow 3$ $LO 2 \rightarrow 4$	Pythia8 MLM matching	Pythia8	CUETP8M1	NNPDF2.3LO	
Powheg	NLO $2 \rightarrow 2$ LO $2 \rightarrow 3$	Pythia8 Herwig++	Pythia8 Herwig++	CUETP8M1 CUETHppS1	NNPDF2.3LO	
Powheg	NLO $2 \rightarrow 3$ LO $2 \rightarrow 4$	Pythia8	Pythia8	CUETP8M1	NNPDF2.3LO	
Herwig7	$\begin{array}{c} \text{NLO } 2 \rightarrow 2 \\ \text{LO } 2 \rightarrow 3 \end{array}$	Angular order	Cluster fragmentation	H7-UE-MMHT	MMHT2014	

Inclusive 2-jets, 3-jets and 4-jets $\Delta \phi_{1,2}$

Incl 2-jets: $\Delta \varphi_{1,2}$ strongly peaked at π and become steeper with increasing p_T^{max} . Incl 3-jets (& 4-jets): $\Delta \varphi_{1,2}$ smoother close to π since dijets (& 3-jets) are not included.

Inclusive 2-jets : $\Delta \phi_{1,2}$

- Herwig++ exhibits the largest deviations
- Pythia8 behaves better
- Best description by Madgraph

- PH-2J and PH-3J exhibit large deviations
- Best description by H7

Inclusive 3-jets : $\Delta \phi_{1,2}$

- Herwig++ exhibits the largest deviations
- P8 behaves different close to $\pi/2$ than in 2-jet
- Best description by Madgraph

- PH-2J and PH-3J exhibit large deviations
- Best description by H7

Inclusive 4-jets : $\Delta \phi_{1,2}$

- Herwig++ exhibits the largest deviations
- P8 behaves different close to $\pi/2$ than in 2-jet
- Best description by Madgraph

- PH-2J and PH-3J exhibit large deviations
- Best description by H7

Inclusive 3-jets and 4-jets $\Delta \varphi_{2j}^{min}$

• Distributions are almost flat and decrease slowly on the right with maximum value for incl. 3-jets at $2\pi/3$ ("star-shape" configuration) & for incl. 4-jets at $\pi/2$ ("cross" configuration).

Inclusive 3-jets : $\Delta \varphi_{2j}^{min}$

16

- Pythia8 fails to describe the data
- Herwig++ and Madgraph provide reasonable description of the data

• PH-2J provides the best description

Inclusive 4-jets : $\Delta \varphi_{2j}^{min}$

- Pythia8 and Madgraph fail to describe the data
- Herwig++ provides reasonable description

• PH-2J provides the best description

Paris Gianneios (Univ. of Ioannina)

4.1970.

Summary

- ☐ First results for multi-jets azimuthal correlations at 13 TeV <u>arxiv:1712.05471</u>
- Very good detector performance (resolution < 1°) and very precise measurement (uncertainties of the order of few %).
- □ Extension of 8 TeV measurement for $\Delta \phi_{1,2}$ at 13 TeV: very similar behavior of the observable here.
- □ Measurement of $\Delta \varphi_{1,2}$ observable also in 3-jet and 4-jet topologies and introduction of a new observable $\Delta \varphi_{2j}^{min}$ for these topologies.
- □ Comparison to predictions from MC event generators:
 - Madgraph with 4 partons best description among LO MC.
 - H7 best description for $\Delta \varphi_{1,2}$ and PH-2J for $\Delta \varphi_{2j}^{min}$

Still a challenge to describe in detail multi-jet correlations!

8 TeV measurement

Thank you for you attention Paris Gianneios (Univ. of Ioannina)

Measurements of Azimuthal correlations

□ D0 collaboration in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV <u>https://arxiv.org/abs/hep-ex/0409040</u> <u>https://arxiv.org/abs/1212.1842</u>

□ Atlas collaboration in pp collisions at $\sqrt{s} = 7$ TeV <u>https://arxiv.org/abs/1102.2696</u>

□ CMS collaboration in pp collisions at $\sqrt{s} = 7$ TeV <u>https://arxiv.org/abs/1101.5029</u>

□ CMS collaboration in pp collisions at $\sqrt{s} = 8$ TeV <u>https://arxiv.org/abs/1602.04384</u>

□ Atlas collaboration in pp collisions at $\sqrt{s} = 8$ TeV <u>https://arxiv.org/abs/1411.1855</u> <u>https://arxiv.org/abs/1509.07335</u>

Datasets and Software

- □ 2016 Data with CMS experiment at $\sqrt{s} = 13 TeV$ with 25 ns bunch spacing:
 - RUN B : /JetHT/Run2016B-23Sep2016-v3/AOD
 - RUN C : /JetHT/Run2016C-23Sep2016-v1/AOD
 - RUN D : /JetHT/Run2016D-23Sep2016-v1/AOD
 - RUN E : /JetHT/Run2016B-23Sep2016-v1/AOD
 - RUN F : /JetHT/Run2016F-23Sep2016-v1/AOD
 - RUN G : /JetHT/Run2016G-23Sep2016-v1/AOD
 - RUN H : /JetHT/Run2016H-PromptReco-v2/AOD

\Box CMSSW_8_0_x

□ JECs from JetMet group: Summer16_23Sep2016(RUN)3

MET/SumE_T

KAN ES EN

1. 1970 . 3

INH

Trigger studies

HLT_PFJet80, HLT_PFJet140, HLT_PFJet200, HLT_PFJet260, HLT_PFJet320, HLT_PFJet400, HLT_PFJet450, HLT_PFJet500

HLT Triggers	Lumi (fb ⁻¹)	Turn-on-points (GeV)	p_T^{max} region
HLT_PFJet80	0.003	104	
HLT_PFJet140	0.024	175	200-300 GeV
HLT_PFJet200	0.104	246	300-400 GeV
HLT_PFJet260	0.592	308	
HLT_PFJet320	1.765	374	400-500 GeV
HLT_PFJet400	5.171	472	500-600 GeV
HLT_PFJet450	35.877	519	>600 GeV
HLT_PFJet500	35.877	588	

Jet Energy Resolution

https://twiki.cern.ch/twiki/bin/viewauth/CMS/JetResolution

JER Scaling factors and Uncertainty for 13 TeV (2015 and 2016)

Values are reported below:

Spring16_25nsV10 (80X, 2016, BCD+GH PromtReco) DATA/MC SFs

abs(eta) region	0.0–0.5	0.5-0.8	0.8–1.1	1.1-1.3	1.3–1.7	1.7 - 1.9	1.9–2.1	2.1 - 2.3	2.3 - 2.5	2.5–2.8	2.8-3.0	3.0-3.2	3.2-5.0
Data/MC	1.109	1.138	1.114	1.123	1.084	1.082	1.140	1.067	1.177	1.364	1.857	1.328	1.16
SF	+-0.008	+-0.013	+-0.013	+-0.024	+-0.011	+-0.035	+-0.047	+-0.053	+-0.041	+-0.039	+-0.071	+-0.022	+-0.029

Paris Gianneios (Univ. of Ioannina)

4.1970